〔解 説〕

エネルギーの逆カスケードによるプラネタリー波の増幅と

ブロッキング形成の数値実験*

一1992年度山本·正野論文賞受賞記念講演—

田中 博**

1. はじめに

この度は、山本・正野論文賞を頂きまして、ありが とうございます.また、このような解説の機会を与え て頂きまして、大変光栄に思います.受賞対象となっ たこの研究(Tanaka, 1991)は、長期予報や大気大循 環の研究に携わる人なら、誰でも一度は興味を持つブ ロッキング高気圧の成因に関するものです.

第1図にその例を示す様に、ブロッキング高気圧は、 中高緯度対流圏にしばしば形成される背の高い(つま り、対流圏下層から上層に至るまで、一貫して検出で きる)高気圧のことです。背が高いということは、対 流圏の下層で高圧部のとき、その上層も高圧部である ことを示します、従って、高度場の順圧成分を取り出 してその分布を調べてみると分かるように、ブロッキ ングの構造は、基本的に大気の順圧成分によって表現 されます。ブロッキングは、ひとたび出現すると長い 時には1か月近く同じ場所に停滞し続ける特徴があり ます. この持続性のある背の高い高気圧は、多くの場 合切離低気圧を南方に伴った状態でジェット気流が位 置する中緯度に出現するため、ジェット気流はこの高 低気圧を迂回するように南北に分流します。ジェット 気流に流されて通常西から東に移動する大気下層の高 低気圧や前線が、この背の高い高気圧の出現により東 進をブロックされることから、この高気圧はブロッキ ング高気圧(或いは、単にブロッキング)と呼ばれて います。近代気象学が開花した1940年代に、高低気圧 波動の成因が傾圧不安定理論により解明された後、実 に多くの研究者がブロッキングの成因の研究に着手 し, 論争を続けてきました (例えば Rex, 1950; Kikuchi, 1969; Egger, 1978; Austin, 1980; Shutts,

** H. L. Tanaka, 筑波大学地球科学系.

1983; Dole, 1986; Kung and Baker, 1986; Benzi *et al.*, 1986 参照). しかし, ブロッキング形成の問題は, 未だに解決を見ない興味深い研究テーマです.

本研究 (Tanaka, 1991) では, この問題に対しでき る限り簡単なモデルを用いて, できる限り現実に近い ブロッキングをシミュレートすることにより, これが どのようなメカニズムで形成されているのかを探りま した.著者による今回の研究で,成因が解明されたと 言うものではありませんが,本研究はブロッキングの 形成において, 総観規模擾乱からプラネタリー波への エネルギーの逆カスケードが,本質的に重要であるこ とを示しました.この結果は,観測に基づく最近の解 析的研究 (Hansen and Chen, 1982; Holopainen and Fortelius, 1987; Mullen, 1987; Nakamura *et al.*, 1987; Kung *et al.*, 1989)による理解を数値実験で実 証するものです.

本解説では、始めに、ブロッキングが形成される時 のエネルギーの特徴的な流れを概観し、エネルギーの カスケードと逆カスケードの概念を説明します.そし て、このエネルギーの逆カスケードが、プラネタリー 波を増幅させる時にブロッキングが形成される、とい うシナリオに基づくモデルの構築と実行結果につい て、紹介したいと思います.

2. プラネタリー波の増幅問題

著者が筑波大学の学群生として卒論に励んでいた当 時,話題になっていた研究テーマに,成層圏の突然昇温 の問題がありました(Matsuno, 1971).松野太郎先生 が考えた突然昇温モデルとは,対流圏でプラネタリー 波が何らかの理由で増幅すると,それが成層圏に鉛直 伝播して突然昇温が発生する,という説明でしたが, 肝心の対流圏におけるプラネタリー波の増幅がどうし て生じるのかは,不明のままでした.プラネタリー波 の総合的な解説(佐藤, 1977)によると,対流圏にお

^{*} A numerical simulation of amplification of lowfrequency planetary waves and blocking formations by the upscale energy cascade.

第1図 左図:1979年1月9日00Zの北半球 500 hPa 等圧面高度分布. 大規模な Pacific ブロッキング高気圧が 見られる. 右図:同じ日の高度場の順圧成分の分布図.

けるプラネタリー波の増幅には、ブロッキングの形成 が密接に関係しており、ブロッキングの成因の解明が 問題の解決の糸口を与えるであろうと述べてありまし た.

一方,力学的短期予報の成功に刺激されて,長期予 報も力学モデルを用いて行うことに期待が寄せられ, GFDL の都田先生等により精力的に研究が進められ ていました (Miyakoda and Chao, 1982). ここでも, 力学的長期予報のためには,ブロッキングの成因解明 が鍵となっていました.限られた研究時間でより満足 のゆく (やりがいのある)研究をするなら,当時の大 気科学の中心的な問題を手がけたい,と著者は考えて いましたので,以降,著者の研究テーマは,対流圏で プラネタリー波がなぜ増幅するのか,という問題を中 心に繰り広げられてきました.著者の最初の研究論文 は,卒論をまとめたプラネタリー波の長周期変動に関 する解析的研究でした (田中, 1982).

1981年にミズリー大学大気科学教室に移った後は, エネルギーの4ボックス図として知られるローレンツ サイクル (Lorenz, 1955) や,その渦動成分を東西波 数展開したソルツマンサイクル (Saltzman, 1957; 1970) を学びました。そして,プラネタリー波の増幅 をエネルギーの増加として捉えて,データ解析により 現象を丹念に見ました(田中, 1984).当時,編集され たばかりの FGGE データを解析し,現実大気をいろん な角度から図にして眺めることができたのは、今から 思えば貴重な経験だったように思います.また、デー タ解析と平行して、大気力学などの大学院の講義に出 席することもできました.(USA での大学院教育の熱 の入れ方には、学ぶべきものがあります.)興味の湧く 研究テーマに対し、情熱的に取り組める研究環境に恵 まれたことは、幸運であったと思います.

以下に、エネルギーのローレンツサイクルとソルツ マンサイクルについて簡単に説明します。一般に大気 のエネルギーは大スケールの現象から小スケールのそ れへと流れます。地球に降り注ぐ太陽放射エネルギー は地球から宇宙に向かう赤外放射冷却との放射収支の 結果、赤道域で加熱、両極域で冷却となり、この加熱 差による地球規模の温度勾配が大気運動のエネルギー 源となります。地球規模の温度勾配は、傾圧不安定に より,波長が数1000 kmの高低気圧波動を励起し,そ のエネルギーはさらに波長数100 km のメソ擾乱や大 気境界層の乱流エネルギーへと細分化され、やがて分 子粘性摩擦により熱エネルギーに還元されます. 初め の大きな渦がより小さな渦に次々に分裂することによ り、大スケールの現象のエネルギーが小スケールの現 象のエネルギーに細分化される現象がエネルギーのカ スケードです.

全球大気について質量積分した運動エネルギーを <K>,有効位置エネルギーを<P>とすると,大気

第2図 ローレンツサイクルと呼ばれるエネル ギーの4ボックス図. それぞれのボック スは、帯状有効位置エネルギー PM、渦動 有効位置エネルギー PE, 帯状運動エネ ルギー K_M , 渦動運動エネルギー K_E を 表す。ただし、波数0は、帯状成分を意 味する. エネルギーの単位は 10⁵Jm⁻², エネルギー変換の単位は Wm⁻² である。 用いたデータは、GFDL 作成の1年分の FGGE III-b データである (Kung, 1988 から引用).

のエネルギーは、帯状有効位置エネルギーPM、渦動有 効位置エネルギー P_{E} , 帯状運動エネルギー K_{M} , 渦動 運動エネルギー KEの4ボックスに分割できます。そ れらの間のエネルギー変換を表したものが、第2図で 示されたローレンツサイクルと呼ばれる4ボックス図 です (Kung, 1988 から引用).

ここでの渦動成分は、地球を東西に取り巻く波数1 の成分から小スケールの渦までの全ての波数の波の重 ね合わせとして表現できるので、フーリエ関数の直交 性を利用することにより,

(1)

 $< K > = K(0) + \sum_{n=1}^{\infty} K(n)$ $< P > = P(0) + \sum_{n=1}^{\infty} P(n)$, のように、質量積分したエネルギーを東西波数に展開

することができます ここで、nは東西波数を表し、 波数0は定義により帯状平均成分に対応します。(1)の 右辺第2項がローレンツサイクルにおける渦動運動エ ネルギー K_E と渦動有効位置エネルギー P_E を表すこ とは容易に理解できます。

次に、波数に展開された各項のエネルギー量の増減 を調べるために, K(n) と P(n) のエネルギー方程 式を導くと

$$\frac{dK(0)}{dt} = -\sum_{n=1}^{\infty} M(n) + C(0) - D(0),$$

$$\frac{dP(0)}{dt} = -\sum_{n=1}^{\infty} R(n) - C(0) + G(0),$$

$$\frac{dK(n)}{dt} = M(n) + L(n) + C(n) - D(n),$$

$$\frac{dP(n)}{dt} = R(n) + S(n) - C(n) + G(n),$$
(2)

と表せます これが、ソルツマンサイクルと呼ばれる 波数領域における大気大循環のエネルギー流を示す式 です. ここで, G(n) は有効位置エネルギーの生成, D(n) は運動エネルギーの粘性消散, C(n) は P(n)から K(n) へ向かうエネルギー流を示す傾圧変換 (Baroclinic Conversion), $R(n) \ge M(n)$ は波数0か ら波数 n へ向かう帯状と波の相互作用, そして, S(n)

と L(n) は, 波数 n が受け取る波と波の相互作用を 表しています、擾乱項の総和を考えると、S(n) > L(n)の項はそれぞれが0になるので、ソルツマンサイクル はローレンツの4ボックス図に帰着します.

第3図は, GFDL 作成の FGGE III-b データを用い て解析した全球大気大循環のソルツマンサイクルです (Kung, 1988), 一見複雑な図に見えますが, 観測デー タに基づいて(2)の右辺を算出し、各波数について書き 表すと図の様になります。 大気の有効位置エネルギー P(n) と運動エネルギーK(n) は、帯状成分(波数0) と波数1-15の渦動成分のボックスに分割され、それら の間のエネルギー流が矢印で表されています、大気大 循環の主要なエネルギー源は、正味放射の南北差によ る帯状エネルギーの生成 G(0) であり, それが, 帯状 と波の相互作用 R(n) により総観規模擾乱(波数およ そ4-10) に移り、傾圧変換 C(n) により、そのスケー ルでの運動エネルギーを供給しています。傾圧変換に は、波数6をピークとする傾圧不安定によるエネル ギー供給の他に、プラネタリー波にもピークが見られ ます. 有効位置エネルギーの主要な流れを見ると, 大 スケール(小波数)から小スケール(大波数)へ流れ ていることが分かります.このようにエネルギーが大 きい渦から、より小さい渦へと枝分かれして行く過程 が上述のエネルギーのカスケードです。

総観規模擾乱に供給された運動エネルギーは、波と 波の相互作用 L(n) により, さらに小さい渦ヘカス ケードを起こすと同時に、一方ではプラネタリー波、 特に波数1に向かって流れていることが分かります。 帯状と波の相互作用 M(n) を見ると, すべての波数で

第3図 ソルツマンサイクルとよばれる波数領域 における全球大気大循環のエネルギー流 を示す図. 大気の有効位置エネルギー P (n) と運動エネルギー K(n) は、帯状成 分(波数0)と波数1-15の渦動成分のボッ クスに分割され、それらの間のエネル ギー流が矢印で表されている。 エネル ギーの単位は 104Jm⁻², エネルギー変換 の単位は 10⁻² Wm⁻² である. 用いたデー タは, GFDL 作成の1年分の FGGE Ⅲ -bデータである (Kung 1988 から引用).

エネルギーは、より大きい渦(つまり波数0)に向かっ て流れ、帯状ジェットを維持していることが分かりま す。このように、エネルギーが小さい渦からより大き い渦へと流れる過程をエネルギーの逆カスケードと呼 びます、こうして供給された運動エネルギーは、最終 的に粘性消散 D(n) により失われ, 摩擦熱に還元され ることになります.

以上で簡単に述べたソルツマンサイクルの解析結果 によると、プラネタリー波の運動エネルギーは

 $P(0) \rightarrow R(n) \rightarrow C(n) \rightarrow K(n)$: 傾圧不安定 で表される傾圧変換によるエネルギー流と

 $L(n) \rightarrow K(n)$:エネルギーの逆カスケード

で表されるエネルギーの逆カスケードの2通りのエネ ルギー流によりまかなわれていることが分かります。 前者は帯状有効位置エネルギーから供給されているの が特徴で、これは傾圧不安定によるエネルギー流であ り、線形論として説明することができます。それに対 し、後者は2次元乱流のような複雑な波と波の非線形 相互作用が中心的な役割を果たしているため、非線形 モデルを数値積分して表現する必要があります。プラ ネタリー波の増幅の原因を解き明かす場合,これら2 通りの力学過程が重要と考えられるので、以下の節で は、これらの2通りのエネルギー流によるプラネタ リー波の増幅について解説します。

4. 傾圧・順圧不安定問題

始めに、プラネタリー波の増幅を基本場の不安定と して捉え、傾圧・順圧不安定問題を解くことを試みま した (Tanaka and Kung, 1989), プラネタリー波の スケールでは, 球面効果を考慮した発散成分が無視で きなくなるため(地衡風も発散を持つ), 準地衡風方程 式に代わってプリミティブ方程式系を用いることが望 ましくなります.しかし,基本場として月平均や季節 平均場の波数0を選ぶと、重力波を含むプリミティブ 方程式モデルの不安定問題からは、増幅率のはなはだ 大きい不安定重力波がぞろぞろと出てきます (Tanaka and Sun, 1990) これは, 月平均場などの現実的な 基本場では、風の場と質量場が必ずしも地衡風バラン スにないため、地衡風調節と関係して現れる不安定と 考えられます (Fritts and Luo, 1992) そのため, 準 地衡風方程式モデルで知られているような気象学的に 関心の高い不安定解 (例えば, Charney, 1947; Green, 1960; Hirota, 1968; Garcia and Norscini, 1970) の 抽出は困難になります。かつては、初期値問題として プリミティブ方程式モデルの時間積分を行い、短周期 重力波をふるい落とすことにより、気象学的に意味の ある不安定解を抽出するという方法が採られてきまし た (Simmons and Hoskins, 1976; Hartmann, 1979; Zhang and Sasamori, 1985). この時間積分法では, 高々上位2番目までの不安定モードの同定がやっと で、複数の不安定解の増幅率が接近しているようなプ ラネタリー波領域(波数1-3)の傾圧・順圧不安定には, 不明な点が数多く残されていました (Gall, 1976; Frederiksen, 1978).

著者は、この問題を解決するために、3次元ノーマ ルモード関数展開を不安定問題に導入しました

Annual Global Mean

(Tanaka and Kung, 1989). プリミティブ方程式モデ ルを用いて,全球月平均場に対する不安定問題を固有 値問題として解き,不安定波の細部構造を示したのは, おそらくこれが初めてではなかったかと思います.以 下に,ノーマルモード展開を用いた線形不安定問題を 簡単に説明します.

球面座標系で表したプリミティブ方程式系は,鉛直 座標をp-系で表すと以下のような簡単なベクトル方程 式にまとめられます(詳しくは, Tanaka and Kung, 1989; Tanaka and Sun, 1990 を参照).

$$M\frac{\partial}{\partial t}U + LU = N + F, \tag{3}$$

ここで、tは時間、 $U = (u, v, \phi)^T$ は風の東西u、南 北v成分、ジオポテンシャル ϕ 、(ただし、等圧面平 均からの偏差量)を成分とする従属変数ベクトル、MとLはそれぞれ鉛直微分および水平微分を含む線形 オペレータ、Nは非線形項から成るベクトル、そして、 Fは外部強制項から成るベクトルです。この従属変数 Uを3次元ノーマルモードで展開し、基礎方程式を3 次元のスペクトル表示にしたものが、次の連立非線形 常微分方程式系です。

$$\frac{dw_i}{d\tau} + i\sigma_i w_i = -i\sum_{jk} r_{ijk} w_j w_k + f_i,$$

$$i = 1, 2, 3, \cdots, N,$$
(4)

ここで、 τ は無次元化した時間、 w_i は3次元ノーマル モード展開係数、 σ_i はラプラスの潮汐方程式の解とし て現れる固有振動数、 r_{ijk} は非線形項に対する相互作 用係数、 f_i は外部強制の展開係数、そして N は級数 展開の項数を表します。添え字のi, j, kは、それぞれ が東西・南北・鉛直波数から成る全波数を意味します。 この方程式では、線形オペレータ M と L に伴う線形 項が σ_i により対角化されているのが特徴で、3次元ス ペクトルモデルとしては最も簡単な形をしています。 この時のスペクトル展開のための基底関数は、鉛直方 向に鉛直ノーマルモード、水平方向には(Hough関数

と呼ばれる) 水平ノーマルモードが用いられています (Longuet-Higgins, 1968; Kasahara, 1976; Kasahara and Puri, 1981; Kasahara, 1984; Swarztrauber and Kasahara, 1985; Sasaki and Chang, 1985). 固有振動数 σ_i は(3)の右辺を0とおいて得られ る線形モデルの固有値であり,それに対応する固有ベ クトルが3次元ノーマルモード関数です. これは,正 規直交系を構成することが知られています.

連立方程式(4)を与えられた初期値のもとで解けば,

1993年10月

それは、初期値問題となります(例えば, Kasahara, 1977; Salby *et al.*, 1990).また、非線形項は w_i の2 次の項の和で与えられていますが、これを与えられた 帯状基本場(\bar{w}_k)に対して線形化を行うと、(4)は微小 擾乱(以下では、あらためてそれを w_i と置く)に対 し以下の行列の形でまとめられます。

$$\frac{d}{d\tau}W + iDW = -iBW,\tag{5}$$

ここで,

$$W = (w_1, w_2, \cdots, w_N)^T,$$
(6)

$$D = diag\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{N}\right), \qquad (7)$$

であり、(5)の右辺の Bは(4)の 2 次の非線形項を基本場 \bar{w}_k で線形化することによって得られる行列です.帯状 基本場が静止大気の時は B=0となり、3次元ノーマ ルモードが解として得られます.基本場が静止大気で ない時は擾乱を励起するに足るエネルギーがそこに存 在することになり、それを引き出すメカニズムさえあ れば不安定解が現れるようになります.任意の帯状基 本場に対する線形不安定解は、この線形システム行列 (B+D)の固有値問題を解くことにより得られます.

本研究では, FGGE の年である, 1979年1月の月平 均場をそのまま基本場に選びました。基底関数である Hough 関数が、高周波成分に貢献する重力波と低周波 成分に貢献する Rossby 波に分かれることを利用し て、気象学的に意味のある低周波の Charney モード (Charney, 1947) などの不安定解を困難なく同定でき ました。この固有値問題の結果によると、不安定モー ドの増幅率と位相速度は第4図のようになりました。 総観スケールでは、Charney モード M_c と同定される 不安定解が卓越し,第2,第3の不安定解が現実大気 に顔を出すことは、ほとんど考えられません、しかし、 プラネタリー波領域では,波のスケールの拡大に伴っ て Charney モードの鉛直構造にひとつの節が現れる Green モード MG (Green, 1960) や, 南北構造にひと つの節が現れる双極 (dipole) Charney モード M₂ (Ioannou and Lindzen, 1986) などが、複雑に入り組 んでいる事が明らかになりました。主要な不安定モー ドの位相速度は、西風ジェットに流されるので 8°/day 程度の東進を示します。波数1-4では、増幅率が互いに 接近しているため、第2、第3の不安定モードといえ ども、基本場が多少変化することにより、時には卓越 モードになる可能性があります (Zhang and Sasamori, 1985)

波数0の基本場に、地形や海陸分布の効果として波

第4図 1979年1月の月平均場を基本場にしたときの線形不安定モードの増幅率と位相速度. M_C は shallow Charney モードで(波数1-3では Greenモード M_G に変わる) M_1 は monopole Charney モード、そして M_2 はブロッキングと関係する dipole Charney モード(Tanaka and Kung, 1989から引用).

数2の月平均場を重ねて,東西方向に変化するような 基本場に対して不安定問題を解くことも可能です.こ の時,(5)は次のような形になります.

$$\frac{d}{d\tau}W = -i\left(D+B\right)W + CW^*,\tag{8}$$

ここで、*は共役複素数を表し、定義により W に対応する東西波数は負となります.このため、非線形項が創り出す波数の和を考えると一方が負であることから、結果として小さい波数が励起されることになります.つまり、右辺第2項はエネルギーの逆カスケードにより不安定モードが増幅する過程を表現しています.それに対し、右辺の第1項はエネルギーのカスケードを表現し、帯状流の不安定などはこの項によって生じています.

波数1に対して(8)を解いて求めた不安定波の鉛直子

午面構造が第5図,第6図に示されています。この不 安定波の構造が、現実大気中に検出されないかと調べ てみると、少し出来すぎと思える程に、似かよった構 造が見つかるのには驚かされました。第5図は、1979 年1月下旬の成層圏突然昇温に先だって成層圏で増幅 した波数1のジオポテンシャルの鉛直子午面分布を, 不安定問題の解として得られた Green モードの構造 と比較したものです。また、第6図は、1979年1月上 旬に北太平洋でブロッキングが発生している時の波数 1の鉛直子午面分布を、今回得られた dipole Charney モードの構造と比較したものです。(ただし,第6図で は振幅に (p/p₀)^{1/2}, p₀=1013 hPa, を乗じて密度成層 の影響を取り除いてあります.)基本場として用いた定 常波数2に、第6b図のような dipole 構造の波数1が 重なって増幅してくると、第1図に示した北太平洋ブ ロッキングの構造が浮かんできます。

以上の結果から,今までほとんど使われたことのな い3次元スペクトル表示のプリミティブ方程式系の精 度の良さに,少しばかりの自信が持てました.

4. ノーマルモードエネルギー論

上述のソルツマンサイクルによる解析的研究は、一 般にスペクトルエネルギー論と呼ばれています。プラ ネタリー波の増幅とブロッキング形成のプロセスを考 えるひとつの切り口として、大気をノーマルモードに 展開した時のエネルギースペクトルとその間のエネル ギー流を調べることは、現象の理解を深める手助けと なります。これは、東西波数展開によるソルツマンサ イクルを3次元波数展開に拡張したものです。以下で は、これをノーマルモードエネルギー論と呼ぶことに します (Kasahara and Puri, 1981; Tanaka, 1985; Tanaka and Kung, 1988). 前にも触れたように、3 次元ノーマルモード関数はプリミティブ方程式系から 直接導かれる正規直交系を構成します。従って、全球 で質量積分した大気の全エネルギー <E>= <K>+<P> を3次元ノーマルモードに展開する ことができます.

$$<\!E\!>=\!\Sigma_{nlm}E_{nlm}=\!\Sigma_iE_i$$
,

$$E_i = \frac{1}{2} p_0 h_m |w_i|^2, (9)$$

ここで, n, l, m はそれぞれ東西波数,南北波数,鉛 直波数に相当する指数で,簡単のためにn, l, mをま とめて添え字iで表現しました h_m は鉛直波数mに対する等価深度,そしてm=0は順圧成分,m>0

5 図 上図・1979年1月下旬に成層圏で増幅した波数1のシオホテンシャルの振幅と位相の超直于 午面分布. 下図:不安定問題の解として得られた波数1のGreen モードの構造の鉛直子午面 分布.

は傾圧成分を表します.

次に、3元ノーマルモードに展開した各項のエネル ギー量の増減を求めます. E_i に関するエネルギー方程 式を導くために、(9)を τ で微分して、(4)を代入します. (4)の線形項はエネルギー方程式には現れず、エネル ギーのバランスは,外部強制によるエネルギーの生成 消散と非線形相互作用によるエネルギーの輸送がつり 合うことにより保たれます.エネルギーの生成域と消 散域は異なる波数領域にあるので,非線形相互作用は エネルギーを生成域から消散域に輸送するような大気

第6図 右図:1979年1月上旬に北太平洋でブロッキングが発生している時の波数1のジオポテンシャルの振幅 の鉛直子午面分布. 左図:線形不安定問題の解として得られた波数1の dipole Charney モードの構造 の鉛直子午面分布.

第7図 帯状傾圧エネルギー,渦動傾圧エネルギー,渦動順圧エネルギー,帯状順圧エネルギーの間のエネルギー 流. E_{m=0}, E_{m>0} はそれぞれの順圧擾乱成分,傾圧成分のエネルギーを表す. 左図:FGGE 年の観測 データに基づくエネルギー流. エネルギーの単位は 10⁵Jm⁻², エネルギー変換の単位は Wm⁻² である. 右図:波数6の不安定モードに対するエネルギー流. 値は増幅率に対する百分率である.

"天気"40.10.

の運動を励起します.このことは、物理空間でも、波 数空間でも言えることです.

東西波数スペクトルの間のエネルギー流はソルツマ ンサイクルによって明かにされているので,ここでは, 鉛直ノーマルモードに展開した時のエネルギー流をま とめました(第7図参照).線形モデル(5)について,帯 状基本場(\bar{E}_i)と擾乱(E_i)の各々のエネルギーを順 圧成分(m=0)と傾圧成分(m>0)に分けると,擾乱 に対するエネルギー方程式は次のようになります (Wiin-Nielsen, 1962; Smagorinsky, 1963参照).

$$\frac{d}{dt}E_{m>0} = C(E_{m=0}, E_{m>0}) + C(\bar{E}_{m>0}, E_{m>0}) + D_{m>0},$$

$$+D_{m>0},$$

$$\frac{d}{dt}E_{m=0} = C(\bar{E}_{m=0}, E_{m=0}) + C(E_{m>0}, E_{m=0}) + D_{m=0},$$
(10)

ここで、 $E_{m=0}$, $E_{m>0}$ はそれぞれの擾乱の順圧成分, 傾圧成分のエネルギー(以下では単に順圧エネルギー, 傾圧エネルギーと呼ぶ), C(A, B) は A から B への エネルギー変換を表します。図では、非線形相互作用 NL や傾圧不安定 BC が、エネルギー変換を表してい ます. また, $D_{m=0} \ge D_{m>0}$ は放射 QZ, QE や消散項 ZS, DF を含む外部強制によるエネルギーの生成消滅 を表します. 図で, TF は, 地形強制を表します. 第 7 a 図は FGGE データに基づく解析値を, そして第7 b図は波数6の Charney モードのエネルギー流を表 します。有効位置エネルギーは等圧面上での温度場の 分散として定義されますが、温度場はジオポテンシャ ルの鉛直微分と関係するため、大気大循環のエネル ギーの入り口は、波数0の傾圧成分にあります、この傾 圧エネルギーが傾圧不安定により擾乱の傾圧成分、そ して順圧成分へと変換されることにより、擾乱が発達 します.これは,傾圧変換をノーマルモードエネルギー 論的に解釈したものと言えます.線形論の範囲内では, 不安定波は特定の構造を維持したまま増幅するので、 傾圧成分と順圧成分は一定の比率で増加することにな ります。これは、本研究で導入された傾圧不安定のパ ラメタリゼーションの基礎となります。

第8図には、東西波数0と6で方程式を閉じて、(4) で表される傾圧モデルを初期値問題として解いた結果 が示されています.波数0に重ねられた初期の微小擾 乱が、不安定により指数関数的に増幅する過程が再現 されています.擾乱の傾圧成分(aの破線)と順圧成 分(aの点線)は、ほぼ一定の比率で増大しています.

ルは右),破線:渦動傾圧エネルギー,点線:渦動順圧エネルギー(b):対応する エネルギー変換量の時間変化,実線:帯 状順圧から渦動順圧への流れ,破線:帯 状傾圧から渦動傾圧への流れ,点線:渦 動傾圧から渦動順圧への流れ,エネル ギーの単位は 10⁵Jm⁻²,エネルギー変換 の単位は Wm⁻² である.

その成長が飽和に達し、やがて減衰を始めるときに帯 状流の順圧成分(aの実線)が加速されている様子が 良く分かります.波数0の傾圧成分から擾乱の傾圧成 分に向かうエネルギー流(bの破線)と、擾乱の傾圧 成分から擾乱の順圧成分に向かうエネルギー流(bの 点線)がほぼ同時に起こる点は、上述の線形論を裏づ けています.擾乱が有限振幅に達すると、順圧変換 (Barotropic Conversion)と呼ばれる渦動から帯状成 分へ流れるエネルギー変換(bの実線)が活発になる ため、擾乱の発達は飽和に達します.順圧変換は主に 大気の順圧成分で生じ、波数0へのエネルギーの逆カ スケードを起こしています.この順圧変換により、擾 乱が減衰する時に非線形相互作用による帯状流の加速 が生じます(Simmons and Hoskins, 1978).第8 a 図 の白丸は、大気の順圧成分を、最大成長率を持つ不安

ける, 初期の帯状流と温位の鉛直子午面 分布(上図)と15日後のその鉛直子午面 分布(下図).帯状流の等値線は5m/s間 隔で,温位の等値線は5[°]K 間隔(Hoskins 1983 から引用).

定モードの上へ射影して得られたエネルギーレベルの 時間変化を示しています.微小振幅の時に,大気の順 圧成分は不安定モードとして増幅するので,それは射 影部分とほぼ一致しています.これが有限振幅になる と,基本場の不安定は解消されて,それまでの最大不 安定モードが,下位の不安定モードと入れ替わってい ます.図中の4.5日に見られる不連続的変化がそれで す.第8b図の白丸はa図のそれに増幅率を掛けること により得られる傾圧一順圧相互作用であり,これが点 線と一致すれば良いわけです.実際の大気では,最も 不安定な Charney モードが安定化して,より下位の不 安定モードと入れ替わることはまれなので,本研究で 用いた傾圧不安定のパラメタリゼーションは,有限振 幅においても適度なエネルギー供給を行なうことが示 されています.

第9図には、傾圧不安定波のライフサイクルにより 帯状流がどのように変化するかが描かれています (Hoskins, 1983).初期において,鉛直シアーを持つ帯 状流(有効位置エネルギーが豊富)は、15日の後に対 流圏下層のジェットが加速されることにより順圧構造 に変化しています.これは、傾圧不安定による総観規 模擾乱の活動により傾圧エネルギーが減る一方で,順 圧変換により帯状流の順圧エネルギーが補給されてい る、という上述の議論を裏付けています.以上のよう に、ノーマルモードエネルギー論は、大気大循環の理 解のための新しい情報を提供しています.

5. 逆カスケードによるブロッキングの形成

ノーマルモードエネルギー論を展開する際に用いた 3次元スペクトル表示のプリミティブ方程式系が,大 気の順圧成分に関する方程式と傾圧成分に関する方程 式に大別されることは既に述べました.順圧成分に見 られるエネルギーの逆カスケードが,山岳強制の影響 などにより波数0まで流れずにプラネタリー波にト ラップされると,逆カスケードによるプラネタリー波 の増幅が生じます.これがソルツマンサイクルのとこ ろで述べた $L(n) \rightarrow K(n)$ のエネルギー流です.この 節では,簡単な非線形プリミティブ方程式モデルを時 間積分することにより,プラネタリー波の増幅がエネ ルギーの逆カスケードにより生じる過程をシミュレー トしてみます.

ブロッキングの構造は順圧成分でその相当部分が表 現できることから(第1図参照),鉛直ノーマルモード 展開の順圧成分だけを用いて方程式を書き直すと

$$\frac{dw_i}{d\tau} + i\sigma_i w_i = -i\sum_{jk} r_{ijk} w_j w_k + s_i,$$

$$i = 1, 2, 3, \cdots, N,$$
(11)

となり、形のうえでは傾圧大気に対するモデル(4)と同 じになります.ただし、ここでのN は順圧成分に対 する級数展開の数、 s_i は、外部強制の他に傾圧と順圧 の相互作用を含みます.第7図、第8図で示した結果 から、この相互作用の主要部は傾圧不安定により生じ ていると考えられます.本研究では、プラネタリー波 の増幅とブロッキングの形成を調べる目的で、以下の 4 種類の物理過程だけを考慮した順圧モデルを開発し ました.

$$s_i = (DF)_i + (TF)_i + (BI)_i + (ZS)_1,$$
 (12)
(DF)_i: 拡散過程
(TF)_i: 山岳強制
(BI)_i: 傾圧不安定
(ZS)_i: 地表摩擦

逆カスケードを表現するための非線形相互作用は順圧 成分の範囲で正確に計算してあります.第3節の傾 圧・順圧不安定問題との関連で,地形の強制は波数2 のみに与え,また,エネルギーが溜まる波数0にのみ, 地表摩擦を考慮してあります.モデル大気のエネル ギー流を考えると,波数2の山岳強制と総観スケール での傾圧不安定がエネルギーの生成項であり,粘性お よび地表摩擦がエネルギーの消散項です.そして,両 者を非線形相互作用がつなぎ合わせています.パラメ タリゼーションの詳細に関しては原論文を参照しても らうこととし,ここでは,簡単モデルの実行結果につ いて説明します.

第10図は(1)を時間積分して得られた波数1と2のジ オポテンシャルの振幅の緯度時間断面を表していま す.地形が存在する波数2は,初期においていちはやく 増幅し,それ以降は時間平均のまわりで変化していま す. 波数1は、時間積分を始めて60日頃に増幅し、緯 度方向に dipole 構造を形成しています. この dipole 構造が現れる前後約2週間に渡り、第11図に示すよう な dipole ブロッキングが形成されました. この形状や 振る舞いを例えば1990年3月下旬の dipole ブロッキ ングや1979年1月上旬の dipole ブロッキング(第1 図)と比較すると、極めて良く似ていることが解りま す. この dipole ブロッキングの形成には第10図に示さ れた波数1の dipole 構造の増幅が本質的に重要であ り、この構造が現れる時にブロッキングが発生し、崩 れる時にブロッキングが終了しました.

60日頃の波数1の増幅の原因を調べるために,波数 1のエネルギー量の変化を(9)-(12)に従って,物理過程 別に分類した結果が第12図に示されています.各々の 物理過程を表す時間変化曲線をたし合わせると,エネ ルギーの時間変化曲線(実線)になります.この結果 によると,波数1は(11)の非線形項によって増幅したこ とが明らかです.第13図には,波数1の増幅の原因を さらに突き止めるために,増幅の原因となった非線形 項を

- 波数0との相互作用(帯状流の不安定)
- 波数2との相互作用(山岳の強制)
- 波数3-6との相互作用(逆カスケード)

に分類した結果を示してあります.各々の波数からの 貢献をたし合わせると,非線形項の時間変化曲線(実 線)になります.解析結果によると,波数1の増幅は 総観規模擾乱からのエネルギーの逆カスケードにより 生じたことが判明しました.つまり,傾圧不安定によ り総観規模擾乱に溜まったエネルギーが,逆カスケー ドにより波数1に供給されて dipole 構造が増幅し,ブ ロッキングが発生したことが解ります.

今回のモデル大気に現れた高気圧は,2週間以上も 持続するものであり,発生位置や形状の点においても 実際の大気に現れるブロッキングと極めて類似してい ます.従って,この簡単モデルはブロッキング形成の 本質的なところをある程度正しく再現していると考え られます.ブロッキングの形成を決定づける波数1の dipole構造の増幅は,傾圧不安定擾乱からのエネル ギーの逆カスケードによるものであり,山岳強制やプ ラネタリー波自身の不安定は,エネルギー的には2次 的な役割しか果たしていない事が示されました.

6.おわりに

ブロッキング現象は、大気大循環の理解や天気予報

500 mb Height (dm) March 23 1990

第11図 左図:1990年3月23日00Zの北半球 500 hPa 等圧面高度分布. 大規模な Pacific ブロッキング高気圧が 見られる. 右図:積分を始めて60日のモデル大気の高度場の分布図. 実際の天気図に現れるようなブロッ キングが発生している.

業務において重要であると同時に,2週間と言われる 予報限界の壁を破る第一歩として,古くから多くの研 究者により注目されてきました(佐藤,1984;松田・ 余田,1985;木本,1993の解説参照).1週間から時に は1月程度のライフタイムを持つブロッキングの予報 が可能になれば,それは長期予報における画期的なブ レークスルーであり,カオスの壁が一つ破られること を意味します.

従って,このブロッキングを解明する理論がこれま でに数多く提唱されてきました.その一部を以下に掲 げました.

1. 大規模山岳や海陸温度差の強制によるプラネタ リーロスビー波の共鳴としてブロッキングを解釈する 理論 (Tung and Lindzen, 1979; Plumb, 1981),

 南北温度差に起因するプラネタリー波の傾圧不 安定として解釈する理論 (Chen and Shukla, 1983; Shilling, 1986),

定常プラネタリー波によるジェットの蛇行が原因の順圧不安定として解釈する理論(Simmons *et al.*, 1983),

4. 定常プラネタリー波によるジェットの蛇行が原 因の傾圧・順圧不安定として解釈する理論 (Frederiksen, 1982), 5. ジェットの蛇行にともなって局所的に生じる傾 圧不安定として解釈する理論 (Cai and Mak, 1990),

非線形流体特有の強制に対する多重平衡解や、
 そこから分岐した不安定解として解釈する理論
 (Charney and DeVore, 1979; Mukougawa, 1988),

7. 高低気圧擾乱がもたらす非線形相互作用による 渦度の強制の結果生じるとする理論 (Shutts, 1983; Hains and Marshall, 1987),

8. 非線形孤立波としてのソリトン,あるいはモドンとして解釈する理論 (McWilliams, 1980),

しかし,これらの理論は普遍的なものではなく,必ず 理論に当てはまらない例外的なケースとしてのブロッ キング例が存在するため,いまだにコンセンサスが得 られていませんでした.著者によるブロッキングの数 値シミュレーションは,このような背景の下で行われ ました.

本解説では、著者の考えたブロッキング形成のメカ ニズムを説明するために、はじめに大気大循環のエネ ルギー流について解説しました。一般に大気のエネル ギーは大スケールの現象から小スケールのそれへとカ スケードを起こし、やがて分子粘性摩擦により熱エネ ルギーに還元されます。初めの大きな渦がより小さな 渦に次々に分裂することにより、大気のエネルギーが

第12図 波数1と2のエネルギー変化を、その原 因となる物理過程別に分析した図.単位 は10⁵Jm⁻².実線:エネルギー変化、破 線:非線形相互作用、鎖線:地形による 強制.この結果によると、波数1は非線 形項によって増幅したことがわかる。

小スケールの現象のエネルギーに細分化される現象が エネルギーのカスケードであり、これは、流体力学で 言う3次元乱流の特徴です。

ところが、大気は地球の自転により回転し、鉛直方 向に密度成層(下層ほど密度が高い状態)を形成して います.この回転と密度成層の効果は、3次元的な乱 流を2次元的な乱流に封じ込める働きをしています. すると2次元乱流の特性により、エネルギーは小ス ケールの現象から大スケールの現象へと逆カスケード を生じるようになります.小さい渦同士が凝集してよ り大きい組織的な渦に成長して行くという、一見不思 議な現象が生じるのです (Kraichnan, 1967; Leith, 1968; Lilly, 1971).

このような2次元乱流によるエネルギーの逆カス ケードは,実験室でも再現できます. 第14図に示した

第13図 波数1の増幅の原因となった非線形項を さらに波数別貢献度に分解した図.単位 は10⁵Jm⁻².実線:非線形相互作用の合 計.鎖線:波数0との相互作用(帯状流 の不安定).破線:波数2との相互作用 (山岳の強制).点線:波数3-6との相互作 用(逆カスケード).この結果によると, 波数1は,エネルギーの逆カスケードによ り増幅したことが解かる.

ように,強い密度成層をした流体にノズルで横から着 色した液体を勢いよく注入すると,初めは初期の早い 流速により着色流体は3次元的に広がり乱流状態にな ります.ノズルの先には風船状に着色流体による細か い渦の群れが無秩序に入り乱れています.しかし,強 い密度成層のため乱流状の細かい渦の集団が密度の釣 り合う2次元平面に閉じ込められるとき,着色流体の 渦同士が衝突し,凝集して,やがて大きく美しい双極 渦に成長するのです.このようにエネルギーが逆カス ケードを生じるときには,乱流 (turbulence)から巨大 な渦 (coherence)が形成されます (Van Heijst and Flór, 1989).

同様の現象は木星の大赤斑についても言えるでしょう。大赤斑を説明する理論として、テーラーコラム、 ハリケーン、ソリトン等が提唱されてきましたが、最 近のボイジャーによる接近写真を見る限り、大赤斑の 周辺には活発な乱流活動が存在し、決してソリトンの ような滑らかな構造にはなっていないようです。激し く乱れた状態の中で大赤斑は壊れることなく安定に存 在しているのですから、むしろ、大赤斑は乱流による 逆カスケードがもたらしたカオスの一形態と考えられ ます. このように、エネルギーの逆カスケードは乱流 を組織化して巨大渦にする特性があるのです (Gleick, 1987).

地球大気のブロッキングも、このようなエネルギー

第14図 強い密度成層をした流体にノズルで横から着色した液体を勢いよく注入すると、初めは初期の早い流速により着色流体は3次元的に広がり乱流状態になる。しかし、強い密度成層のため乱流状の細かい渦の集団が密度の釣り合う2次元平面に閉じ込められるとき、渦同士が衝突し、凝集して、やがて大きく美しい双極渦に成長する、ということを示す室内実験。このようにエネルギーが逆カスケードを生じるときには、乱流 (turbulence) から巨大な渦(coherence)が形成される (Van Heijst and Flór 1989)。

の逆カスケードで説明できると考えられます.第1表 に示したように、傾圧不安定により総観規模擾乱に供 給された順圧エネルギーは、より小スケールの渦へカ スケードする一方で、より大きいスケールの渦へ逆カ スケードを起こします(木村, 1993). 最も大きい渦と して認識できる現象が実はジェット気流で,それは地 球を取り巻く波数0の流れです. ジェット気流が高低 気圧擾乱のエネルギーで維持されていることは以前か

らも知られていました。しかし、ジェット気流を乱流 が作り出す安定なカオスであると認識するものはこれ までなかったようです、総観規模擾乱に限らず、ジェッ ト気流もその南北波数についてエネルギースペクトル を長期間平均して解析してみると、明らかに乱流スペ クトルに乗ることが示されています (Tanaka and Kasahara, 1992). このジェット気流は、チベット高原 などの大規模山岳や海陸分布の影響でメアンダーを起 こし, 波長 10000 km, つまり東西波数1~3 程度の定 常プラネタリー波を形成しています。著者が考えたブ ロッキング形成のメカニズムとは、第15図にまとめら れているように、総観規模擾乱からのエネルギーの逆 カスケードが、波数0のジェット気流まで行かずに波 数1~3程度のプラネタリー波に閉じ込められたと き、あたかも木星の大赤斑のように、巨大渦が形成さ れ安定に維持されるというものです。逆カスケードに よるエネルギー供給の受け皿として,第6図で示した ような dipole Charney モード が関係していると考え られます. あるいは, ソリトン・モドンが受け皿になっ ているのかもしれません. この点に関しては、今後一 層の研究が必要です

本研究では、ブロッキングの謎解きのために、以上 のシナリオに沿う最も簡単な数値モデルを開発し、現 実に近いブロッキングをシミュレートすることに成功 しました.この意味では、ブロッキングもエネルギー の逆カスケードによって乱流から生じる安定なカオス であると言えます.本研究により、ブロッキングに対 する理解は一段と深まったと考えられます.しかし、 対象がカオスである以上、確率論的にシミュレートす ることができても、予報は不可能に近いことが示唆さ れました.長年抱き続けてきた決定論的長期予報の夢 は、カオスの壁の前にますます遠のいたと言えます.

第1表 本研究で用いたモデルを,波数20まで拡張した順圧大気大循環モデルの,エネルギースペクトル($10^2 Jm^{-2}$)および物理過程別エネルギー収支($10^{-3} Wm^{-2}$). 各項の意味は,波数空間におけるエネルギースペクトル E(n), 非線形相互作用 NL(n),傾圧不安定 BC(n), 拡散 DF(n),地表摩擦と鉛直伝播 ZS(n) + VP(n)を表す.この実験では,エネルギーの 逆カスケードを調べることを目的としたので,地形は除かれている(木村, 1993から引用).

n	E(n)	NL(n)	BC(n)	DF(n)	ZS(n) + VP(n)
0	11842	653	0	-14	-630
1	1810	43	21	-41	-24
2	1066	33	26	-36	-15
3	798	25	25	-35	-13
4	810	0	47	-35	-9
5	603	-42	81	-39	-3
6	761	-268	328	-50	0
7	721	-405	482	-58	0
8	319	-125	184	-41	0
9	149	-32	74	-30	0
10	84	7	28	-23	0
11	52	15	10	-18	0
12	40	19	0	$^{-18}$	0
13	26	17	0	-14	0
14	18	17	0	-13	0
15	13	14	0	-12	0
16	9	12	0	-10	0
17	6	11	0	-9	0
18	5	9	0 -	-8	0
19	4	9	0	-8	0
20	3	9	0	-7	0

Blocking Formation by the Up-scale Energy Cascade

第15図 波数領域におけるエネルギーのカスケードと逆カスケードを模式的 に示した図.エネルギーカスケードが無秩序な乱流をもたらすのに 対し、逆カスケードは秩序ある巨大渦を形成する。

謝 辞

748

今回の山本・正野論文賞受賞にあたり,廣田勇先生 をはじめとする選考委員会の方々,およびこの賞に推 薦して下さった河村武先生,安成哲三先生に感謝いた します.また,吉野正敏先生,赤祖父俊一先生,E.C. Kung 先生,笠原彰先生には研究の便宜を図っていた だいたと同時に,私生活においても大変お世話になり ました.最後に,著者を気象学へ導いて下さった田宮 兵衛先生にこの機会を利用してお礼を申しあげます.

参考文献

- Austin, J. F., 1980 : The blocking of middle latitude westerly winds by planetary waves, Quart. J. Roy. Meteor. Soc., 106, 327-350.
- Benzi, R., B. Saltzman, and A. C. Wiin-Nielsen, 1986 : Anomalous Atmospheric Flows and Blocking, Advances in Geophysics, 29, Academic Press, 459 pp.
- Cai, M. and M. Mak, 1990: On the basic dynamics of regional cyclogenesis, J. Atmos. Sci., 47, 1417-1442.
- Charney, J. G., 1947 : The dynamics of long waves in a baroclinic westerly current, J. Meteor. 4, 135 -162.
- Charney J. G. and J. G. DeVore, 1979 : Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., **36**, 1205-1216.
- Chen, T.-C. and J. Shukla, 1983 : Diagnostic analysis and spectral energetics of a blocking event in the GLAS climate model simulation, Mon. Wea. Rev., 111, 3-22.
- Dole, R. M., 1986 : The life cycle of persistent anomalies and blocking over the North Pacific, Adv. Geophys., **29**, 31-69.
- Egger, J., 1978 : Dynamics of blocking high, J. Atmos. Sci., **35**, 1788-1801.
- Frederiksen, J. S., 1978 : Instability of planetary wave and zonal flows in two-layer models on a sphere, Quart. J. Roy. Meteor. Soc., **104**, 841-872.
- Frederiksen, J. S., 1982 : A unified three-dimensional instability theory of the onset of blocking and cyclogenesis, J. Atmos. Sci., **39**, 969-982.
- Fritts, D. and Z. Luo, 1992 : Gravity wave excitation by geostrophic adjustment of the jet stream, Part 1 : Two-dimensional forcing, J. Atmos. Sci., **49**, 681 -697.
- Gall, R., 1976: A comparison of linear baroclinic instability theory with the eddy statistics of a

general circulation model, J. Atmos. Sci., 33, 349 -373.

- Garcia, R. V. and R. Norscini, 1970 : A contribution to the baroclinic instability problem, Tellus, **22**, 239 -250.
- Green, J. S. A., 1960 : A problem in baroclinic instability. Quart. J. Roy. Meteor. Soc., 86, 237-251,
- Gleick, J., 1987 : Chaos : Making a New Science, Penguin Books, 352 pp.
- Haines, K. and J. Marshall, 1987 : Eddy-forced coherent structures as a prototype of atmospheric blocking, Quart. J. Roy. Meteor. Soc., 110, 681-704.
- Hansen, A. R. and T.-C. Chen, 1982 : A spectral energetics analysis of atmospheric blocking, Mon. Wea. Rev., 110, 1146-1165.
- Hartmann, D. L., 1979 : Baroclinic instability of realistic zonal-mean states to planetary waves, J. Atmos. Sci., **36**, 2336-2349.
- Hirota, I., 1968: On the dynamics of long and ultralong waves in a baroclinic zonal current, J. Meteor. Soc. Japan. 46, 234-249.
- Holopainen, E. and C. Fortelius, 1987 : High-frequency transient eddies and blocking, J. Atmos. Sci., 44, 1632-1645.
- Hoskins, B. J., 1983 : Modelling of the transient eddies and their feedback on the mean flow, Largescale Dynamical Processes in the Atmosphere, (eds B.J. Hoskins and P. P. Pearce) Academic Press, 169 -199.
- Ioannou, P. and R. S. Lindzen, 1986 : Baroclinic instability in the presence of barotropic jets, J. Atmos. Sci., 43, 2997-3014.
- Kasahara, A., 1976: Normal modes of ultralong waves in the atmosphere, Mon. Wea. Rev., **104**, 669 -690.
- Kasahara, A., 1977: Numerical integration of the global barotropic primitive equations with Hough harmonics expansions, J. Atmos. Sci., 34, 687-701.
- Kasahara, A., 1984: The linear response of a stratified global atmosphere to tropical thermal forcing, J. Atmos. Sci., 41, 2217-2237.
- Kasahara, A. and K. Puri, 1981 : Spectral representation of three-dimensional global data by expansion in normal mode functions, Mon. Wea. Rev., **109**, 37 -51.
- Kikuchi, Y., 1969 : Numerical simulation of the blocking process, J. Meteor. Soc. Japan, 47, 29-54.
- 木本昌秀, 1993:気象とソリトン・モドン-気象現象中の 孤立波(3.1ブロッキング現象),気象研究ノート, 179,

319-367.

- 木村和央,1993:バロトロピックスペクトルモデルによ るブロッキング現象の数値実験,筑波大学第一学群自 然学類卒業論文,85 pp.
- Kraichnan, R. H., 1967 : Inertial range in two-dimensional turbulence, Phys. Fluids, 10, 1417-1423.
- Kung, E. C., 1988 : Spectral energetics of the general circulation and time spectra of transient waves during the FGGE year, J. Climate, 1, 5-19.
- Kung, E. C. and W. E. Baker, 1986 : Spectral energetics of the observed and simulated northern hemisphere general circulation during blocking episodes, J. Atmos. Sci., 43, 2729-2812.
- Kung, E. C., H. L. Tanaka, and W. E. Baker, 1989 : Energetics examination of winter blocking simulation in the Northern Hemisphere, Mon. Wea. Rev., 117, 2019-2040.
- Leith, C.E., 1968 : Diffusion approximation for two -dimensional turbulence, Phys. Fluids, 11, 671-672.
- Lilly, D.K., 1971: Numerical simulation of developing and decaying two-dimensional turbulence, J. Fluid Mech., 45, 395-415.
- Longuet-Higgins, M. S., 1968 : The eigenfunction of Laplace's tidal equation over a sphere, Phil. Trans. Roy. Soc. London, A262, 511-607.
- orenz, E. N., 1955 : Available potential energy and the maintenance of the general circulation, Tellus, 7, 157-167
- 松田佳久,余田成男,1985:気象とカタストロフィー(6.1 ブロッキング現象),気象研究ノート,151,97-122.
- Matsuno, T., 1971 : A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 28, 1479 -1494.
- Miyakoda, K. and J.-P. Chao, 1982 : Essay on dynamical long-range forecasts of atmospheric circulation, J. Meteor. Soc. Japan, **60**, 292–308.
- Mukougawa, H., 1988 : A dynamical model of quasi -stationary states in large-scale atmospheric motions, J. Atmos. Sci., **45**, 2868-2888.
- Mullen, S. L., 1987 : Transient eddy forcing of blocking flows, J. Atmos. Sci., 44, 3-22.
- McWilliams, J. C., 1980 : An application of equivalent modons to atmospheric blocking, Dyn. Atmos. Oceans, 5, 43-66.
- Nakamura, H., M. Tanaka, and J. M. Wallace, 1987 : Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns, J. Atmos. Sci., 44, 3377-3391.

Plumb, R. A., 1981: Instability of the distorted polar

- Rex, D. F., 1950 : Blocking action in the middle troposphere and its effect upon regional climate, Tellus, 2, 196-211.
- Salby, M. L., R. R. Garcia, D. O'Sullivan, and J. Tribbia, 1990 : Global transport calculations with an equivalent barotropic system, J. Atmos. Sci., 47, 188-214.
- Saltzman, B., 1957 : Equations governing the energetics of the large scales of atmospheric turbulence in the domain of wavenumber, J. Meteor., 14, 513 -523.
- Saltzman, B., 1970: Large-scale atmospheric energetics in the wavenumber domain, Rev. of Geophys. and Space Phys., 8, 289-302.
- Sasaki, Y. K. and L. P. Chang, 1985 : Numerical solution of the vertical structure equation in the normal mode method, Mon. Wea. Rev., 113, 782 -793.
- 佐藤康雄, 1977: プラネタリー波動(超長波)について, 天気, 24, 135-151.
- 佐藤康雄, 1984:大気ブロッキング現象の観測的研究の ーレビュー,天気, **31**, 7-18.
- Schilling, H.-D., 1986 : On atmospheric blocking types and blocking numbers, Anomalous atmospheric flows and blocking, Advances in Geophysics. 29, Academic Press, 71-99.
- Simmons, A. J. and B. J. Hoskins, 1976 : Baroclinic instability on the sphere : Normal modes of the primitive and quasi-geostrophic equations, J. Atmos. Sci., 33, 1454-1477.
- Simmons, A. J., and B. J. Hoskins, 1978 : The life cycles of some nonlinear baroclinic waves, J. Atmos. Sci., 35, 414-432.
- Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983 : Barotropic wave propagation and instability and atmospheric teleconnection patterns, J. Atmos. Sci., 40, 1363-1392.
- Smagorinsky, J., 1963 : General circulation experiments with the primitive equations, I : The basic experiment, Mon. Wea. Rev., 91, 99-164.
- Shutts, G. J., 1983 : The propagation of eddies in diffluent jet stream : Eddy vorticity forcing of blocking flow fields, Quart. J. Roy. Meteor. Soc., 109, 737-761.
- Swarztrauber, P. N. and A. Kasahara, 1985 : The vector harmonics analysis of Laplace's tidal equations, SIAM J. Sci. Stat. Comput., 6, 464-491.

田中博, 1982:500 mb 高度における準停滞性超長波の季 節変動の統計的解析,地理学評論,55,281-291.

田中博,1984:1979年1月の東西波数1の増幅および鉛直 伝播について、グロースベッター、22, 2, 17-25.

Tanaka, H. L., 1985: Global energetics analysis by expansion into three-dimensional normal mode functions during FGGE winter, J. Meteor. Soc. Japan, 63, 180-200.

- Tanaka, H. L., 1991: A numerical simulation of amplification of low-frequency planetary waves and blocking formations by the upscale energy cascade, Mon. Wea. Rev., **119**, 2919-2935.
- Tanaka, H. L. and E. C. Kung, 1988 : Normal mode energetics of the general circulation during the FGGE year, J. Atmos. Sci., 45, 3723-3736.
- Tanaka, H. L. and E. C. Kung, 1989 : A study of low -frequency unstable planetary waves in realistic zonal and zonally varying basic states, Tellus., 41 A, 179-199.

Tanaka, H. L. and S. Sun, 1990 : A study of baroclinic

energy sources for large-scale atmospheric normal modes, J. Atmos. Sci., **47**, 2674-2695.

- Tanaka, H. L. and A. Kasahara, 1992 : On the normal modes of Laplace's tidal equations for zonal wavenumber zero, Tellus, 44A, 18-32.
- Tung, K. K. and R. Lindzen, 1979 : A theory of stationary long waves, Part 1 : A simple theory of blocking, Mon. Wea. Rev., 107, 714-734.
- Van Heijst, G. J. F. and J. B. Flór, 1989: Dipole formation and collisions in a stratified fluid, Nature, 340, 212-214.
- Wiin-Nielsen, A., 1962: On the transformation of kinetic energy between the vertical shear flow and the vertical mean flow in the atmosphere, Mon. Wea. Rev., 90, 311-323.
- Zhang, K.-S. and T. Sasamori, 1985 : A linear stability analysis of the stratospheric and mesospheric zonal mean state in winter and summer, J. Atmos. Sci., **42**, 2728-2750.

ビデオ映像文化振興財団 第2回助成対象の募集

昨年,第1回募集に対して多数寄せられた申請は, 様々な分野に渡っており,映像の自由な広がりを実感 しました.

第2回も内容や分野を限定しません。映像の重要性 を見つめ、新しい映像の利用展開を引き出すような活 動を期待します。

助成対象

1994年度内実施の「映像文化の創造に関わる活動」 の全て

- ●あらゆる分野で利用される映像の「製作」
- ●映像分野での現代芸術の「創造」と公開
- ●映像の利用とその効果に関する「調査研究」
- ●映像に関する「事業」
- ●新技術の「開発」による新しい映像の表現と利用展 開,など

助成件数及び金額

3件.1件あたり200万円.

決定時期

1994年3月の予定

応募方法と締切

所定の申請書にて応募を受付けます. 締切は,1993年12月1日(必着)

ただいま応募要項と申請書を配布しています.送付 先及び電話番号を明記の上,返信用切手175円を同封し て,下記の本財団事務局までご請求下さい.

〒106東京都港区六本木3-16-20 O.T.O. ビル 財団法人ビデオ映像文化振興財団 事務局 phone. 03-3584-3951