2. マイクロ波散乱計を用いた表層土壌水分量・ 積雪水量リモートセンシングに関する研究*

深見和彦**

1. はじめに

近年,地球規模での気候変動が懸念されているが, それが地球上での水循環や水資源の賦存状況,さらに は河川流域での水収支にどのような影響を及ぼすのか を明らかにするためには,地表面での陸面と大気との 間の熱収支・水収支の実態とメカニズムを把握するこ とが極めて重要であることが認識されるようになっ た.しかし,地球規模でその実態把握を地点観測のみ で行うことには困難が伴う.そこで,広域での地表情 報を均質に繰り返し収集できる衛星リモートセンシン グの応用が注目されている.

土木研究所では、気候変動が水文循環に与える影響 を把握する手法を開発し、地球規模での水環境の変動 の監視とともに、今後気候変動に伴って発生すること が予想される洪水・渇水等に対するる国土保全技術の 開発及び防災対策・水資源開発計画の策定に資するこ とを目的として、リモートセンシング技術の水文学的 応用に関する研究を行っている。その中で、陸面一大 気面の相互作用を支配する水文状態量のうち、1)地 表水面積(洪水氾濫域),2)蒸発散や浸透を規定する 土壌水分量,3)流域水賦存量や地表面アルベドを規 定する積雪水量、等について、全天候型のマイクロ波 センサ(特に合成開口レーダ=SAR 等に代表される能 動方式)により監視できる可能性があり、特に後二者 について、土木研究所の所有する多波長・多偏波のマ イクロ波散乱計を利用して、衛星等によるモニタリン グ技術開発のための基礎研究を開始したところであ る、本稿では、マイクロ波リモートセンシングによる 土壌水分量,積雪水量の観測原理と土木研究所マイク 口波散乱計の概要を解説するとともに、最近実施した

 A study on remote sensing of surface soil moisture and snow water equivalent using microwave scatterometer.

** Kazuhiko Fukami, 建設省土木研究所河川部水文研 究室. 積雪面での観測実験の結果を紹介する.

2. 能動方式マイクロ波センサの観測原理と研究の 現状

2.1 マイクロ波散乱計の概念

マイクロ波とは,波長 1 mm~1 m 程度の電磁波の 総称であり,UHF,SHF,EHF 帯に対応している.測 定対象面にマイクロ波が照射されると,そこに Maxwell 方程式を満たすような電流(変位電流+導電流) が流れ,電磁波の再放射(散乱)が行われる.このと き送信電力とそれと同じ方向を戻ってきた受信電力の 比を測定することにより,以下に示すレーダ方程式か ら対象面の後方への散乱強度の大小を定量的に表す量 である後方散乱係数 σ°を求めるシステムが,マイクロ 波散乱計である.

$$\Pr = \int_{A} \Pr \cdot \left(\frac{Gt}{4\pi R^2}\right) \cdot \left(\sigma^{\circ} \cdot dS\right) \cdot \frac{1}{4\pi R^2} \cdot Ar$$

 $\operatorname{Ar} = (\lambda^2/4\pi) \cdot \operatorname{Gr}$

Pr:受信電力, Pt:送信電力, Gt:送信アンテナ利得,
 Gr:受信アンテナ利得, R:アンテナと対象面との距離, Ar:受信アンテナの実効面積, λ:マイクロ波の 波長, S:マイクロ波の照射面積.

このようなマイクロ波散乱計を用いて、地上もしくは 航空機から観測実験を行い、対象物理量と σ° との定量 的関係を明らかにする.その成果を合成開口レーダ等 の画像解釈に応用することになる.

2.2 表層土壌水分観測の原理と研究の動向

含水率ゼロの土壌の比誘電率(ϵr :対象物質の誘電 率/真空の誘電率)の実部($\epsilon r'$)は、一般に2~4の間、 虚部($\epsilon r''$)は1以下にある。それに対し、10 GHz 以 下で水の $\epsilon r'$ は約80程度、 $\epsilon r''$ は5~30程度であるた め、土壌の水分が増えるにしたがって土壌全体として の比誘電率が増大し、湿潤土では例えば $\epsilon r'$ が20以上 となる。この誘電率の増加が、土壌面のマイクロ波散 乱特性を変化させる。したがって、後方散乱係数 σ の

10

 第1図 成田砂裸地面における σ°と土壌水分量 (深さ3cm)との関係.
 横軸が体積含有率(%)
 縦軸が後方散乱係数 σ°(dB)
 地表面に対する入射角が20°の場合と30°の場合の結果を示している.

変化を捉えれば土壌水分の変化を追跡できるはずであ る. これが,マイクロ波散乱計を土壌水分センサとし て用いる原理である.一般に,土壌面の σ[°]は,土壌水 分の増加とともにデシベル (dB)表示で直線的に増加 し,波長程度の深さまでの表層土壌水分量に良く対応 することが経験的に知られている.第1図に東京大学 虫明功臣教授らによる C band 散乱計での成田砂裸地 面の観測成果の例(虫明ほか,1991)を示す.

現実には, σ[°]は純粋に対象の誘電率分布に基づく電 磁気学的原理に支配されることから,ある観測条件(周 波数, 偏波面, 入射角)下での土壌面の σ は, 表層土 壌水分量の一価関数とはならず、地形、土壌表面の粗 さ (roughness), 植生被覆, 土壌の組成・構造, 等の影 響も受けることが知られている。その理論的関係は、 仮想的条件下では明らかになっている例もあるが、現 実の土壌水分モニタリングに適用するには程遠い段階 にある.また、従来は、単一パラメータ観測を前提と した研究が中心であったため、マルチパラメータ観測 を活用した土壌水分情報抽出アルゴリズムの研究は十 分ではない、すなわち、多時期情報(時間的に近接す る複数画像の σ[°]分布の相対的変化)の活用,可視・赤 外センサ情報との組み合わせ、マイクロ波帯での複数 の周波数・偏波等の組み合わせ、等によるマルチパラ メータ観測による信頼性の高い土壌水分評価アルゴリ ズムの開発が、計測の立場からみた今後の最大の研究 課題である.

2.3 積雪水量観測の原理と研究の動向

土壌水分の場合と異なり、測定対象は主に水ではな

く氷粒子であり、それに水、空気の混合した媒質であ る.氷の誘電率は水に比べてはるかに小さく、実部が 約3、虚部が0.01以下である.故に、マイクロ波帯で の乾雪の表皮深さ(電界強度が $e^{-1} = -4.34 \, dB$ となる 距離)は、10 GHz 以下で数mにも及ぶ.このことか ら、乾雪の場合、積雪面、土壌面での表面散乱に加え て、積雪層内での体積散乱(雪粒子群による Rayleigh 散乱により生じ、粒径・誘電率(←密度)に支配され る)が重要となり、両者が加算されて積雪水量の増大 とともに σ が増大する.これが積雪水量を後方散乱係 数計測によって観測する原理である.

しかしながら,積雪層においても σ は積雪水量の一 価関数ではなく、観測条件(周波数、偏波、入射角) のみならず、含水率、粒径や積雪層構造の種々の組み 合わせによっても変化する.特に含水率については, 欧米での実験においても影響が大きいことが知られ、 それを逆に積雪表層の含水率計に利用することも可能 と考えられている. また, 層構造の影響も大きいと考 えられるが、欧米では研究例が少なく、特に日本の豪 雪地帯のように含水率が大きく層構造が発達し、積雪 深も大きい現実の自然状態での雪面での観測例は、北 海道大学低温科学研究所藤野和夫教授らのグループ が、積雪層構造の観測を目的とした研究を行っている (Fujino et al., 1986) 以外は、少ないのが現状である. このことから、積雪のマイクロ波リモートセンシング についても、さらに観測データを収集して基礎的な散 乱特性を把握すること、そしてマルチパラメータ観測 の活用が求められている。

3. 土木研究所マイクロ波散乱計の概要

上記の研究の動向をふまえ,表層土壌水分量や積雪 水量の地球規模での衛星からのモニタリングの重要性 に鑑み,土木研究所では,1)能動方式のマイクロ波 リモートセンシングに利用される各周波数帯での対象 のマイクロ波散乱特性を明らかにする,2)マイクロ 波情報を含めた衛星情報をもとに水文量を抽出する手 法を開発するとともに,多波長・多偏波の活用を考慮 して,今後の衛星搭載センサ開発に対して成果を フィードバックさせる,3)水文量に反応するマイク ロ波散乱特性を活用した,地上における新たな観測シ ステムとしての実用可能性を検討する,ことを目的と して,a)多波長・多偏波の地上用マイクロ波散乱計 システム,b)Cband帯(5.4 GHz)多偏波の航空機 搭載用パルス方式散乱計,を平成元年度に製作した. 第1表 土木研究所地上用マイクロ波散乱計 諸元

1. 観測条件	
1) アンテナ高度	$2.5 \sim 5 \mathrm{m}$
2)入射角	$0{\sim}60^{\circ}$
2. 送受信器	
1) 周波数	1.275 GHz (L band), 5.4 GHz (C band), 9.6 GHz (X band)
2)送信方式	CW
3)送信出力	100 mW(増幅アンプ出力端において)
4) 中間周波数	$89 \pm 4 \text{ MHz}$
5)受信バンド幅	100 Hz, 1 kHz, 10 kHz (切換)
6)ダイナミックレンジ	70 dB 以上
3. アンテナ	
1)型式	4 素子ショートバックファイヤアンテナ (L band)
	誘電体装荷型ホーンアンテナ (C, X band)
2) 偏波	直線偏波(水平,垂直),円偏波(右まわり,左まわり)の任意の組み合わ
	せ
3)利得	31.8 dB (L band), 38.0 dB (C band),
(水平偏波, GtGr)	37.7 dB (X band) (偏波面切換装置損失込み)
4)半値幅	17.5° (L band), 8.3° (C band), 7.8° (X band)
(水平偏波, E面)	
5) サイドローブレベル	-18 dB 以下 (L band), -25 dB 以下 (C, X band)

第2表 土木研究所航空機搭載用マイクロ波散乱計 諸元

1. 観測条件	
1) 観測高度	500~2,000 m
2) オフナディア角	$0{\sim}15^{\circ}$
2. 送信装置	
1)周波数	5.4 GHz
2)送信方式	パルス方式
3)パルス幅	1μs, 2μs (切換)
4)送信出力	9.1 W (パルス幅 1µs 時), 9.4 W (パルス幅 2µs 時)
5)パルス繰り返し周波数	100, 200, 300, 400, 500, 1000 pps.
6) 占有周波数帯域幅	3.28 MHz 以下 (パルス幅 1 µs 時), 1.82 MHz 以下 (パルス幅 2 µs 時)
3. 受信装置	
1) 中間周波数	60 MHz
2)ダイナミックレンジ	50 dB
3) 最小受信レベル	-97 dBm (パルス幅 1 µs 時), -98 dBm (パルス幅 2 µs 時)
4)受信バンド幅	1.49 MHz (パルス幅 1 µs 時), 670 kHz (パルス幅 2 µs 時)
4. アンテナ(送受信兼用)	
1)型式	誘電体装荷型ホーンアンテナ
2) 偏波	HH, VV, LL, RR
3)利得	41.3 dB(水平偏波,GtGr, 偏波面切換装置損失込み)
4)半値幅	13.2°(水平偏波, E 面)
5) サイドローブレベル	-25 dB 以下

地上用散乱計は、1) 今後の衛星搭載 SAR の主要 な周波数帯である L band (1.275 GHz), C band (5.4 GHz), X band (9.6 GHz) をカバーしている、2) 水 平偏波(H)と垂直偏波(V),左右の円偏波(L, R) の任意の送信・受信の組み合わせが可能であり、より 詳細な対象の後方散乱特性を知ることができる、と いった特長を有している(このようなマイクロ波の送 信・受信における偏波面の組み合わせを一般に、HH, HV などと表示する. ここで HV とは,水平偏波(H) を送信し,垂直偏波成分(V)を受信することを意味 する.また,HH,LR 等のように送信偏波と同一の偏 波成分を受信している偏波面組み合わせのことをライ ク偏波,送信偏波面と直交する成分を受信する HV, LL 等の組み合わせのことをクロス偏波と呼ぶ).航空 機散乱計は,5.4 GHz の1波の実開ロパルス方式散乱 計となっており,映像レーダとはなっていないが,偏 波機能については HH, VV, LL, RR の組み合わせが 可能となっている. また, 入射角を0°から15°まで任意 に変更可能である. 両システムのその他の諸元につい ては, 第1, 2表に示されている.

4. 土木研究所マイクロ波散乱計による積雪層観測 4.1 観測の概要

土木研究所では、長岡技術科学大学(建設系、小池 俊雄助教授)と共同で、積雪層におけるマイクロ波後 方散乱特性を調べるとともに、後方散乱係数 o° と積雪 水量・積雪含水率との関係を調べるための観測実験を 実施したので、ここでその成果の一部を紹介したい。 観測は、新潟県長岡市内の東頸城丘陵の東縁に位置す る長岡技術科学大学構内の枯れた芝生面上の積雪面を 対象として、平成4年2月から3月初めにかけて行っ た(第2図)、今回は偏波特性を調べることを主目的と して観測周波数は 5.4 GHz1 波に絞った。少雪と天候 の不安定等の理由で、観測は11ケースにとどまった。 観測項目は、各偏波・入射角(0~40°)条件での積雪 **層後方散乱係数** σ[°], 積雪深, 層構造, 各層密度 ρ • 重 量含水率・粒度・誘電率,積雪面分光反射率(0.4~1. 05 µm, 17 band) である。最大積雪深は 2 月10日の 30. 8 cm, 最大積雪水量は 2 月27日午前実験時の 71 mm で、ほとんどが2~3層の層構造を成していた、全層 密度は平均 0.29 g/cm³, 最上層含水率は 0~37%で平 均13.3%であった、ライク偏波 (HH, VV, LR, RL) 条件での σ° 同士は, ほとんど同じ変化傾向を示してい たため、以下の議論では HH とクロス偏波のうち HV 条件での σ について議論を行う.

4.2 観測結果

各偏波条件での σ° 単独での積雪水量,最上層含水率 との関係については,HH の入射角 0°付近での σ° の 含水率依存性を除いて,有意な依存性は見られなかっ た.その代わり,HHの入射角≤10°において,次式で 定義される積雪表面におけるフレネル反射係数 Γ²(積 雪表面の粗さと積雪層内の体積散乱,土壌面散乱を無 視した,積雪一空気の境界理想滑面での鉛直反射係 数):

$\Gamma^{2} = |(1 - \sqrt{(\epsilon_{rs})})/(1 + \sqrt{(\epsilon_{rs})})|^{2}$ ϵ_{rs} :積雪表面の複素誘電率(実測値)

と相関が見られ,最上層と第2層の境界面の反射係数 とも弱い相関が見られた.一方,HV については,HH に比べて絶対値では小さいものの表面反射係数と弱い

 第1図 成田砂裸地面における σ°と土壌水分量 (深さ 3 cm)との関係. 横軸が体積含有率(%) 縦軸が後方散乱係数 σ°(dB) 地表面に対する入射角が20°の場合と30° の場合の結果を示している。

 第3図 Depolarization Ratio (σ[°]_{HV}/σ[°]_{HH}) と 積雪水量との関係. 横軸が積雪水量 (mm). 縦軸が HH 条件での後方散乱係 数に対する HV 条件での後方散乱係数 の比 (dB). 積雪層に対する入射角:30°.

相関が見られ、かつ、全入射角において平均している ことが特徴である.これらは、ライク偏波成分は表面 散乱、各層境界面の反射の影響を強く受けていること、 クロス偏波成分は、積雪層の体積散乱により主に生じ るとされるがやはり各層境界面での反射の影響を受け ていること、を示すものと考えられる(なお土壌面に おける反射係数との相関は、いずれの偏波でもほとん ど見られず、湿雪条件と層境界の支配的な影響による ものと考えられる).そこで、クロス偏波成分とライク 偏波成分の比(σ[°]HV/σ[°]HH)をとったところ、積雪水量 が増大するほど、平均的に比の値が増加する傾向を確 認できた(第3図).ばらつきの度合いは表面フレネル 14

反射係数との相関が高い.以上のことから,積雪層に おける C band 帯でのマイクロ波後方散乱は,層構造 に起因する反射(表面散乱)と積雪層内での体積散乱 に主に支配されているものと考えられる.

5. 結び

土木研究所では、この地上用マイクロ波散乱計,航 空機搭載用マイクロ波散乱計両システムを活用して、 上記の目的に沿って、主に表層土壌水分量,積雪水量 (含水率)観測を目的とした研究を行っていく予定であ るが、そのためにも植生被覆をはじめ多くの条件を考 慮しなければならないことは既述の通りである. 今後 も、関連する大学・国立試験研究機関等の研究者の方々 のご指導とご協力を賜りながら、本散乱計を十二分に 活用しつつ研究を進めていきたい.

参考文献

- Fujino, K., G. Wakahara, M. Suzuki and T. Matsumoto, 1986 : Snow stratigraphy observed by an FM-CW microwave system, IGARSS' 86 Symp.
- 虫明功臣,沖大幹,小池雅洋,三浦一彦,1991:陸域に おける水循環過程の解明-マイクロ波リモートセンシ ングによる土壌水分追跡の基礎研究,文部省科学研究 費重点領域研究「衛星による地球環境の解明」平成3 年度第2回シンポジウム, pp.221-230.
- Ulaby, F. T. and W. H. Stiles, 1980 : The active and passive microwave response to snow parameters -2.
 Water equivalent of dry snow, J. Geophys. Res., vol. 85, No. C2, pp. 1045-1049.

コメント

沖 大幹(東大生産研)

土木研究所の散乱計システムの特徴は、多周波・多 偏波であることに加えて、C-band (約5GHz)の散乱 計が航空機に搭載して観測できる点である.日本の ERS-1 (Japanese Earth Resources Satellite-1)の SAR (Synthetic Aperture Radar; 合成開口レーダ) や欧州の ERS-1 (European Remote Sensing Satellite-1)の AMI (Active Microwave Instrument)と いったセンサ画像から土壌水分量情報を抽出するため には、室内実験や地上観測のみならずそうした基磯研 究と衛星データを結び付けるための航空機観測、及び それに同期した地上観測を行なうことが不可欠であ る.こうした意味で航空機に搭載可能である意義は極 めて大きい.

深見氏が示した第1図は東京大学生産技術研究所の 千葉実験所内の関東ローム裸地面に対して実験観測を 行なった結果であり,室内実験でもほぼ同様の結果が 得られている(虫明ほか,1992). 横軸が表層土壌の体 積含水率(%),縦軸が散乱計によって測定される後方 散乱係数(dB)である. 地表面に対する入射角によっ ても散乱計の測定値及び含水率依存性が大きく変化す ることがわかる. この他,地表面粗度や植生なども後 方散乱に大きく寄与することが知られており,土壌水 分を定量的に高い精度で測定することは容易ではな い. 多周波・多偏波の観測値を利用して多次元的な情 報を組み合わせることによって観測精度が向上するこ とが期待されており,土木研究所での精力的な実験が 待たれるところである.

表層土壌の乾燥にともない,実際の土壌面からの蒸 発量は気象学的要因によって定まる可能蒸発量よりも 抑制されることが知られている.そうした現象を表現 する'蒸発抑制モデル'を,衛星マイクロ波センサによる 広域の表層土壌水分観測と組み合わせることによっ て,広域の実際の蒸発量が推定できるようになると期 待できる.また,湿った積雪層中の積雪水量や海洋上 境界層内の風向風速などの定量的観測もマイクロ波散 乱計に期待されており,現在行なわれている衛星検証 実験を通じてこうした有効性が確かめられたあかつき には,地球表面の総合的な監視センサとしてマイクロ 波散乱計が定常的に衛星で運用されるようになって欲 しいものである.

参考文献

虫明功臣,沖大幹,小池雅洋,三浦一彦,1992:マイク ロ波散乱計による土壌水分計測のための室内実験と野 外実験,水文・水資源学会1992年研究発表会要旨集, 100-103.