我国の数値予報システムの現状*

(2) 全球解析予報システムの過去・現在・未来

佐藤信夫**

1. はじめに

数値予報解説シリーズ第1弾(木田, 1990)にも述べ られているように, 1989年11月全球数値予報モデルが 更新され,その予報精度が世界のトップレベルに躍り出 た.この全球モデルにより毎日8日予報が行われ,週間 天気予報・航空気象予報のための予測資料を提供してい る.前半の4日予報までは安定した予報精度を保ち,8 日予報の実況との(傾向)相関係数も0.65以上ある.ま た全球解析予報システムの出力である全球解析値は,全 球的な水・エネルギー収支や大気と固体地球を合わせた 角運動量収支の研究(内藤, 1989)にも利用され成果を 上げている.

これらの成果は,数値予報開発30年の歴史の上に達成 されたものである.本稿では全球(北半球)解析予報シ ステム開発の歴史を概観すると共に,その現状を報告す る.従来,全球モデルは総観規模擾乱の週間予報を目標 として開発されてきた.今後は,力学的長期予報がその 主要な課題となるであろう.

このモデルは大気大循環モデルと同等の物理過程を取 り入れている.長期時間積分における性能を評価する研 究は始まったばかりであるが,気候シミュレーションモ デルとしての可能性も持っている.一方で,将来の計算 機演算速度の強化と共に,全球モデルと領域メソモデル の区別は次第に解消し,メソスケール擾乱も全球モデル で予報する.全球メソモデルが登場するだろう.

なお、数値予報の基本概念と用語については、木田 (1990)を参照されたい。

1991年1月

2. 全球(北半球)数値予報モデル開発の歴史

気象庁が数値予報を開始して30年,北半球(全球)を 予報領域とする広域モデルが稼動してから20年が経過し た.この30年間に気象庁の予報中枢計算機は5回更新さ れている.計算機の演算速度・記憶容量の飛躍的発展に より,今では総観規模擾乱の発生・発達・運動の短期予 報については完璧とは言えずとも満足できる予報精度を 達成している.台風などの数百 km 前後のメソαスケー ルの擾乱も予報の対象として考慮すべき時代となってき た.

勿論この間に,数値予報モデルは質的変貌を遂げた (第1図).当初は非発散渦度方程式により500mb面一 層の渦度を予報するのみであった.渦度を流す風の初期 値を,500mb高度からバランス方程式*を用いて求め たため,バランスパロトロピックモデル(BBモデル) と呼ばれた.この方程式は,水平スケール数千kmの総 観規模現象については水平発散の小さい大気中層で渦度 が近似的に保存するという性質を用いている.当然,低 気圧の発達は予測不可能であった.また太平洋高気圧な ど超長波スケールの波については鉛直スケールも大き く,500mb面を非発散面と見なすことはできず,位相 が西進するという欠点をもっていた.

順圧モデル(1層モデル)から傾圧モデル(多層モデ ル)への移行は,1970年4月の北半球3層バランスモデ ル*によって実現された.このモデルは,BB モデルと

^{*} The current status of numerical weather prediction systems in Japan (2) The past, present and future of the global analysis and forecast system in Japan Meteorological Agency.

^{**} 気象庁数値予報課.

^{*} バランス方程式とは発散方程式で発散の時間微分 を零とした方程式である。流線関数と高度の二階 偏微分方程式で、高度を与えると流線関数(風の 非発散成分)が求まる。さらに簡略化すると高度 と風の地衡風バランスを表わす式となる。境界値 問題としてのバランス方程式は、楕円型の偏微分 方程式という条件を満たさないと解けない。この 条件はコリオリパラメタの小さい低緯度で破れ る。

第1表 予報時間の変遷

期 間	予報時間	モデル
59.6-	毎日 12 UTC から48時間	北半球バランバロトロピック
70.4-	毎日 12 UTC から48時間	北半球3層バランス
73.10-	毎日 00, 12 UTC から48時間	同上
76.12-	毎日 00, 12 UTC から48時間	北半球4層プリミティブ
	日曜・水曜 12 UTC から96時間	
78.4-	発散バロトロピックモデル	同上
	による96-192時間予報を追加	
79.9-	192 時間予報をプリミティブ	同上
	モデルで通して行う	
88.3-	毎日 00 UTC から72時間	16層全球スペクトル
	毎日 12 UTC から 192 時間	

同様にフィルタードモデルといわれる.気象現象のう ち,水平規模数千 kmの長波を表現するようスケールア ナリシスを経て簡略化された方程式を,基本方程式とす るからである.よって,音波は勿論,重力波も全く表現 されない. 傾圧バランスモデルにも基本方程式を構築す る際の仮定から発する問題が存在した.コリオリ・パラ メータが小さい低緯度の予想ができない. 渦度を予想す るモデルのため山岳の影響や物理過程を導入することが 難しいことなどである(増田, 1981).

4層北半球プリミティブモデル** が稼動し始めたのは、75年1月のことであった.プリミティブモデルの登

場により延長予報への道が開かれた(第1表). 4層プ リミティブモデルはチベット高原の西側で気温が下降, 東側で上昇という顕著な系統的誤差を持っていた(増

▶天気// 38. 1.

^{**} 水平スケール 100 km 以上の大気の運動は、その アスペクト比からして鉛直方向よりも水平方向の 運動が卓越している.この様な場合、静力学近似 は非常に良い精度で成立する。静力学近似のみを 仮定した方程式を、プリミティブ方程式、数値モ デルをプリミティブモデルという.このモデルで はラム波以外の音波は取り除かれる.積乱雲その ものを扱うのでなければ、このプリミティブモデ ルは格子間隔約 10 km まで有効である。

田, 1981). 大気がチベット高原を迂回せず, 昇り降り するためであった. この問題は8層北半球モデルの導入 によりほぼ解決された. 予報値を解析の第1推定値とす る解析予報サイクルを組むことにより,初期場の流れが 山に馴染むようになったこと,および鉛直分解能の増強 が改善をもたらしたと考えられる.

BB モデルを初めとし、8 層北半球モデルまで、総観 規模の高・低気圧の東進の位相速度が系統的に遅れると いう誤差を持っていた.現場の予報官は、数値予報によ る48時間予報を36時間予報とみなすというような解釈を していた.水平・鉛直分解能が不十分で、空間切断誤差 が大きかったこと、西風ジェットが予報で維持出来なか ったことなどの原因があげられる.これらのモデルの水 平格子間隔は381 km (北緯 60 度を基線とするポーラー ステレオ投影図での、北緯60度での値)であった.

1983年には、それまでの格子モデルに代わって、スペ クトルモデルが登場した(Kanamitsu *et al.*, 1983). ス ペクトル法は、物理量を格子点上で定義するのではな く、水平方向に波に分解して表現する方法である. 切断 波数は42で、格子モデルとの比較は単純ではないが、 270 km の格子間隔に相当すると考えられる.

スペクトルモデルの物理過程として,新たに放射過程 (太陽放射と赤外放射)が導入された. それまでは,海 面から大気への顕熱・潜熱フラックスは計算されても, 放射過程が考慮されなかったため陸面温度が計算され す,陸面での顕熱・潜熱フラックスは無視されていた. また一定値に固定されていた陸・海面の抵抗係数が,安 定度に依存するようになった. 同時に安定度に依存する 大気境界層内の鉛直拡散が導入され,乾燥対流調節は廃 棄された. さらに湿潤対流のパラメタリゼーション*** として,Kuo (1974)の方式が対流調節にとって替わっ た.

このスペクトル法の導入を契機として、モデルの物理 過程パラメタリゼーションに、より注意が払われるよう になった.計算機の演算速度・記憶容量の不足により、 それ以前のモデルの水平・鉛直分解能は不十分だった. そのため空間切断誤差が隘路となって、物理過程を少し 位改良しても予報結果は改善されなかったのである. 2300 (20 N TO 90N) TENDENCY CORRELATION 24 HOUR FORCAST 25 HOUR FORCAST 25 HOUR FORCAST 26 HOUR FORCAST 27 HOUR FORCAST 26 HOUR FORCAST 26 HOUR FORCAST 26 HOUR FORCAST 27 HOUR FORCAST 26 HOUR FORCAST 26 HOUR FORCAST 27 HOUR FORCAST 26 HOUR FORCAST 26 HOUR FORCAST 27 HOUR FORCAST 27 HOUR FORCAST 28 HOUR FORCAST

第2図 1981-83 年度の解析予報システム更新に伴 う予報精度の向上.

500 hPa 高度の24,48時間予報値(一初期値)と対応する時刻の解析値(一初期値)の相関係数(傾向相関係数と言う)の月平均値を示す.

Miyakoda (1975) も、当時の数値予報モデルの予測誤 差の主要な原因として空間分解能をあげている。

1981年から83年へかけて、4層-8層北半球格子モデ ルー12層北半球スペクトルモデルとモデルがめまぐるし く更新された.この更新によって予報精度が飛躍的に向 上したことが第2図に示されている(中山、1984).4 層北半球モデルの3月の1日予報の相関係数0.75という 値は、最新全球モデルのそれの6日予報の値である(第 12図). 興味深いことに、予報精度が向上すると共に、 その季節変化の振幅も減少している.空間分解能の向 上、物理過程のパラメタリゼーションの向上により、大 きなスケールの山岳や冷・熱源分布による外力が表現さ れ、系統的誤差が減少したことが主因だろう.

予想精度の向上に寄与したのは,数値予報モデルの改 善ばかりではない.観測データの利用,客観解析,初期 値化のいずれについても,新しい方法が導入された.こ の点で1970年代後半から活動を始めたヨーロッパ中期 予報センター(ECMWF)の果たした役割は大きい. ECMWF は最新のスーパーコンピュータを導入し,予 報モデルの物理過程を重視しつつ高分解能モデルを構築 した.また衛星データを積極的に利用し,最適内挿法 (3,4参照)や非線形ノーマルモードイニシャリゼー ション(NLNMI,3.3参照)という初期値化の手法を 導入した解析予報サイクル(解析の第1推定値として予 報値を用いる手法.4次元データ同化ともいう.3.5 参 照)を実現して解析の質と予報精度を飛躍的に向上させ たのである.

1991年1月

^{***} パラメタリゼーションというのは、モデルの格子では表現できない格子スケール以下の大気現象が、格子で表現できるスケールへ及ぼす集団効果を、格子点での物理量で以て表現することである。

我国の数値予報システムの現状

第2表 気象庁の客観解析モデルの変遷

	北半球解析	全球解析
期 間	71.3-	83. 3–
解析時刻	00, 12 UTC	00, 06, 12, 18 UTC, 88.2まで00, 12 UTC
データ打ち	解析時刻の 6h 後	解析時刻の 5h 30m-7h 30m 後
切り時刻		
格子系	ポーラーステレオ	等緯経度
空間分解能	北緯60度で 381 km	1.875度, (88.2まで 2.5 度)
格子数	51×51 (82.3から65×65)	192×97, (88.2まで144×73)
第一推定值	海面気圧と高度は12(24)時間予報値,風	6時間全球予報值
	は海面気圧と高度の第一番目の解析値、飽	
	差(地上)は地上気温-5度C,その他の	
	飽差は直下の層の解析値(82.3から全要素	
	について12時間北半球予報値)	
解析レベル	地上 -100 hPa, 7 層	地上 -10 hPa, 16層
解析要素	地上…海面気圧, 気温,	地上…海面気圧,風,
	風,飽差	気温,相対湿度
	80C, 700, 500 hPa	1,000 hPa 高度
	…高度,風,飽差	850, 700, 500, 400, 300 h P a
	300, 200, 100 h P a	…高度, 風, 気温, 相対湿度
	…高度,風	250, 200, 150, 100, 70, 50, 30, 20, 10 hPa
	(82.3から成層圏解析開始)	…高度,風,気温
解析法	繰り返し修正法	地上 -100 hPa 最適内挿法
	(82.3から最適内挿法,成層圏は関数当て	70-10 h Pa 関数当てはめ法
	はめ法)	
使用データ	SYNOP, SHIP, TEMP, AIREP,	SYNOP, SHIP, DRIBU, TEMP, PILOT,
	ボーガスデータ	AIREP, SATEM, SATOB, PAOB, ボーガス
	(SATOB を79.12, SATEM を82.3	データ, GMS 雲情報 (83.7から)
	から 使用)	

数値予報課では79年末から静止気象衛星の雲移動ベク トルから求めた風データ (SATOB), 82年から NOAA の極軌道衛星による鉛直気温プロファイルデータ (SAT EM) を客観解析に利用するようになった. それまで は、ゾンデデータや地上観測・船舶観測データが主であ った.

客観解析法についても,繰り返し修正法に代わって最 適内挿法を採用した(第2表).客観解析は様々な観測 誤差を持つ非一様な空間分布をする観測データから,規 則的な格子点での値を求める方法である.繰り返し修正 法は格子点での解析値と推定値の差を,格子点周囲の観 測点での観測値と推定値の差の重みつき平均で表わす. 最適内挿法も同様であるが,重みの決め方に違いがあ る.繰り返し修正法での重みは,格子点と観測点の距離 と観測誤差により決まる. 最適内挿法での重みは, 予報 誤差, 観測誤差, 観測点の配置などによって決まり, 内 挿誤差を最小にするよう線形連立方程式を解いて求めら れる. データ分布が一様で密な場合は, 両者は同精度の 解析を可能にする.

繰り返し修正法による客観解析では、当時のモデルの 精度が不十分なこともあり、第一推定値としての予報値 (24時間,後に12時間予報値)は、海面気圧や高度場な ど一部が用いられたのみであった。よってこの時代は4 次元データ同化をしていたとは言えない。解析のレベル も地上から100hPaまでの8層であった。82年3月, 第一推定値として北半球8層プリミティブモデルの12時 間予報値を用いる北半球解析予報サイクルが組まれた。 翌年には、解析予報サイクルのために全球スペクトルモ

▶天気// 38.1.

デルが運用され、全球4次元データ同化システムが稼動 し始めた。

解析値をそのまま予報モデルの初期値として使うと, 短周期の振動を生じ4次元データ同化に悪影響を及ぼ す.初期値化はこの振動を取り除く過程である(3.4 参照).初期値化の手法として NLNMI が出現するまで は,等圧面高度からバランス方程式を用いて非発散風を 求めていた.ただしバランス方程式を境界値問題として 解けるようにするため,低緯度ではコリオリパラメタを やや大きい値に修正して解を求めたのである.よって低 緯度の風の解析は不充分で,亜熱帯高気圧,ひいては台 風の予報にも悪影響を及ぼした.

この様に,全球解析は,全球をカバーする衛星データ の利用と最適内挿法,全球モデルと NLNMI,それらを 組み合わせた4次元データ同化によって可能になったこ とが納得されるであろう.

これまで述べた改善の他に,85年12月のマイナーなモ デル更新(インクリメント内挿法の採用 -3.5 参照-. 温度と仮温度の区別)で海面水温として月毎の気候値で はなく,数値予報課の毎日解析値(Baba,1986)を使う ようにしたこと,GMSの雲データを湿度解析に利用 し,熱帯の擾乱の解析と予報に大きなインパクトを与え たこと(Baba,1988)が特筆される.88年3月の更新は 大規模なもので,物理過程が全面的に更新され,空間分 解能もアップした.85年12月,さらに88年3月,89年11 月とモデル更新毎に予報精度の向上が見られることは第 3 図に明瞭に見て取られる.

3. 全球解析予報システムの現状

気象庁全球解析予報システムは,毎日発表される週間 予報と航空予報のための予報資料を提供することを目的 とし,12 UTC (グリニッジ 標準時,日本時間 21 時) に8日予報,00 UTC に3日予報を行っている.また, その予報値は、アジア域スペクトルモデルや台風スペク トルモデルの側面境界条件を与えている.1988年3月全 球モデルの空間分解能が増強され、物理過程が全面的に 更新された.その結果、モデルの水・エネルギー循環は より気候値に近いものとなり、予報精度も飛躍的に向上 した(Sugi et al., 1990).さらに、1989年11月,大きな 台風や寒気場内の極渦などの,総観規模擾乱より小さな 規模の擾乱の予報を目的として、高分解能化を計った (以後、この89年版全球モデルを GSM 8911 と記す). 同時に陸面水文過程のパラメタリゼーションモデルとし て生物圏モデル (Sellers et al., 1986)を導入した.こ の結果、世界的に見ても精度の高い予報プロダクトを出 力するシステムが稼動するようになった.

解析予報システムは予報と客観解析からなる.後者 は、規則正しく配列された格子点上の大気の物理量を求 める手法であるが、広い意味では、気象電報の解読や観 測データの品質管理も含む.従来、解析予報システムの なかで、解析に比べ予報モデルの構築と改良に重点が置 かれてきた傾向がある.予報モデルの性能不足により、 解析を少々手直ししたところで、予報精度が向上しなか ったためであろう.しかし近年の予報モデルと解析モデ ルの改善により、予報精度の向上にとって、初期値の精 度向上が決定的であると見られている.この結果、解 析、特に観測データの品質管理を重視する現今の潮流が 生じている.

3.1 力学フレームと時間積分法

全球モデルの予報変数は、風の東西・南北成分から導 びかれたスカラー量である渦度と発散、および気温・比 湿・地上気圧である。予報方程式はプリミティブ方程式 で、静力学的近似を行っている。よってラム波以外の音 波は方程式から除かれている。これは、積乱雲等の小ス

15

1991年1月

第4図 GSM 8911 で用いている地形。等値線の間隔は 200 m.

ケールの気象擾乱を直接予報対象としない限り妥当な仮 定である. 方程式系は,ナビェストークスの方程式から 導かれた渦度方程式・発散方程式と,エネルギー保存の 式,水蒸気保存の式,質量保存の式からなる. 渦度・発 散方程式には摩擦項,エネルギー保存の式には放射や凝 結・乱流による加熱項,水蒸気保存の式には凝結や蒸発 などの項,即ち物理過程と総称される項を含む.

鉛直方向には差分法によって離散化している.鉛直座 標としては、地表面近くでは地形に沿うようなσ座標、 成層圏ではp(等圧面)座標で、その中間でσからp座 標へ緩やかに移行するハイブリッド座標(以下 η 座標と 呼ぶ)を採用している(木田、1990,第1回).山の斜 面での気圧傾度力の見積りをより正確にすると共に、地 表面から遠く離れた成層圏で、偽の山岳の影響がでるこ とを防ぐのが目的である(例えば、水平拡散をσ面で適 用すると、山の上の成層圏の気温分布が歪められること に現れる).層数の少ない成層圏で、解析の行われるp面と、予報をσ面で行った場合の $p-\sigma$ 変換に伴う誤差 を小さくするという目的もある.GSM 8911 は21層か らなる.地上から 850 mb までの大気境界層に5層、 100 mb 以高の成層圏に 5層ある.

各 η 面での物理量は球面調和関数で展開され,その展 開係数を時間の関数として積分するスペクトル法が採用 されている.純粋に波数空間で行われる計算は時間積分 と水平拡散のみである.いっぽう,方程式の移流項など の非線形項や物理過程の計算は,波から格子点値へ変換 した物理量でもって格子上で行われる.格子点で得られた時間変化傾向は波に変換される.Orzag (1970)により提唱されたこの変換法と高速フーリエ変換(FFT)により,初めてスペクトルモデルが実現したのである.スペクトルモデルの水平分解能は切断波数によって決められる.GSM 8911 は切断波数 106 (三角形切断)で,変換格子は東西 320×南北 160 (約1.125°)から成る.

時間積分間隔 *d*t については,安定に時間積分を行う ためにとれる CFL (クーラン・フリードリッヒ・ルー イ)の条件がある.

 $\Delta t < a/(MC_{max})$

ここでaは地球半径,M は切断波数,C_{max} はモデル大 気の最大位相速度である.スペクトルモデルでは,長い 時間間隔 dt でも安定に時間積分を行うために,発散方 程式・エネルギー保存の式・質量保存の式で重力波を生 ずる項について線形化し,陰に解くセミインプリシット 法を用いている.モデルの重力波(特に外部重力波)の 位相速度を変えて,C_{max} が最大風速で決まるようにし ている.GSM 8911 から,さらにdt を長く取るため, 渦度方程式で東西風による移流項の一部をインプリシッ ト化する時間積分法を採用した.このモデルのdt は約 700~900秒である.1日積分に100回以上の繰り返し積 分が必要である.

GSM 8911 で用いている山岳分布を第4図に示す. もとの 10'×10'の U.S. Navy データから1°メッシュ データを作成し, T 106 のスペクトルに展開し, 高波数

▶天気/ 38. 1.

を減衰するフィルターを通した後,格子点値に変換している.チベット高原などの大規模山岳は良く表現されている. ただし日本の中部山岳は 500 m 程度の半球状の山である.

3.2 物理過程

全球モデルによる予報期間が1週間,さらに1か月・ 季節予報へと延長されるに伴い,モデルの物理過程の重 要性が増す.大気の大規模運動が初期条件によって規定 されるよりも,大気内部や地表面との相互作用による熱 源の分布に影響されるからである.

GSM 8911 で考慮している物理過程は,湿潤対流及 び過飽和による水蒸気の凝結,浅い対流,放射による大 気・地表面の加熱,山岳波抵抗,大気と地表面間及び大 気中の乱流による,顕熱・潜熱・運動量の輸送などであ る. 各々の物理過程については,数値予報課報告別冊

第5図 GSM 8803 (8911)の長波放射スキームで
 考慮されている吸収物質と波長帯,H2O
 (CONT)とはダイマー (H₂O)₂ による連
 続吸収.

(杉ら1988, 佐藤ら1989) が詳しいので、それらを参考 にして頂きたい。

放射過程としては,長波放射(赤外放射)と短波放射 (太陽放射)が考慮されている.放射,特に長波放射の 透過関数の計算に非常に時間を要すため,長波放射は3 時間毎,短波放射は1時間毎に計算される.さらに各格 子毎でなく,4格子平均の放射束と加熱率を求めること によって,計算時間短縮を計っている.

長波放射の吸収物質としては水蒸気,二酸化炭素及び オゾンを考慮している.水蒸気は予報変数であるから, 予報された値を用いる.オゾンについては緯度と高度の 関数として季節毎の気候値を,二酸化炭素は時間空間に よらぬ 330 ppm の一定値を与えている.これらの気体 による透過関数は波長帯毎(第5図)に Goody (1952) のランダムモデルによってあらかじめ計算され,気温と 吸収物質の量の関数としてテーブルにしてある.吸収帯 が重なる場合の透過関数は,各吸収物質の透過関数の積 として表わされると仮定する.3時間の間に地面の温度 が変わる影響は考慮されている.

標準大気について上記のランダムモデルによる加熱率 と吸収線毎に厳密に計算した加熱率を比較すると,第6 図に示すようにほぼ0.2度Cの範囲に収まっている.こ のように晴天の場合,長波放射による加熱率は精度良く 求められる.

短波放射スキームは Lacis and Hansen (1974) を修

第6図 全球モデルの長波放射スキームにより解散された加熱率(実線)とより厳密に吸収線毎に計算した加熱率(破線, Shibata and Aoki, 1989). 左図では熱帯, 右図では中緯度冬の標準大気の温度, 湿度の鉛直プロファイルを仮定した

1991年1月

正したスキーム (Harshvadahn et al., 1987) によって いる.大気各層および大気と地表面の間の多重散乱,大 気と地表面での吸収が考慮されている. 0.9 μ m より短 い波長(散乱部分,全太陽放射エネルギーの65%) につ いては空気分子によるレーリー散乱・雲によるミー散乱 ・地表面による反射・吸収,およびオゾンによる吸収を 計算する. 0.9 μ m より長い波長(吸収部分, 35%) に ついては水蒸気による吸収,雲による多重散乱と吸収, 地表面による反射・吸収を計算する. 短波放射のチュー ニングは,雲量に対する散乱パラメタの比例係数によっ て,プラネタリーアルベードが衛星観測で求められた気 候値の 0.3 になるよう行っている.

短波放射も含めて放射による加熱率を求める計算にお ける今後の問題は,透過関数の計算や放射伝達方程式の 解法よりも,雲量を如何に表現するかにある.雲量は上 ・中・下層雲別に,予報された相対湿度の2次関数とし て診断的に求めている (Saito and Baba, 1988). 中・ 下層雲の射出率は1.0とし,上層雲のそれは0.5として いる.ただし後者の効果は,上層雲量を半分にするとい う形で表現している.また各層の雲はランダムに重なっ ていると仮定している.この様にして求めた雲量を, ISCCP (国際衛星雲気候計画)の全球雲量分布と比較 すると,地理的な分布のコントラストが小さい(Kimoto, 1988).モデルでは完全な曇天がなく,地表面は必ずい くばくかの日射を受け,日変化を示す.相対湿度から雲 量を求める関数が統計的に求められ,雲量の値の範囲が 狭いからである.

湿潤対流による水蒸気の再配分と凝結による大気の加 熱は, 基本的に Kuo (1974)のパラメタリゼーション による.ある格子点が一定以上の相対湿度を持ち,条件 付き不安定にあり,かつ水蒸気収束があれば,対流が起 こり降水があるとしている.ただし雲の中の鉛直温度プ ロファイルの計算にエントレインメント(対流セル周囲 の空気の混入)を考慮し,雲底は持ち上げ凝結高度から 決めている.モデルの熱帯の降水はほとんどこの形態で 起こる.モデル内の他の降水形態は,中高緯度の格子点 での過飽和によるものである.

偏東貿易風帯に代表される背の低い対流雲の効果は, 境界層と自由大気の水蒸気,顕熱,運動量の乱流拡散と してパラメタライズしている.背の低い対流雲の存否 は,条件付き不安定にあることと,雲頂が700mb以 下,かつ Kuo スキームの湿潤対流が起こらないとい う条件によって決めている.これによって大気境界層の

 第7図 非線形ノーマルモードイニシャリゼーション(NLNMI)をする前の二つの格子点での地上気圧の時間変化(実線),NLNMI 適用後は(破線),最大振幅5hPa,周期数時間の振動が除かれている。

湿り過ぎと亜熱帯高気圧帯の自由大気での乾燥し過ぎを 押えている.

大気中,特に境界層での乱流による,顕熱・水蒸気・ 運動量輸送は,Mellor and Yamada (1974) のレベル 2のクロージャーモデルによっている.このスキームで は,鉛直拡散係数は安定度と風の鉛直シアーの関数とし て診断的に求まる.

地表面と大気の間の潜熱・顕熱・運動量の交換を決め る抵抗係数はバルクリチャードソン数と地表面の粗度に よる(Louis et al., 1982). 海上の粗度は, Charnock (1955)の式で与えている. 海面水温の気候値からの偏 差は,過去7日間の船舶データと, NOAAの極軌道衛 星によるデータにより,毎日解析した値を用いている (Baba, 1986;馬場, 1990). 予報期間中,月毎の海面 水温の気候値を予報の日付に1日毎に内挿し,初期値の 水温偏差を加えている. 海氷がある場合,その厚さを 2mとして熱伝導を考え,氷面で熱バランスを解いてい る.海氷分布は月毎の気候値で与えられる.

陸面水文過程は生物圏モデル (SiB, Sellers et al., 1986; Sato et al., 1989 b) による. このモデルは,土 壌水の根からの吸収と,蒸散の葉の気孔による制御を陽 に表現することに特徴がある.土壌温度,土壌水分,積 雪量などが予報変数であり,大気との潜熱・顕熱の交 換,積雪・融雪,土壌水の浸透・流出などの過程がパラ メタライズされている.SiB では各格子点毎に12種の植 生タイプのいずれかを与える.それぞれの植生タイプに

▶天気/ 38. 1.

ついて土壌や植生の物理定数を与えている. 葉面積指数 (単位面積当たりの鉛直に積算した葉の面積)などは落 葉樹であれば月毎に変化し、土壌の透水係数などは季節 によらぬ一定値を与えている. 粗度やアルベードなども そのパラメタのひとつである. 雪氷分布は月毎の気候値 を与えている. 積雪量は永年氷でなければ, 水当量 10 cm としている. 土壌水分の初期値は気候値 (Wilmott et al., 1985)を変換して与えている (Sato et al., 1989 a). 深層土壌温度の初期値としては、モデル高度におけ る, 層厚から求めた気温の気候値を与えている.

1980年代,数値大気モデルが高分解能化するにつれ, かえって増大した系統的誤差があった.それは北半球の 亜熱帯ジェットが北上強化されることであった.この 誤差の軽減のために,山岳波による抵抗が導入された (Palmer et al., 1986).山岳波が上層に伝播し圏界面や 成層圏で砕波する時その場所の西風を減速することをパ ラメタライズしている.気象庁の全球モデルには,成層 圏で抵抗として効く水平スケール約 100 km の山岳波に よる抵抗と,対流圏下層で効く水平スケール約 10 km の山岳波による抵抗を考慮している (Iwasaki et al., 1989).後者は気象庁モデル独自のスキームである.

3.3 初期值化

気象庁の解析システムでは、熱帯を除いて、風と高度 の解析を両者が地衡風関係を満たすよう同時に解析す る,所謂多変量解析を行っている.このようにしても, 解析値をそのまま予報モデルの初期値として用いると, 運動と質量場(高度場)が完全にはバランスしていない ことから、地上気圧にして数 hPa の数時間周期の重力 波振動を惹起する(第7図). この短周期振動は, 物理 過程との相互作用が弱く,また振動も1~2日で減衰す るため、単発の予報には大きな影響を及ぼさない. しか し解析予報サイクルにとっては重要である. 推定値が短 周期振動によって汚染されていると、取り入れられるべ き観測データが捨てられることがある. というのは、観 測データの品質管理の一つとして,推定値(=予報値) との差が, 観測誤差の標準偏差よりも余りに大きい観測 データは捨てているからである. この初期値化の一手法 が, 非線形ノーマルモードイニシャリゼーション (NL NMI, Machenhauer, 1977; 工藤, 1984) である. ノー マルモードとは線形方程式の固有解のことである.線形 化したプリミティブ方程式の固有解は、西進重力波、東 進重力波と(西進する) ロスビー波に大別される. その 固有解を、 X_k ,固有値を Ω_k 、プリミティブ方程式の非

線形項 NL(移流と物理過程)の固有解 X_k への投影を (NL)_k, K をモデルの自由度とする.このときプリミテ ィブ方程式は次のように表現することができる.

$\frac{\mathrm{dX}_{k}}{\mathrm{dt}} = -\mathrm{i}\Omega_{k}X_{k} + (\mathrm{NL})_{k}, \ \cdots k = 1, \ \mathrm{K}$

NLNMI とは, 固有値がある周期より短い重力波成分 についてその時間微分が零となるように,重力波成分の 位相と振幅を変えるものである.つまり

 $0 = -i\Omega_k X_k + (NL)_k$

から X_k を求める.この様に X_k を決めると,非線形項 (NL) $_k$ の値も変わるので,繰り返し計算により求める. 気象庁全球モデルでは,全物理過程(浅い対流を除く) による強制力を含む,固有周期48時間より短い全鉛直モ ードのイニシャリゼーションを行っている.

3.4 客観解析と品質管理

全世界で観測された気象データは、全球通信組織 (GTS)を経由し、また国内のデータは L-ADESS (地 方気象資料中継編集システム)を経由して気象資料総合 処理システム (COSMETS) に入電する. これらのデ ータは英数字で表わされ、観測地点番号,観測時刻,観 測種別などを示すヘッダーを持っている. この情報から 電文を分類し、通報式に従って解読して後の計算処理の ために整理する過程をデコーディングと読んでいる.

ところで入電する電報のうちデータの種類によっては 10~20%が定められた通報式から逸脱したものである. これは,観測データをコード化する際の誤り(高層気温 データの奇数偶数による氷点以下・以上の誤りなど), 左右上下一文字誤りなどのタイプミス,あるいは伝送途 中のバケなどによる.観測データはひとつたりとも大切 であるから,型式からはずれた電文は,上記以外にも様 々なエラーの原因を考え,復元するようにしている.ま た船舶データは時に陸上にあったりするのでそのチェッ クも必要である.その他に気象学的に不自然なデータの チェック,ゾンデデータの超乾燥断熱の有無などの鉛直 整合性チェックなどが行われる.

この他にも,解析の第一推定値から,標準偏差の一定 倍以上離れた観測データは除外する.この倍数は観測の 種別や要素,データの密度などによって決められる.第 一推定値は予報値,前回の解析値である.品質管理にお いてこの部分の取り扱いは難しい.許容範囲を大きく取 れば誤った観測値を取り込む可能性が増え,逆に小さく 取れば正しい観測値を拒否するかもしれない.特にデー タが少なく,第一推定値自身が疑わしい海上で問題とな

1991年1月

る.ここに述べた気象データの品質管理は解析と予報の 精度向上にとって重要課題となっている.

20

第2表に全球解析の概要を示す(柏木, 1990). 解析 法として100 hPa以下の対流圏では最適内挿法,70 hPa 以上の成層圏では関数当てはめ法を採用している(平 木,1983). 成層圏で最適内挿法を取らない理由は,第 一推定値として用いる予報値が成層圏で非常にバイアス が大きいこと,および成層圏のデータが対流圏にもまし て少ないことである.ただしGSM 8911 では,鉛直層 数を増し,放射による加熱率を改善したことにより,予 報値のバイアスが減少したため,最適内挿法を適用した 解析予報サイクルが可能な環境にあり,実用化のための 実験が行われている.

さて最適内挿法は,不規則に分布しかつ様々な観測誤 差を持つ観測データから,規則的な格子上に,誤差を最 小にするよう内挿する手法である.Fを任意の気象要素 とし,上付き添字 O,P,I,t で観測値,第一推定値,内 挿値(格子点の解析値),真の値を表わす.下付き添字 gで内挿点と内挿される要素,iで観測点と観測される 要素を表わす.nで内挿に使用される観測値の数<>で アンサンプル平均を表わそう.

解析値を得たい格子点での解析値と第一推定値との 差: $F_{g}I$ — $F_{g}P$ を格子点の周囲の観測値 F_{i} の と第一推定 値 $F_{i}P$ の差の線形結合として表わされると仮定する. すなわち

$$F_{g}I - F_{g}P = \sum_{i=1}^{n} w_{i}(F_{i}O - F_{i}P)$$
(1)

ここで $F_{i^{p}}$ は $F_{g^{p}}$ から内挿して求める. 重み w_{i} は多数の解析をしたときの解析誤差

 $<(F_{g}I-F_{g}t)^{2}>$

が,最小になるように求められる.重みを与える式は次 の連立一次方程式となる.

$$\sum_{j=1}^{n} (\sigma_{ij}^{p} + \sigma_{ij}^{0}) w_{j} = \sigma_{gi}^{p}$$

$$\tag{2}$$

ここで σ_{ij} , σ_{ij} は予報誤差, 観測誤差の共分散である. つまり

 $\sigma_{ii}^{p} = <(F_{i}^{p} - F_{i}^{t})(F_{i}^{p} - F_{i}^{t}) >$

ただし(1),(2) 式を導く際に観測と第一推定値の誤差 は各々バイアスが無く,またお互いにも独立であるとし ている.

現行の全球解析は等圧面上でその面上のデータのみを 用いて解析する2次元解析である.アジア解析では上下 の等圧面のデータも使う3次元解析を行っており,全球 解析も3次元解析に向けてテストしている.また,風と 高度場の解析については,地上と熱帯を除き,地衡風の 関係を仮定した多変量解析を行っている.

全球解析では第一推定値として、6時間前の初期値か ら出発した6時間予報を用いる、いわゆる解析予報サイ クル(あるいは4次元データ同化)を行っている.これ は、データの少ない領域、特に海洋上で、良い推定値を 得ようとするために始められた.大気の3次元観測にと って最も信頼のおけるゾンデデータのある大陸からの大 気の情報が、流れに乗って下流の洋上に伝播する.この 波や気塊の移動に伴う情報伝播を予測するのは数値予報 そのものであり、予測値を第一推定値とすることによっ て,上記の目的が達成される.解析予報サイクルを開始 して凡そ1週間すると予報モデルの推定値が全球に行き 渡り、システムとして安定する.この方法の特徴は、予 報モデルが良くなると推定値も改善され、よって解析値 の精度も向上し、解析値を初期値とする予報結果=推定 値も良くなるという,正のフィードバックが期待できる ことにある.

3.5 4次元データ同化におけるデータの流れと処理 第8図は、4次元データ同化システムにおける、デー タの流れを示す.予報は9面の波数空間(物理過程など は9面のガウス格子)で行われる.解析は等圧面(*p* 面)の等緯経度格子上で行われているので、波から9面 格子点値に変換した後、9座標から*p*座標への内挿を行 っている.*p*面の解析値は直接9面へ内挿し、9面波数 空間へ変換して予報の初期値とすることもできる.しか し現行システムではそうせずに、*p*面・等緯経度格子の 解析値と推定値の差を、9面・ガウス格子の予報値(= 推定値)に加える、インクリメント内挿法を取ってい る.

この手法は、単に内挿誤差を小さくするという技術的 問題に留まらない.その根底には、推定値の力学的バラ ンスを可能な限り保存して、大きなスケールについては 観測データで修正し、力学的バランスのとれた解析値を 得るというアイデアがある.近年の予報モデルは鉛直・ 水平解像度共に増し、観測データの分解能を上回る場合 もでてきた.たとえばゾンデデータは、地上の次は 850 hPa に飛ぶ.いっぽう予報モデルでは 1,000 hPa と 850 hPa の間に予報レベルが5層ある.予報モデルで得 られた、境界層の構造を壊さずに観測データを取り込む ために、インクリメント内挿法が考案されたのである. 水平方向についても、予報モデルのガウス格子間隔は

▶天気// 38. 1.

u, vは各々東西・南北風、く; 渦度、D;発散、T;気温、Tv; 仮温度 ø; 高度、q; 比湿、Rh; 相対湿度、Ps; 地表面気圧、Psea; 海面気圧 解析は1.875度の等緯経度格子,予報の物理過程は約1.125度の ガウス格子で行われている。温度の解析値は予報には利用していない。

予報値・ n 面・波数(06 UTCからの6時間予報値) 23.3 (ζ, D, T, q, Ps) 1 予報値・ヵ面・ガウス格子 予報値・ヵ面・等緯経度格子 (u, v, T, q, Ps) (u, v, T, q, Ps) (u, v, Tv, Rh, Ps) < 地形データ・鉛直内挿 予報値・P面・等緯経度格子=推定値 $(u, v, T, \phi, T - T d, P sea)$ 推定値・P面・観測点への内挿値 (u, v, T, ϕ , T - T d, P sea) <観測値・P面・観測点 最適内挿法による客観解析 解析値・P面・等緯経度格子 $(u, v, T, \phi, T - T d, P sea)$ - 1 -< (解析値-推定値)・P面・等緯経度格子を内挿し 予報値・ヵ面・ガウス格子に加える (u, v, φ, Rh, Psea; φはlnPで微分してTvに変換) 解析値・ヵ面・ガウス格子 (u, v, Tv, Rh, Ps) (u, v, T, q, Ps) _ __ __ __ __ __ __ 1 解析値・ヵ面・波数 (ζ, D, T, g, Ps) 初期値化 初期値・ヵ面・波数 (ζ, D, T, q, Ps) 予報 < 予報値・ η 面・波数 (12 UTCからの6時間予報) (ζ, D, T, q, Ps)

第8図 解析予報サイクルの手順

1.125°であるのに, 解析の分解能はそれより劣る. イ ンクリメント内挿法により, 予報値ばかりでなく, 初期 値のエンストロフィーも, 理論的に予想される 2 次元乱

流の波数スペクトル:(波数)⁻³を示すようになった. ここで,解析を予報モデルの物理過程が計算されるガ ウス格子上で行えば,水平方向の内挿は不要となる.ま

1991年1月

た ECMWF で採用されている3次元7面解析を行え ば、(1) 式から分かるように,自然にインクリメント解 析となる. この方法はアメリカ気象センター (NMC) などでも実験されているが, p面解析との優劣はつけ難 い.

カ学的にバランスした場を解析するという本来の目的 を再考すれば、非断熱過程で保存する等温位面上の渦位 (Q)を可能な限り保存する解析が考えられる.現在の 4次元データ同化で得られた解析値からQマップを作り 動画にすると、時間的連続性があまり良くない.将来は Q一解析が可能になるかもしれない.

4. GSM 8911 の予報の特徴と精度

22

4.1 水・エネルギー収支と系統的誤差

数値モデルによる予報期間が延長されるに伴い,モデ ルの水・エネルギー循環が現実の大気のそれを再現して いるかどうかが問題となる.第8図a,bは8日予報で の水・エネルギー収支を表わす.これ等の値はほぼ気候 値に合っている(岸保ら,1982).全球平均降水量は12 層北半球スペクトルモデルの時代までは約1.7mm/日 と少なく,熱帯のハドレー循環,ウオーカー(東西) 循環も共に弱かった.16層全球モデル(GSM 8803) の長波放射のパラメタリゼーションとして,Katayama (1970)に代わって3.2節で述べた新しいスキームを採 用した結果,長波放射による全球平均の冷却率が1.0~ 1.1K/日から1.4K/日へ増加した.この冷却率を補う ように凝結による加熱が増え,全球平均降水量もほぼ 2.7mm/日となった.熱帯の循環も強まり予報期間中維 持されるようになった(Sugi et al., 1990).

つい最近まで、"スピンアップ"といわれる問題が数 値予報モデラーを悩ましていた.これは解析値がモデル に馴染んでいないため、モデルの降水やその他の物理過 程が平衡状態に達するまでに時間(2~3日)を要すと いう問題である.第9図a,bは水・エネルギー収支が 1日目からほぼ平衡状態に達していることを示す.こ の問題を解決したのは気象庁全球モデルが最初である (Tada et al., 1989).より詳しい毎時の収支解析による と、水収支は予報の初めからバランスしている(Kasahara and Tamiya, 1989).このように全球モデルのス ピンアップの問題は、全球平均の意味では解決された が、局所的には未解決である。

GSM 8911 から,従来の8日予報の物理過程モニター(長波・短波放射,凝結による3次元的加熱率分布な

どの月平均値)に加えて、4次元データ同化システムの 出力として6時間積算した地表面での顕熱・潜熱・運動 量フラックス,正味の長波・短波放射,降水量と、1ケ 月積算した3次元的な物理過程診断値を保存するように なった。第1の目的は観測値の少ない海洋循環の4次元 データ同化である。即ち大気から海洋への外力として, 放射・顕熱・潜熱・運動量フラックスなどを与え,海洋 観測データを取り入れつつ海洋大循環モデルを時間積分 することにより海洋循環を求めようとするものである。 こうして海洋循環の初期値が得られれば,大気海洋結合 モデルによる季節予報を試みることができる。第2に, 全球的な水・エネルギー循環の季節内変動・年々変動を 診断すること,第3に,物理過程パラメタリゼーション の改善に役立てることである。90年代後半に設定されて いる WCRP の総集編,GEWEX(地球規模の水・エネ

▶天気// 38. 1.

第10図a 6時間間隔4次元データ同化システムから得られた1990.7.6.12 UTC-18 UTC の
 6時間積算降水量.等値線は4mm/日. 左図は GMS により得られた1990.7.6.12
 UTC の等価黒体温度

第10図 b 4次元データ同化システムから得られた1990年7月の1ヵ月積算全球降水量分布.等値線 は 0, 2, 4, 8, 16, 32 mm/日.1mm/日以下に斜線, 8 mm/日以上に網がけを施した.

ルギー循環実験,武田,1990)でも4次元データ同化が 主要な課題となっている。

1例として第10図 a に 6 時間積算降水量と GMS ひま わりの等価黒体温度(TBB)を対比する.熱帯では,雲 が広がっている TBB の低い領域とモデルの降水域と は,その移動を含め,大概一致している.ただし月積算 降水量と月平均 TBB を比較すると,モデルの降水量は ニューギニアの上で多すぎるようだ(第10図 b).海洋 大陸の島の上にモデルの降水域が固定されるこの系統的 誤差は延長予報で顕著である.

第10図 b の様に、4次元データ同化によって、降水な ど気候形成に関与する素過程の全球的分布を求めること が可能である。第10図 b の降水域は、Jaeger (1976)の 7月の気候値と比較するとほぼ一致している。4次元デ ータ同化によって、水・エネルギー収支の年々変動など が定量的に表現し得るかが今後の問題である。

1991年1月

第11図 1990年1月の12UTCを初期値とする192 時間予報31例についての,帯状平均気温の 誤差。

予報時間が延長されるに伴い,予報された場が解析値 あるいは気候値から離れて,モデル自身の気候値に近づ き,誤差が増大する.この誤差のうち,系統的にあるい は多数の平均をとっても現れる誤差を,系統的誤差とい う.GSM 8911 の系統的誤差の代表的な例として第11 図に8日予報の帯状平均した気温偏差を示す.全般に負 のバイアスがある.そのなかで第一の特徴は熱帯下層 850 hPaを中心とする負偏差,及び高緯度の地表面付近 の正偏差である.後者はGSM 8803 では弱かったの で,陸面水文過程の変更によるのであろう.

前者のエラーは熱帯海洋上の対流活動が盛んな場所で 大きい.この系統的誤差は鉛直安定度を安定な方向に変 えることから,湿潤対流に影響を与える.実際,熱帯の 降水量は8日予報で時間と共に減少する.積雲対流のパ ラメタリゼーションに問題があるのではないかと推測す る.これらの系統的誤差の原因は重要な課題として研究 中である.

4.2 予報例と精度

第2,3図に示されているように、全球(北半球)モ デルの予報精度はモデル更新毎に向上している.それで は世界の主要な数値予報センターのモデルと比較したと き気象庁のモデルはどのような位置にあるのだろうか. 第12図は89年3月(GSM 8803)と90年3月(GSM 8911)の1~8日予報の ECMWF,イギリス気象局 (UK),気象庁(JMA)の予報精度を、海面気圧の傾 向相関係数で示している.89年11月の更新前はUKと 同程度であったが、更新後 ECMWF に並ぶようにな った.米国気象センター(NMC)も気象庁と同等であ る.ただしUK,NMC,ECMWF 共に既に新計算機を 導入し、近々モデルのグレードアップを図っており、油 断はできない.

さて実際に総観規模擾乱、それより水平スケールの小

第12図 気象庁 (JMA), ヨーロッパ中期予報セン ター (ECMWF), 英国気象局 (UK)の全 球モデルによる 6—10 日予報の精度を海面 気圧の傾向相関係数で表わした.上は89年 3月 (GSM 8803),下は90年3月 (GSM 8911).

さい台風がどのように予報されているか,その例を示そ う.第13図は,低気圧が日本付近で凡そ2日という短周 期で発生し,東進発達した例である.初期値で日本の南 岸にある低気圧Aの東進発達の予想は当然として,**B**, **C**,**D**の3個の低気圧のうち,2日予報で**B**・5日予報 で**D**の発生と,その後の発達と進路を予測している.た だ低気圧Cの発生は全く見逃している.

第14図に台風の予報例を示す.現在の全球モデルで は、空間分解能が不十分なこともあって、台風の発達 (例えば中心の海面気圧)まで精度良く予報するのは難

◎天気/ 38.1.

第13図 1990年3月1日12 UTC を初期値とする2,4,5,6,7
 日予報の海面気圧(右列)と対応する時刻の解析値(左列).

第14図 1989年10月24日 12 UTC を初期値とする台風予報の比較. 左;GSM 8803 による2,3日予報,中;GSM 8911による2,3,4,5日予報,右: 対応する時刻の解析.一番右上の図は初期場を表わす.

◎天気// 38. 1.

第15図 GSM 8911 による北海道付近の格子点での地上気象要素の8日予報(上)の3時間毎の値と,同じ くアメダス4要素による3時間毎の実況(下).

しい.進路予報を目的としている.16層 T 63 モデルで は台風の北上が速く,かつ台風の渦が維持できずに,3 日予報で既に温帯低気圧に変わっている.いっぽう空間 分解能が向上した21層 T 106 モデルでは,台風はゆっ くり北上し,予報5日目の温帯低気圧への移行を見事に 予想している.

ただしすべての台風予報が上記の例のように順調では ない.全球モデルは大型台風を予報する水平分解能を持 ち始めたばかりである.いっぽうで,従来に比較して水 平分解能が増したため台風が発生し,かつ維持され易く なり,台風が西進するときに北上する系統的誤差と相伴 って,予報場を極端に乱すことがある.また数値予報モ デル一般に共通な問題として,観測データが疎らな海上 で,台風と台風の周囲の精度の良い解析を如何に行うか という問題が残っている.台風の発生と進路の週間予報 は,次世代の全球モデルの重要課題である. 数値予報モデルの結果の利用法として,予報された気 圧や高度場を人間が総観気象の知識を基に解釈して天気 予報に反映させる形態の他に,予報された物理量の格子 点値を直接利用する形態もある.アジアモデルの予報値 とアメダス降水実況を統計的に処理して得た,雨の確率 予報などが後者の例である.全球モデルの予報格子点値 も航空予報や気温の週間予報などに使われている.

第15図は、全球モデルにより予報された札幌付近の格 子点の気象要素である.バイアスの補正その他の統計的 操作はなんら加えていない.格子間隔は1.125度である から約1万 km² を代表する値である.その領域の中に は山あり平野あり,地面被覆も様々であるから、領域の 中にある平均したアメダス観測値の時系列と比較する際 は注意を要するが、気温や降水の傾向が大まかには合っ ているように見受けられる.今後モデルの空間分解能が 向上し、物理過程のパラメタリゼーションが改善される

1991年1月

に伴い,天気要素を直接モデルで表現する利用形態の比 重が増すであろう.

5. 全球数値予報の将来

これまで、気象庁全球(北半球)モデル開発の歴史と 現状を概観した.1970年代の第1次全球大気実験計画 (FGGE)の目標である、大規模擾乱の中期予報の精度 向上は、おおよそ達成されたといってよいであろう.勿 論、解決しなければならない問題は残されている.大規 模擾乱の擾乱の予測についても5日から先になると初期 値による変動が大きい.台風など水平スケールは小さい が寿命が長く、日本付近の天気に大きな影響を与える擾 乱の予測も今後の課題である.また予報された格子点値 を天気予報に直接利用するには更に改善が必要である.

今後の数値予報の目標は、力学的長期予報と、集中豪 雨などの激しいメソスケール現象の量的短時間予測であ る.両者とも従来に無い難しさを伴っている.大規模擾 乱の運動は第1近似でポテンシャル渦度保存の式で記述 出来る. 非断熱過程があると保存しないが, それは短期 予報の範囲では摂動とみなしてよい. そのため, 計算機 の演算速度・容量が増強され、予報モデルの格子間隔を 小さくすればするほど、力学部分は良く再現される.力 学的長期予報や激しい降水を伴うメソ擾乱の予測では, 第1次近似でも非断熱と仮定することはできない.様々 な物理過程が影響するので, そのパラメタリゼーション が重要になる、ところが雲と放射の相互作用のように、 物理過程のパラメタリゼーションには未解決な問題が多 くある. また, 力学過程自体の持つ不安定性と非線形性 により,初期値の小さな誤差が時間と共に増大して,モ デルによりシミュレートされた解が真の解から離れると いう問題もある.

現在,全球モデルによる1ヶ月予報実験が進行してい る.大規模擾乱の理論的予報可能限界はせいぜい2週間 と見られている.このため1ヶ月予報では個々の大規模 擾乱でなく時間的に平均された場が予測の対象である. これまでの実験結果によると,冬期の成績が良い.延長 予報では初期値の僅かな差によって,予測された場がか なり変動する.この初期値の影響を取り除くために,少 しづつ異なった初期値(12時間とか6時間づつ離れた連 続した数例の初期値)から予報したアンサンブル平均に よって,予報精度を上げようとしている.LAF(Lagged Average Forecast)と呼ばれるこの方法によって,予報 精度は確かに改善される(Yamada *et al.*, 1990).ただ し冬期であっても予報が良い場合と悪い場合がある.今後の課題は,前もって「予報の信頼性を予報する」ことである.

力学的季節予報となると、海面水温の変動も考慮しな ければならないので、海洋大気結合モデルによって予報 することになる.海洋の観測データは海面水温を除いて 大気のデータよりも遙かに少ないので、海洋モデルの初 期値を作るには3.3節で述べた4次元データ同化の手法 で作るしかない.GFDLの都田らはこの手法で海洋運 動の初期値を作り、エルニーニョの予報実験を行い、あ る程度の成果を上げている.問題は結合モデルにするこ とにより、系統的誤差が増幅することである.またエル ニーニョが予報できたからといって、季節予報ができた ことにはならない.熱帯は S/N 比が小さく、海面水温 に対する大気の反応も単純である.いっぽう中緯度大気 は熱帯の海面水温だけで決まらない.

電子計算機の演算速度と記憶容量は今後も増大すると 思われる.次世代の全球モデルは 30 層以上で 格子間隔 は 50 km 程度になるだろう. 台風や寒気場内の極渦な ど,メソαスケール擾乱でも寿命が長く,天気に大きな 影響を及ぼす現象の予報が目的である. このように全球 モデルの空間分解能が増強され,メソ擾乱も予報対象に なると,局地モデルとの境界が曖昧になる.次世代の全 球モデルは全球メソモデルと言って良いだろう.

観測データの密度や精度の向上が遅々としている間 に,予報モデルの空間分解能が向上しても果たして予報 精度が上がるのかと,疑問を持たれる読者もあるだろ う、予報モデルの分解能を向上させる根拠は、ひとつに は大規模場の状態を与えると、それに応じてスケールの 小さい場も予報モデルが作ってくれるという期待される からである。特に地形によって誘起される現象に対して はその期待が大きい. 地表面付近の気象要素を数値予報 に基づいて直接出力・利用する場合は、異質な地表面被 覆の影響を取り入れるために高分解能が必要である. ま た大気の運動の空間スペクトルは連続していて、それら の非線形相互作用が簡単にパラメタライズできるとは思 えない. その簡単な1例として, 現モデルで用いている 線形の水平拡散がある. これは小スケールにエネルギー が溜まるスペクトルブロッキングという現象を抑えるた めの便宜的な方法であって、物理的な洞察に基づいてい る訳ではない. 今後の予報精度を向上させるには, 予報 モデルとしては系統的誤差の軽減がある.系統的誤差の 原因は、物理過程が主だろうが、未だ(特に鉛直方向成

▶天気// 38. 1.

[、]地球境境監視力測システム。 と名づけるべき

目的

1.地球の大気圏、水圏、生物圏の時々刻々の状態と 運動を監視する。

2. 大気、海洋、生物圏、陸水結合モデルにより地球 環境の将来を予測する。

第16図 近未来の予報解析サイクル.

層圏の)空間分解能が不足しているためかも知れない. 予報モデルが改善されると最終的に予報精度を決定す る要因は,観測データである.観測データの分布は北半 球のしかも陸上に偏っている.静止気象衛星や極軌道衛 星によって全球的な風や気温のデータが得られている が,鉛直分解能が低いことと精度がゾンデに比べて悪い のが問題である.90年代に地球観測衛星 ADEOS をは じめとして,多くの実験的衛星の打ち上げが予定されて いるが,その成果が数値予報にも現れることを期待したい.

数値予報モデルが改良されて系統的誤差が消え, 観測 データが今になく得られて精度の良い初期値が得られた としても,大気運動の不安定から生ずる予報の限界が厳 然と存在する.数日から先は決定論的予報ではなく,数 値モデルによって僅かに異なった初期値から多数の予報 を行い,現象の発生確率を求める力学的確率予報が出現 する可能性も大いに有る.既に力学的1ヶ月予報は確率 的予報の方向に進んでいる.週間予報の時間スケールで は,気圧パターンの出現確率ではなく,降水量や気温な どの天気要素の確率分布を直接求めるのでなくては意味 が無い.力学的確率予報が成功するためには,予報値の バイアスを小さくしなければならない.また莫大な計算 機資源を要するが,いずれ現行の統計的確率予報にとっ て代わるであろう.

新しい観測データを入手し、品質管理によってデータ の質が向上し、新しい解析法が開発され、予報モデルが さらに改善されたとき、予報の精度は直線的に向上する のだろうか? 筆者は何時かは頭打ちになるだろうと考 える.その時フロンティアをどこに求めたらよいだろう か? 数値予報の予測値は波浪モデルや海氷モデルに供 給されて、海上の波高や海氷分布などの予測に利用され ている.将来は結合モデルによる海流や海面水温の予測 が可能になろう.汚染物質の拡散をシミュレートするモ デルもある.数値予報の将来は境界領域にあると考え る.この領域の研究開発が進めば、経済活動にも影響を 与える応用分野が続々出現するだろう.

筆者は来世紀の数値予報の姿として,地球環境監視予 測システムを提唱したい(第16図).地球の大気・水・ 生物の各圏は縫い目の無いシステムを構成している.こ れらの結合モデルによって4次元データ同化を行い,地

1991年1月

球環境の時々刻々の状況を監視すると共に、同じ結合モ デルによって未来の環境を予測する。来世紀には衛星に よる遠隔測定が現在の比でなく発展しているだろう。そ れらの観測データは同化システムに取り込まれることに より初めて生きてくる。水や無機的なエネルギーの循環 ばかりでなく、炭酸ガスの交換過程なども記述する様な システムに成長させるのが目標である。1910~20年代に V. ビヤークネス、F. リチャードソンがみた数値予報 の夢に代わり得る夢となるであろうか。

謝 辞

この稿を起こすにあたって、気象庁数値予報課の岩崎 俊樹、田宮久一郎,里田弘志,山田慎一,瀬上哲秀の諸 氏に資料を提供して頂いたこと,また重久陽亮,柏木啓 一,馬場厚,隈健一の諸氏には貴重なコメントを頂いた ことを感謝いたします.

参考文献

- 柏木啓一, 平木 哲, 滝川雄壮, 巽 保夫, 1983: 北半球およびファインメッシュ予報モデルと解析 システム, 電子計算室報告別冊, 29: pp 93, 気 象庁予報部.
- 柏木啓一,野村(馬場)厚,楠 昌司,1990:気象 データと客観解析,数値予報課報告別冊,36,pp 131,気象庁予報部.
- 岸保勘三郎,田中正之,時岡達志,1982:大気の大 循環,大気科学講座4,東京大学出版会,pp256.
- 木田秀次, 1990: 我国の数値予報システムの概要 (1), 天気, 37, p 591-p 602.
- 工藤達也, 重久陽亮, 1984: ノーマルモードイニシ ャリゼーション, 電子計算室報告別冊, 30, 22-22.
- 佐藤信夫,木本昌秀,露木 義,里田弘志,1989: 力学的長期予報をめざして,数値予報課報告別 冊,35, pp 138,気象庁予報部。
- 杉 正人,多田一正,隈 健一,瀬上哲秀,山田慎 一,長谷川直之,斎藤和雄,栗原和夫,上野 充, 1988:数値予報モデルの物理過程,数値予報課報 告別冊, 34, pp 131,気象庁予報部.
- 武田喬男, 1990:GEWEX (全地球エネルギー・水 循環実験観測計画), 天気, 37, 490.
- 内藤勲夫, 1990:地球の角運動量収支における大気 水圏のシステムの役割, 天気, 37, 231-241.
- 中山 嵩, 1984: 気象庁数値予報ルーチンモデルの 精度について. 天気, 31, 441-459.
- 増田善信, 1981: 数値予報—その理論と実際—, 東 京堂出版, pp 278.
- 增田善信, 遠藤有礼, 長野美文, 清水喜允, 住明 正, 湯本幸治, 柏木啓一, 1976:客観解析, 電子

計算室報告別冊, 22, pp 81, 気象庁予報部.

- Baba, A., 1986: An Objective Analysis of Sea Surface Temperature, JMA/NPD Tech. Rep., 5.
- Baba, A., 1987: Improvement of the Estimation Method of Moisture Data from Satellite Cloud Soundings, JMA/NPD Tech Rep., 15.
- Goody, 1952: A statistical model for water vapour absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31, 118-133.
- Harshvadahn, R. Davis, D. Randall and T. Corsetti, 1987: A fast radiation parametarization for atmospheric circulation models., J. Geophys. Res., 92, 1009–1016.
- Iwasaki, T., S. Yamada and K. Tada, 1989: A parameterization of orograhic gravity wave drag with the different vertical partitioning, Part I; Impact on medium range forecasts., J. Meteor. Soc. Japan, 67, 11-27.
- Jaeger, L., 1976: Monatskarten des Niederschlages fur die ganze Erde. Ber. Dtsch. Wetterdienst, 18 (139).
- Kanamitsu, M., K. Tada, T. Kudo, N. Sato and S. Isa, 1983: Description of the JMA operational spectral model, J. Meteor. Soc. Japan., 61, 812-828.
- Kasahara K. and K. Tamiya, 1989: Spin-up of Precipitation Forecasts with a Global Atmospheric Model, JMA/NPD Tech. Rep., 29.
- Katayama, A., 1972: A simplified scheme for computing radiative transfer in the troposhere, Tec. Rep., 6, Department of Meteorology, UCLA pp. 77.
- Kimoto, M., 1988: A Preliminary Intercomparison between Satellite-derived and Modelgenerated Clouds and Radiation, JMA/NPD Tech. Rep., 23.
- Kuo, H.L., 1974: Further Studies of the parameterization of the influence of cumulus convection on large-scale flow., J. Atmos. Sci., 31, 118-133.
- Lacis A.A. and J.E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31, 118-133.
- Louis, J.M. Tiedtke and J.-F. Geleyn, 1982: A short history of PBL parameterizations at ECMWF. Workshop on Planetary Boundary Layer Parameterization, ECMWF, 59-80.
- Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization, Beitrage zur Physik der Atmosphare, 50, 253-

271.

- Miyakoda, K., 1975: Weather forecasts and the effects of the sub-grid scale processes. Seminars on Scientific Foundation of Medium Range Weather Forecasts, ECMWF, Part II, 380– 593.
- Orzag, 1970: Transform method for calculation of vector coupled sums; Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890-895.
- Palmer, T.N., G.J. Shutts and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametarization, Quart. J. Roy. Meteor. Soc., 112, 1001-1039.
- Saito, K. and A. Baba, 1988: A statistical relation between relative humidity and GMS observed cloud amount. J. Meteor. Soc. Japan, 66, 187-192.
- Sato, N., P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III, Y.-T. Hou, and E. Albertazzi, 1989 a: Implementing the Simple Biosphere Models (SiB) in a General Circulation Model; Methodologies and Results. NASA Contractor Report 185509.

- Sato, N., P. J. Sellers, DA. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III Y.-T. Hou, and E. Albertazzi, 1989 b: Effects of Implementing the Simple Biosphere Model in a General Circulation Model, J. Atmos. Sci., 46, 2757-2782.
- Shibata, K. and T. Aoki 1989: Infrared radiation scheme for numerical model of weather and climate. J. Geophys. Res., 94, 14923-14943.
- Sugi, M,K. Kuma, K. Tada, K. Tamiya, N. Hasegawa, T. Iwasaki, S. Yamada and T. Kitade, 1990: Description and Performance of the JMA Opeational Global Spectral Model (JMA-GSM 88), Geophys. Mag., 43, 105-130.
- Tada, K., W. Bourke and T. Hart, 1989: An intercomparison of the Numerical Predictions of the BMRC and JMA Global Spectral Moels, J. Meteor. Soc. Japan. 67, 705-729.
- Wilmott, C. J., C.M. Rowe and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle, J. Climatology, 5, 589-606.
- Yamada, S., S. Maeda, T. Kudoh, T. Iwasaki and T. Tsuyuki, 1991: Dynamical One-Month Forecast Experiments with the JMA Global Prediction Model, J. Meteor. Soc. Japan in press.

藤井清光・田中彰一著 新時代の海の利用

東京大学出版会, 1990年7月刊 207ページ, 定価 2,575円

気象と海のかかわりについては、機会があるたびに、 その重要性が叫ばれているが、海洋工学的な立場での海 の利用技術については意外に知られていないのではなか ろうか. 本著は、海洋工学に長年 たずさわった 研究者 が、アメリカ訪問記なども含めながら網羅的にまとめた もので、実用的な知識を短時間に吸収するのに便利であ る.

本書の中で取上げられている問題は,波力発電,沖合 人工島,深海潜水調査船「しんかい6500」,石油掘削リ グ,マンガン団塊などと関連した技術から,海洋性リゾ ートの条件までと多岐にわたる.前書きにも述べられて いる通り,索引を広げ,おもしろそうなものを選んで, 百科事典のように読むのも良いであろう.目次は次の通 りである.

- 第1章 海と人間の新しい関係を考える
- 第2章 海のリゾート開発を分析する
- 第3章 海の国際問題
- 第4章 海洋空間の利用
- 第5章 海中利用の新しい方向
- 第6章 海洋エネルギーの利用
- 第7章 深海底の調査と鉱物資源
- 第8章 海洋石油・天然ガスの開発
- 第9章 海の環境問題
- 第10章 アメリカの海洋開発
- 第11章 新時代の海の利用を考える

(気象庁海上気象課 羽鳥光彦)

1991年1月