501 (ライダー;リモートセンシング)

5. ライダーによる大気観測*

内野 修**

1. はじめに

レーダーとも言う)は、レーザー光の短いパルスを、 大気中に発射し、大気中の分子、エーロゾル、雲、地 表面等からの散乱光を受信することにより、遠方にあ る物質の濃度、組成、速度、温度等の情報を距離分解 をもって遠隔的に測定する装置で、高い距離分解能と 連続観測が可能であることから、地球物理学、気象学、 環境等の計測手段として広く使用されている(これら の解説はレーザー研究17巻4号のレーザーレーダー特 集号に詳しいので参照されたい). 多くは地上設置のラ イダーであるが、航空機搭載ライダーの場合広域の立 体観測が可能である。さらに衛星搭載の場合グローバ ルな観測が可能であり、ここ2~3年のうちにはス ペースシャトルによる実験観測が行われる予定であ る、ここでは主に最近の日本におけるライダーを用い た大気観測について述べることにする。

2. ピナトゥボ火山噴火雲のライダー観測

ライダーによる火山噴火後の成層圏エーロゾルの観 測は,1963年のアグン火山爆発後 MIT のグループに よりルビーレーザーを用いたライダー観測が行われて 以来 (Fiocco and Grams, 1964),1974年のフエゴ, 1980年のセントヘレンズ,1982年のエルチチョン等の 観測が日本,米国,ドイツ等で行われてきた.ピナトゥ ボはこれらの火山爆発を凌ぐ今世紀最大級のものであ り,今後の気候,大気環境に及ぼす影響を調べるため にもグローバルな緊急観測が望まれている.

最近の固体レーザーの小型化と安全性及びエレクト ロニクスの急速な進展による計測系の高速化と信頼性 によりレーザー,小型の受信望遠鏡,検出部,フォト ンカウンター等のコンポーネントの組合せにより,成 層圏エーロゾル緊急観測用の小型のライダーを数カ月 以内で製作できるようになった.

第1図に気象研究所 (MRI) で製作し沖縄気象台で 1992年9月から使用中のライダーのブロックダイヤグ ラムを示す.また第1表にその特性をまとめた.第2 図にこれまで観測した成層圏エーロゾルの高度分布の 時間変化を示す (Nagai *et al.*, 1992).散乱比は大気 分子からの後方散乱に対して何倍多く散乱されたかを 示す量である.

このような小型のライダーは,通信総合研究所 (CRL) や名古屋大学太陽地球環境研究所(STE)と福 岡大学でも開発され,現在稚内,アラスカなどで観測 が続けられている.また既存のライダーを用いた観測 も国立環境研究所(NIES),信州大学,都立大学などで 行われており,これらを総合した初期のデータ解析や データベース化を進め,放射収支,オゾン層,気候等 への影響評価の研究に利用できるように我々は考えて いる.

さらに MRI や CRL ではカナダの大気環境庁 (AES) やヨーク大学の宇宙地球科学研究所 (ISTS) との共同で、ユーレカ (80°N, 86.3°W) でも科学技術 庁等の支援のもとに観測を1993年1月から開始する予 定である、これらを含めたライダー観測網を第3図に 示す. なおユーレカは NDSC (Network for the Detection of Stratospheric Change) の一つの観測点 として決定されており、極成層圏雲 (PSC) ライダー、 オゾンライダー (AES & ISTS), フーリエ変換型赤外 分光器 (MRI) 等によるオゾン層に関連した成層圏大 気の観測が行われる予定である。オゾンライダーの開 発に関しては日本やフランス等の寄与が大きく (Uchino et al., 1978, Megie et al., 1985), 最近では MRI, NIES などで大きなオゾンライダーが開発され、 オゾン観測と同時に中層大気の温度の観測も行われて いる. PSC に関しては南極での日本のライダー観測が

^{*} Lidar Observations of the Atmosphere.

^{**} Osamu Uchino, 気象研究所気象衛星・観測システム 研究部.

第1図 小型成層圏エーロゾル観測用ライダー

第1表 ライダーの特性

レーザ装	方 式			式	Nd : YAG
	波 長				532 nm (第 2 高調波)
	出			力	約 100 mJ
	パルス継続時間				6 ns
置	パルス繰り返し				10 Hz
	ビーム拡がり				約 0.6 mrad
望遠鏡				径	35.5 cm
	形			式	シュミットカセグレン
	視 野 角			角	3 mrad
受信部	受	信	素	子	光電子増倍管
	受	信	方	式	フォトンカウンティング
	力	ウ	ン	タ	スタンフォードリサーチ SR 430

最初である (Iwasaka, 1985).

3. 航空機搭載ライダーの開発

一地点の観測では長期のモニタリングには適してい るが、短時間に広域のエーロゾルやオゾン等の分布を 得るには、航空機搭載のライダーが必要である。日本 では上向きに穴の開いた航空機がないため成層圏の観 測が現在のところ無理であるが、下向きには可能であ り境界層のエーロゾルの観測を中心にした航空機搭載

25

25

第4図 エアロコマンダー搭載ライダー

第5図 航空機搭載ライダーの構造

ライダーを開発している.第4図と第5図に MRI で 開発している航空機搭載型ライダーを示す. レーザー は航空機搭載用に開発された小型のフラッシュランプ 励起 Nd:YAG レーザーで,出力は波長 532 nm で 100 mJ である. レーザーの繰り返しは,双発のエアロ コマンダーから供給される電力に制限はあるが 10 Hz が可能である. 一方レーザー出力は高度 3 km から観 測する場合は,目の安全性を考慮して 532 nm で 25 mJ 以下に制限される. この小型の航空機搭載ライ ダーにより,1991年3月大阪の八尾空港を基点に,若 狭湾や瀬戸内海の上空や徳島,和歌山の山岳上空の下 部対流圏エーロゾルの観測を行った.第6図に一つの フライトコースを示す.第7図にこのフライトコース で松山市上空から瀬戸内海に向かう時に得られたエー ロゾル分布を示す.松山市上空に濃いエーロゾルの分 布が見られる.また他のコースでは海上と陸上での エーロゾルの高度分布の違い等の興味深いデータが得 られている(Uchino *et al.*,1991).

26

第6図 1991年3月15日のライダー観測の航路図

第7図 航空機搭載ライダーによる1991年3月15 日松山市上空のエーロゾル観測。エーロ ゾルの散乱比の大きさを濃淡で示してあ る。図の下の白い部分は山頂の分布を示 す。また図の中の高度3km 付近の点線 の部分は飛行高度を表す。

4. 今後の航空機搭載ライダーの展望

さらに繰り返しを上げて高い空間分解能でエーロゾ ルを測定し、エーロゾルの境界層から自由対流圏への 輸送過程や都市域からの拡散過程等の実態把握のため には、航空機から供給できる電力には制限があるので、 電気エネルギーからレーザーエネルギーへの変換効率 ηを上げる必要がある。現在のフラッシュランプ励起 の Nd: YAG レーザーの場合は $\eta = 1\%$ 以下である が、最近開発が進んでいる半導体レーザー励起(LD) の Nd: YAG レーザーの場合 n=7~10% と高い効率 が得られている (Koechner, 1991) ので、今後はこの LD 励起のレーザーを基本にした開発が必要となる。

エーロゾルが少ない場合、測定感度を上げるために

レーザーを利用したライダーの開発も望まれる.これ には LD 励起の Nd: YAG レーザーを利用したラマ ンレーザー(水素や重水素の高圧気体セル使用)など が考えられる. 将来的にはこれらの目に安全なレー ザーを利用したスキャン型の航空機搭載ライダーの開 発により広域のエーロゾル三次元立体分布の観測が考 えられる、さらにこれらの航空機搭載ライダーの経験 を基にして衛星搭載ライダー(スペースライダー)に よる短時間内でのグローバルなエーロゾル、 雲等の観 測が強く望まれる。

は、なるべく長い波長を利用した方がよい、さらに目

への安全を考慮した場合波長 1.5 µm 以上の近赤外の

5. 水蒸気や風観測用ライダーの見通し

この分野に関しては数年前から日本でも基礎研究が 行われるようになり、水蒸気に関してはラマン散乱に よる予備観測や、オゾンと同じように差分吸収法 (DIAL) による予備観測が九大,都立大, MRI 等で行 われつつある、ラマン散乱による方法は、夜間の観測 に限られているが、装置が比較的簡単になるところに 利点がある。DIAL による方法は狭帯域レーザーの周 波数の安定性,水蒸気への自動同調等の問題が残され ているが、近いうちにこの問題は解決されるものと思 われる、その一つの方法として、単一モード(スペク トル幅~1pm)で発振する半導体レーザーを、吸収セ ルやオプトガルバニック法を用いて、水蒸気の吸収線 の1本にロックし、そのレーザーを Nd:YAG レー ザーの第2高調波励起チタンサファイヤレーザーへ注

1992 年度日本気象学会春季大会シンポジウム「新しい観測システム」の報告

入同期する方法が考えられる. DIAL は昼間の観測や 航空機,衛星等からの観測が可能になることから,今 後のさらなる開発が期待される.

風の観測に関しては、炭酸ガスレーザーを用いたコ ヒーレントライダーによる基礎技術の開発が CRL や 東北工大等で行われているが (Shibata *et al.*, 1991), NASA では衛星搭載のグローバルな風観測計画 (LAWS) があり開発を進めている.衛星からの3年以 上の長期間にわたる風観測には炭酸ガスレーザーはガ ス寿命の点などから問題がでてくると思われるので, 波長 $1.5 \mu m \sim 2.1 \mu m$ の目の安全性を考慮した LD 励 起固体レーザーを用いたものを今後日本等で積極的に 開発していくのが望まれる.

ここではライダーの詳しい原理や,地上の環境計測 についての紹介はできなかったので,その点について は Hinkley (1976) や杉本 (1992)の解説を参照され たい.

参考文献

- Fiocco, G. and G. Grams, 1964 : Observations of the aerosol layer at 20 km by optical radar. J. Atmos. Sci, 21, 323-324.
- Hinkley, E. D., 1976 : Laser monitoring of the atmosphere. Topics in Appl. Phys. vol. 14, Springer-Verlag.
- Iwasaka, Y., 1985 : Lidar measurement of the stratospheric aerosol layer at Syowa station (69.00°N, 39. 35°E), Antarctica. J. Meteor. Soc. Japan, 63, 283 -287.
- Koechner, W., 1991: High energy diode-pumped solid state lasers. レーザー研究, 19, 619-626.
- レーザーレーダー特集, 1989: レーザー研究, 17:1-336.
- Megie, G. J., G. Ancellet and J. Pelon, 1985 : Lidar measurements of ozone vertical profiles. Appl. Opt., 24, 3454–3463.
- Nagai, T., O. Uchino and T. Fujimoto, 1992 : Lidar observation of stratospheric aerosol layer after the Mt. Pinatubo volcanic eruption. 16th ILRC, July 20 -24, Boston.
- Shibata, T, M. Ishizu and T. Itabe, 1991 : Coherent doppler lidar using a hybrid CO_2 laser with a low pressure gain section below the threshold. J. Meteor. Soc. Japan, 69, 413-418.
- 杉本伸夫, 1992:気象学への手引, リモートセンシング II. レーザー遠隔計測. 天気, 39, 169-179,
- Uchino, O., M. Maeda, J. Kohono, T. Shibata, C. Nagasawa and M. Hirono 1978: Observation of

stratospheric ozone by a XeCl laser radar. Appl. Phys. Lett., **33**, 807-809.

, Y. Mizuno, H. Takashima, T. Fujimoto, T. Nagai and Y. Nikaidou, 1991 : Ground-based and airborne lidar measurements of atmospheric aerosols. Optical Remote Sensing of the Atmosphere, November 18-21, Williamsburg, VA, 215-217.

コメント

中根英昭(環境研)

大気観測,特に成層圏大気観測におけるライダーの 役割の一端を,現在準備が進められている NDSC (Network for the Detection of Stratospheric Change) との関係において述べたい.

オゾン層のモニタリングは WMO によるドブソン 分光光度計を中心としてネットワーク観測, TOMS や SAGE のような衛星観測によって行われてきた. これ らと相補的な,地上遠隔計測装置によるネットワーク (NDSC)計画が進行しており, 1993年中に順次観測が 始まる予定である.

NDSC において測定される物質と使用される測器 を第1表に示す.このネットワークの特徴は、①メ ジャーな大気成分は鉛直分布を精度よく測る、②成層 圏の種々の大気成分を可能な限り測る、③それを長期 間続ける、ところにある.これらの測器を備えたステー ションを、北極域、北半球中緯度、熱帯、南半球中緯 度、南極域に原則として1地点づつ展開する (primary

第1表 NDSC において観測される物質と測定方法

微量成分(高度)	測器
オゾン気柱全量	ドブソン分光光度計
オゾン (0~20 km)	ライダー
オゾン (15~45 km)	ライダー
オゾン (25~75 km)	マイクロ波
気温 (30~80 km)	ライダー
C1O $(25 \sim 45 \text{ km})$	マイクロ波
水蒸気 (0~30 km)	気球搭載湿度計
水蒸気(>20 km)	マイクロ波
エーロゾル (0~30 km)	ライダー
二酸化窒素(成層圏全量)	可視/紫外分光計
塩化水素 (成層圏全量)	赤外分光計
メタン (成層圏全量)	赤外分光計
一酸化二窒素 (20~50 km)	マイクロ波
硝酸 (成層圏全量)	赤外分光計
C1ONO ₂ (成層圈全量)	赤外分光計
OH $(40 \sim 60 \text{ km})$	紫外蛍光,ライダー
HO ₂	マイクロ波