対的割合はどのように変わるのであろうか。地球温暖 化による昇温は加速することが予測されている。一方 で,都市化による昇温に上限はあるのだろうか。中小 都市ではどうだろうか。

今後の気候変化においては全球的な地球温暖化が加 速される一方で,都市化の影響が複合的に加わってく るため,都市気候を表現するモデルの導入が温暖化予 測研究においても必要であろう.

参考文献

IPCC, 2001: Climate Change 2001: The Scientific

Basis. J. T. Houghton *et al.* (eds.). Cambridge University Press, Cambridge, UK, 881pp.

- 環境省地球温暖化問題検討委員会温暖化影響評価ワーキ ンググループ,2001:地球温暖化の日本への影響2001, 環境省.
- 気象庁,2002:20世紀の日本の気候.財務省印刷局,116 pp.
- 行本誠史,野田 彰,2002:気象研究所気候モデル MRI-CGCM2の気候感度,日本気象学会2002年秋季大会講 演予稿集,C158.

304 (都市気候)

2-1. 都市気象モデルからみた熱帯夜の形成機構

一都市の凸凹効果の検討一

日 下 博 幸*•木 村 富士男**

1. はじめに

都市気象モデルを用いた数値実験は都市のヒートア イランド研究の有力な手段の一つと考えられている. 本稿では、最初に都市気象モデルをスケール別にメソ スケールモデル、都市キャノピーモデル、数値流体力 学(CFD)モデルの3種類にまとめ、個々のモデルの 特徴を紹介する.次に、筆者らのモデルを用いて、夏 季の夜間ヒートアイランド現象の要因を検討する.

2. 都市気象モデル

都市の地表面はアスファルトやコンクリートなどで 覆われている.このため蒸発量は減少し,熱容量・熱 伝導率は大きくなる.また,都市の地表面はキャニオン(凸凹)構造をもつため,運動量や放射収支にも大 きな影響をおよぼしている.このほかにも人工排熱,

* 電力中央研究所流体科学部,

- h-kusaka@criepi.denken.or.jp
- ** 筑波大学地球科学系・陸域環境研究センター.

© 2004 日本気象学会

大気汚染,地表面の非一様性など都市は郊外と異なる 特徴を持つ(第1表)。

数値モデルによって都市の気象を再現するために は、これらの特徴をモデルに取り入れる必要がある. ただし、モデル内での取り扱い方は、そのモデルの取 り扱うスケール、とりわけモデルの解像度に大きく依 存する(第2表)(日下,2004).

(1) メソスケールモデル

都市全体規模のシミュレーションを目的とする場 合,運動方程式・質量保存則の式・熱力学第一法則の 式・水蒸気の保存式・状態方程式からなる力学コアと 放射・乱流・降水・地表面モデルなどの物理モデルに よって構成されるメソスケールモデルが広く使われて いる.メソスケールモデルでは,接地層の相似則,地 表面熱収支式,地中の熱伝導方程式から計算されるフ ラックスが大気モデルの拡散項の下部境界条件として 働く.したがって,この計算で使われている粗度,低 層スタントン数,蒸発効率,アルベド,熱伝導率,熱 容量などのパラメータや物性値を都市用に設定するこ とでモデルに都市の効果を反映させることができる

95

(木村・日下, 1998; Kusaka *et al.*, 2000). 格子内に 道路や草地といった異なる 土地被覆が混在している場 合は,各々の土地被覆から 計算されたフラックスをそ の面積比に従い加重平均す ることにより,格子平均フ ラックスを計算する(例え ば,Kimura, 1989).

96

(2)都市キャノピーモデル

都市内における局所的な シミュレーションを行う場 合,都市キャノピーモデル (乱流モデル)が使われる (例えば,Uno *et al.*, 1989;近藤・劉,1998;Ca *et al.*,2002).これらのモデ ルは個々の建物を直接解像 しないが、建物による風速 第1表 都市化の特徴とヒートアイランドの要因.*夜間の気温を上昇させる一方で、日中の気温上昇を抑制する。

都市化の特徴	ヒートアイランドの要因
地表面の改変	蒸発量の減少に伴う顕熱フラックスの増加
(被覆の変化)	熱容量と熱伝導率の増加に伴う蓄熱効果の増大*
地表面の改変	風速の低下に伴う地面とキャノピー層での熱交換の低下*
(構造の変化)	乱流の強化に伴うキャノピー層内外での熱交換の増加
	表面積の増加に伴う蓄熱効果の増加*
	日射の多重散乱に伴うアルベドの低下
	長波放射の吸収・射出に伴う放射冷却の緩和
人間活動の活発化	人工排熱の増加に伴う顕熱・潜熱フラックスの増加
	大気汚染物質による日射の遮蔽*,長波放射の吸収・射出

第2表 都市気象モデル.

種類	対象スケール	水平解像度	鉛直解像度	モデルで計算される地上 気温
メソスケール モデル	都市全体 (10⁴~10⁵ m)	10 ³ m	$10^{1} \sim 10^{2} \text{ m}$	接地層の平均気温
キャノピー モデル	街区 (10 ² ~10 ³ m)	101 m	10º m	キャノピー層の平均気温 (鉛直分布)
CFD モデル	ビル周り(10 ¹ m)	$10^{-1} {\rm m}$	$10^{-1} {\rm m}$	ビル周りの局所的な気温

低減効果,建物の占有体積増加の効果などが詳細にパ ラメタライズされている。また,天空率や日陰の効果 も考慮されている。

(3) CFD モデル^{†1}

単体の建築物周りの風を計算するモデルは CFD も しくは Bluff Body モデルと呼ばれている. 基本的に は (2) のモデルと同様, 乱流モデルを基礎としている が, 建物を直接解像することによりキャニオン効果を パラメタライズしない点が異なる (例えば Launder and Kato, 1993; Takamura *et al.*, 1993).

(4) その他のモデル

これらのほかにも,都市キャノピー層を鉛直方向に 解像しない単層都市キャノピーモデル(例えば Masson, 2000; Kusaka *et al.*, 2001),都市のアルベドを 推定するモデル(例えば Aida and Gotoh, 1982;中川, 1996),都市キャノピー内の風速分布を解析的に計算す る方法(例えば Macdonald, 2000)なども提案されて いる.これらのモデルは基本的には(1)のメソスケー ルモデルのモジュールとして働く.モデルユーザーは, モデルで計算される物理量の意味をよく理解した上 で、各々の目的や対象スケールに適切と思われるモデ ルを使用する必要がある。

3. ヒートアイランドの数値実験

数値実験で用いたモデルはメソスケールモデルに属 するが、都市の単層キャノピーモデルが導入されてい る(Kusaka and Kimura, 2004). 単層キャノピーモ デルでは、(a)都市のキャニオン効果がパラメタライ ズされている、(b)キャニオン内での短波・長波放射 の反射が計算される、(c)屋根面,壁面,道路面で別々 に熱収支と表面温度が計算される、などの特徴を持っ ている(第1図). したがって、メソスケールモデルに キャノピーモデルを導入することにより、都市全体規 模のヒートアイランドに対する都市のキャニオン効果 をより直接的に評価できるようになる.

計算対象日は8月1日で、気象条件は典型的なヒー トアイランドが現れやすい静穏無風に設定した.実験 では、平坦な300 kmの領域の中央に高さ6mの建物 が並ぶ30 kmの都市をおき、その左右は草地に覆われ た郊外と設定するなど計算条件を極力単純化した.こ のように、理想化・単純化した実験は目的の現象を強 調でき、しかも結果を理解しやすいという長所がある.

"天気"51.2.

¹¹ CFD モデルとは計算機によって流れを解くモデルの 総称であるため、広い意味では(1)や(2)のモデ ルも CFD モデルに含まれるが、ここでは狭義の CFD モデルを指す。

(i) lshadow < lroad (ii) lshadow > lroad

第1図 単層都市キャノピーモデルの概念図 Za, Zr, Zr+d はそれぞれ,参照高度,建物高さ,ゼロ 面変位. Ta, T_R, T_w, T_G, T_sはそれぞれ,参照レベルの温度,屋根面温度,壁面温度,地面 温度,フラックス温度. H はモデルから大気に受け渡される顕熱フラックス, Ha, H_R, H_w, H_Gはそれぞれ,キャニオン,屋根面,壁面,地面からの顕熱フラックス. lshadow, lroad, lheight はそれぞれ影の長さ,道路幅,建物高さ.屋根面,壁面,同路面が受け取る短波・長波放射量 は建物形状と天空率を考慮して計算される.

第2図は基準計算によって得られた午後3時と翌朝の 3時の温位分布図である。午後3時では、都市と郊外 の加熱量の差により、都市境界層全体にわたってヒー トアイランドが認められる。ただし、境界層の上部で はヒートアイランド循環によるクールアイランドが見 られる。日没後、郊外では逆転層が形成され始めるが、 都市では混合層が存在する。翌朝の3時になると、郊 外の逆転層はさらに発達し、都市でも接地逆転が形成 され始める。この違いは各々の地表面熱収支を比較す ることにより容易に理解できる(第3図)。日中、都市 の顕熱フラックスは郊外のそれに比べて数10 W/m² 多い。これがヒートアイランドとヒートアイランド循 環を維持生成している。また、地中熱流量(蓄熱量) も郊外に比べて多い。日没後も顕熱フラックスは正の 値を持ち、ビル壁面や道路からの加熱が夜間の混合層 を維持していることがわかる

さらに、上記の基準計算の結果(C-1)と、5W/m² の人工排熱を入れた時の結果(C-2),都市の熱容量を 半分にした時の結果(C-3),放射に対する壁の効果を 除去した時の結果(C-4)を比較すると、夜間のヒート アイランドが、人工排熱、都心と郊外における地表面 構成物質の違い、都市キャニオンの熱的効果の複合作 用によって引き起こされていることがわかる¹²(第4 図).

^{†2} 一般風の影響が比較的大きな場合,都市キャニオンの 力学効果,つまり乱流による上からの加熱の効果も重 要となる。

第3図 熱収支の日変化(a)図は都市,b)図は郊外) R ラックス,潜熱フラックス,地中熱流量

第4図 地上10mの気温の日変化. C-1は基準 計算, C-2は基準計算に人工排熱を5W/ m²入れた結果, C-3は熱容量を基準計算 の半分(壁を無視した場合の熱容量に相 当)にした結果, C-4は基準計算で放射に 対する壁の効果を無視した結果.

4. まとめと今後の課題

都市気象モデルを,スケール別に,メソスケールモ デル,都市キャノピーモデル,CFDモデルの3種類に まとめ,それぞれの特徴を述べた.単層都市キャノピー モデルを含んだメソスケールモデルを用いた数値実験 の結果,夜間のヒートアイランド現象が人工排熱,都 心と郊外における地表面構成物質の違い,都市キャニ オンの熱的効果の複合作用によって引き起こされてい ることが確認された.

都市気象モデルに対しては、いくつかの大きな課題 が残されているが、それらの問題の多くは都市におけ る風、気温、フラックスなどの空間代表性の低さに起 因している.水平一様性が成立しない地表面と大気と の間での熱・水蒸気・運動量の交換をより精度よく計 算するにはどうすればよいのか。モデルの検証を行う うえで、モデルの結果と観測値をどのように解釈すべ きなのか。こられの問題を解決するためには、都市に おけるさまざまな規模の現象に着目した都市気象の研 究を今後も積み重ねていく必要がある。

参考文献

- Aida, M. and Gotoh, 1982 : Urban albedos as a function of the urban structure : A two-dimensional numerical simulation, Bound.-Layer Meteor., 23, 415-424.
- Ca, V. T., Y. Ashie and T. Asaeda, 2002 : A k-eps turbulence closure model for the atmospheric boundary layer including urban canopy, Bound.-Layer Meteor., **102**, 459-490.
- 木村富士男,日下博幸,1998:ヒートアイランドのモデ リング,吉野正敏・山下脩二編都市環境学事典,朝倉 書店,57-76.
- Kimura, F., 1989 : Heat flux on mixture of different land-use surface : Test of a new parameterization scheme, J. Meteor. Soc. Japan, **61**, 848-861.
- 近藤裕昭, 劉発華, 1998:1 次元都市キャノピーモデル における都市の熱環境の研究,大気環境学会誌, 33, 179-192.
- Kusaka, H., F. Kimura, H. Hirakuchi and M. Mizutori, 2000 : The effects of land-use alteration on the sea breeze and daytime heat island, J. Meteor. Soc. Japan, **78**, 405-420.
- Kusaka, H., H. Kondo, Y. Kikegawa and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-

14

layer and slab models, Bound.-Layer Meteor., 101, 329-35.

- Kusaka, H. and F. Kimura, 2004 : Coupling a singlelayer urban canopy model with a simple atmospheric model : Impact on urban heat island simulation for an idealized case, J. Meteor. Soc. Japan, 82, 000-000.
- 日下博幸,2004:都市の気象,堀口郁夫・小林哲夫・塚 本修・大槻恭一・真木太一編 局地気象学,森北出版, 改訂中.
- Launder, B. E. and M. Kato 1993 : Modeling flowinduced oscillations in turbulent flow around a square cylinder, ASME Fluid Eng. Conf., **157**, 189-200.
- Macdonald, R. W., 2000 : Modeling the mean velocity

profile in the urban canopy layer, Bound.-Layer Meteor., **97**, 24-45.

- Masson, V., 2000 : A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Layer Meteor., **94**, 357-397.
- 中川清隆,1996:都市地表面アルベドの表面形状依存性 に関する数値実験,地理学評論,**69A**,415-435.
- Takamura, S., Y. Suyama and M. Aoyama, 1993: Numerical simulation of flow field around buildings in an urban area, J. Wind Eng. Ind. Aerodyn., 46/47, 765-771.
- Uno, I., H. Ueda and S. Wakamatsu, 1989 : Numerical modeling of the nocturnal urban boundary layer, Bound.-Layer Meteor., **49**, 77-98.

109:304(都市キャノピー;ビルエネルギー連成モデル;冷房排熱)

2-2. 都市気象モデルからみた熱帯夜の形成機構

-都市キャノピー・ビルエネルギー連成モデルを用いた解析例-

大橋 唯太*

1. はじめに

日本国内のエネルギー消費量の内訳は,運輸部門 24%,産業部門50%,民生部門26%(1996年)となっ ているが,このうち都市域内では,運輸と民生部門で のエネルギー消費が大部分を占めている.将来的な見 通しとして,運輸・産業部門ではエネルギー消費が減 少傾向にあるが,民生部門は増加が予測されている. その民生部門におけるエネルギー需要の内訳は,冷暖 房などの空調機器,OA機器や照明などの一般電力,給 湯・厨房に大別される.特に近年においては,OA機器 の急速な普及や,都市高温化に伴う冷房需要の増大な どが,都市域内のエネルギー消費量の増加につながっ ている.これらのエネルギー消費量は冷房排熱という形 で大気中に捨てられており,夏季における都市気温の 上昇に大きく寄与している可能性が指摘される.特に

* 産業技術総合研究所, oohashi-y@aist.go.jp © 2004 日本気象学会 事務所系ビルが集中した街区では、大気に供給される 顕熱の多くを空調排熱が占めており、例えば東京都千 代田区や中央区においては50~60%がそれに相当する と言われている(環境省,2001).

人工排熱の増加に伴う気温上昇は冷房エネルギー消 費,即ち空調室外機からの排熱を増大させ,更なる気 温上昇が生じることにつながる.この悪循環が,近年 の東京や大阪などの大都市中心部での熱環境の急激な 悪化を引き起こしている要因の一つと言われている. 産業技術総合研究所では,このような相互作用を伴っ た熱環境の問題を解決するために,建物エネルギー消 費に伴う人工排熱と街区内気温の間で起こる相互作用 を考慮した,都市熱環境の評価を可能とする数値モデ ル(都市気象・ビルエネルギー連成モデル)の開発に 取り組んでいる.本稿ではそのモデルの概要とともに, 我々が行っている具体的な応用研究について紹介を 行っていく.