Decadal ENSO に伴う陸上猛暑頻度と 熱帯対流圏上層気温の近年の変動の特徴

*釜江陽一¹,塩竈秀夫¹,渡部雅浩²,石井正好³,植田宏昭⁴,木本昌秀² ¹国立環境研究所²東京大学大気海洋研究所³気象研究所⁴筑波大学

はじめに

1990年代には、太平洋・大西洋におい て海面水温(SST)の数十年規模変動の位 相変化が生じた。1998年以降の最近十数年 間の気候は、これらの位相の変化に伴う、 大局的なSST場の入れ替わりとその影響に よって大きく特徴づけられる。太平洋では、 北太平洋中央部の低温と赤道東部太平洋の 高温を伴う太平洋十年規模変動(Pacific Decadal Oscillation; PDO)が正から負に、大 西洋では、北大西洋全体のSSTが高い大西 洋数十年規模振動(Atlantic Multidecadal Oscillation; AMO)が負から正にシフトした。

また、この十数年間は、 全球平均地上気温の上昇 が緩やかな時期でもあり

(Kosaka and Xie 2013; Watanabe et al. 2013a; 2014; England et al. 2014; Trenberth and Fasullo 2014)、その気候の特徴 は注目を集めている。 Trenberth et al. (2014) は、 負のPDOに伴って中央・ 西部赤道太平洋上空の非 断熱加熱量が変わること で、特に冬季に遠隔応答 を介し、中緯度の低温・ 高温パターンの形成に寄 与していることを指摘し た。

この十数年間は全球 平均地上気温の上昇が緩 やかであるにも関わらず、陸上で極端な高 温を記録する頻度は増え続けている (Seneviratne et al. 2014)。図1は陸上・海上 それぞれで平均した、季節ごとの平均気温 の推移を示す。海上の気温は、特に熱帯東 部太平洋の低温(Kosaka and Xie 2013; Watanabe et al. 2013a, 2014)の影響を受け、 どの季節でも温度上昇が緩やかであるのに 対し、陸上の平均気温は12月~2月(DJF) を除いて上昇している(冬季の陸上の低温 化についてはTrenberth et al. 2014; Mori et al. 2014を参照)。夏季の陸上平均気温の上昇 は、陸上で観測されている近年の極端な高

図 1. GISS 地上気温による季節ごとの陸上・海上および全球平均気 温の変動。1951~1980 年平均からの偏差。直線と数値は 1997~2013 年の線形トレンド。

温(例えば2003年の欧州熱波; Sutton and Hodson 2005, 2010年のロシア熱波;
Watanabe et al. 2013b)の頻度の増加(Hansen et al. 2012; Seneviratne et al. 2014)と矛盾しない。一方で、近年の陸上の夏季気温の上昇と高温頻度の増加の要因の解明は十分に進んでいない。

本研究では、大気大循環モデル (AGCM)を用いた過去再現実験と感度実験を通して、近年の高温頻度の継続的な増加の要因の特定を行った。

なお、当日は近年のPDOの熱帯対流圏 上層への影響も含めて議論する予定であっ たが、当日の講演で触れることができたの は、陸上猛暑頻度への影響のみであった。 そのため、本講演要旨ではその範囲につい てのみ紹介する。

方法

観測地上気温データにはGISS TEMPの
250km解像度(Hansen et al. 2010)を用いた。
HadCRUT4(Jones et al. 2012)でも同様の解析を行ったが、顕著な差異は確認されなかった。200hPa高度場にはERA-I(Dee et al. 2011)を用いた。

大気大循環モデルMIROC5 AGCM (Watanabe et al. 2010)に、観測されたSST、 放射強制力(GHG、火山噴火など)、土地 利用変化を与え、過去63年間(1949~2011 年)の再現実験(ALL run)を行った。また、 人為的な強制を除いた実験(SST run)と、 さらに境界条件SSTから人為的な昇温成分 を除いた実験(NAT run)を行うことで、 SSTを介さない人為的な寄与(ADIR)、SST を介した人為的な寄与(ASST)、自然起源 の強制による応答と内部変動(NAT)の三 つに分離した。それぞれ初期値を変えた10 メンバーのアンサンブル実験を行い、不確 実性幅を評価した。ここで、境界条件SST

図 2. GISS および AGCM の ALL run による、 (a) 北半球陸上夏季 (JJA) 平均気温 (℃) と、 (b) 猛暑頻度 (%) の変動。陰影は 90%信頼 区間。Kamae et al. (2014a) の図 1 をもとに 作成。

図 3. 図 2b に同じ。ただし、青・ピンク・赤は それぞれ ASST 効果、NAT 効果、ADIR 効果を 示す。Kamae et al. (2014a)の図 2a をもとに 作成。

から除く人為的な寄与は、大気海洋結合モ デルMIROC3を用いて行われた全強制実験 と自然強制実験(Nozawa et al. 2005)の差 を、空間的・時間的に平滑化したもので定 義した。

本研究では、6~8月のうち、各格子点 で各月平均気温が顕著に高いときを猛暑と 定義する。1951年から1980年までを基準期 間に設定し、この期間の平均値よりも標準 偏差の2倍以上高い月を猛暑とし(Hansen et al. 2012)、主に北半球陸上での猛暑の頻度 について調べた。

結果

図2に、GISSとMIROC5 AGCMによる ALL runから求められた北半球陸上の平均 気温と、猛暑頻度の経年変動を示す。観測 データをもとにした猛暑の頻度は、エルニ ーニョ・ラニーニャや火山噴火の影響によ る大きな年々変動を示す。また、1998年以 降の期間でも、猛暑の頻度は増加している。 ALL runは、これらをよく再現している。

近年の猛暑頻度の変動要因を分離する (図3)と、期間に依らず、ADIR効果が強 まり続けていることがわかる。これは、大 気中のCO2濃度の継続的な上昇と整合的で ある。ADIR効果の空間分布を確認すると (図4)、北半球亜熱帯から中・高緯度にか けて、寄与度が大きいことがわかる。長期 的な猛暑の増加には、ASST効果が最も重要 である(図3、図4の左図と右図の差にほぼ 相当)一方で、亜熱帯から中・高緯度では その寄与度が小さい。また、NAT効果は長 期的な変化傾向に対しては寄与度が小さい。

一般的に、外部強制による陸上全体の 気温の応答は、SSTの上昇の影響と、SSTの 変化以外の影響(陸面に働く放射強制)の 二つに分けられる。前者を間接的昇温、後 者を直接的昇温と呼ぶと、ASST効果は間接

図 4. 夏季平均気温の 1991~2011 年平均の 1951 ~1980 年平均からの差。(左図) ALL run、(右 図) ADIR 効果。Kamae et al. (2014a) の図 3b. d をもとに作成。

図 5. (上図) 海面水温と(下図) 夏季平均気 温の 2001~2011 年平均の 1991~2000 年平均 からの差。(左下図) ALL run、(右下図) NAT 効果。Kamae et al. (2014a) の図 4b, c, j をも とに作成。

的昇温、ADIR効果は直接的昇温に分類され る。大気中二酸化炭素濃度の上昇のような 全球スケールの強制に対する応答では、一 般に間接的昇温のほうが直接的昇温よりも 重要である(例えばJoshi et al. 2008; Compo and Sardeshmukh 2009)。特に熱帯域では、 海の温暖化による海上の自由大気の昇温が、 重力波によって効率よく水平方向に伝播す るため、陸上でも気温が大きく上昇する (weak temperature gradient; Sobel et al. 2001)。一方で北半球の中高緯度では、陸 に比べて海の割合が相対的に低緯度よりも 小さく、ロスビーの変形半径も小さいため、 海上の昇温が陸上に伝わりづらい。そのた め、中高緯度では低緯度に比べ、直接的昇 温の重要性がより大きくなる(Kamae et al. 2014b)。

一方で、1998年以降の全球平均気温上 昇の停滞期に着目すると、ADIR効果の継続 的な増加の他に、NAT効果の変動が寄与し ていることがわかる(図3)。最近の十年規 模のSST変動を確認すると(図5)、太平洋 での負のPDOと、大西洋での正のAMOの重 ね合わせでよく特徴づけられることがわか る。大局的なSST場の変動による大気循環 場、地上気温の変動はこれまでによく調べ られており(Pegion and Kumar 2010)、負 のPDOは遠隔応答を通してカナダに低温、 中緯度北米に高温をもたらす。正のAMOは 低緯度の高SSTの影響で北米亜熱帯域に高 温、また北大西洋に隣接する欧州などに高 温をもたらす。このように、負のPDOと正 のAMOは北半球中緯度陸上の気温を上げ ることで、猛暑の頻度を増やす方向に働い ている(NAT効果はモデルで再現される猛 暑増加の40%に相当)ことがわかった。

議論

近年の地球温暖化の停滞傾向の一方で、 陸上の猛暑頻度が増加していることには、 人為的なCO2濃度の継続的な上昇が寄与し ていることがわかった。大気中CO2濃度は 今後も継続的に上昇すると考えられるため、 地球温暖化の停滞傾向が今後どの程度続く かによらず、陸上で発生する猛暑のリスク は、人為的な影響によって増え続けること が示唆される。

近年の太平洋ではラニーニャの傾向が 続いているが、このような十年規模の海洋 の変動は、今回紹介した猛暑の頻度に加え、 中緯度の気候にも大きな影響を及ぼす

(Trenberth et al. 2014)。この影響は地上だけでなく、熱帯対流圏上層の気温上昇トレンドにも確認される。人為的な温暖化傾向との比較対象として、観測データから得ることのできる長期的あるいは短期的(十年から数十年程度)な変化傾向を調べる際には、近年の十年規模変動の位相の変化の影響が大きい可能性を検討することが不可欠である。

謝辞:本研究は文部科学省気候変動リスク 情報創生プログラムの支援を受けた。

参考文献

- Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Clim. Dyn., 32, 333–342.
- Dee, D. P., et al. 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553–597.
- England, M. H., et al. 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change, 4, 222–227.
- Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004.
- Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. U.S.A., 109, E2415–E2423.
- Jones, P. D., et al. 2012: Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.
- Joshi, M. M., et al. 2008: Mechanisms for the land-sea warming contrast exhibited by

simulations of climate change. Clim. Dyn., 30, 455–465.

- Kamae, Y., H. Shiogama, M. Watanabe, and M. Kimoto, 2014a: Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys. Res. Lett., 41, 5192–5199.
- Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014b: Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate–Part II: Importance of CO₂-induced continental warming. Clim. Dyn., 43, 2569–2583.
- Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407.
- Mori, M., et al. 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geosci., 7, 869–873.
- Nozawa, T., et al. 2005: Detecting natural influence on surface air temperature change in the early twentieth century. Geophys. Res. Lett., 32, L20719, doi:10.1029/2005GL023540.
- Pegion, P. J., and A. Kumar, 2010: Multimodel estimates of atmospheric response to modes of SST variability and implications for droughts. J. Clim., 23, 4327–4341.
- Seneviratne, S. I., et al. 2014: No pause in the increase of hot temperature extremes. Nature Clim. Change, 4, 161–163.
- Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.

- Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118.
- Trenberth, K. E., and J. T. Fasullo, 2014: An apparent hiatus in global warming? Earth's Future, 1, 19–32.
- Trenberth, K. E., et al. 2014: Seasonal aspects of the recent pause in surface warming. Nature Clim. Change, 4, 911–916.
- Watanabe, M., et al. 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim., 23, 6312–6335.
- Watanabe, M., et al. 2013a: Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett., 40, 3175–3179.
- Watanabe, M., et al. 2013b: Event attribution of the August 2010 Russian heat wave. SOLA, 9, 64–67.
- Watanabe, M., et al. 2014: Contribution of natural decadal variability to global-warming acceleration and hiatus. Nature Clim. Change, 4, 893–897.