305:306 (気候感度;地球温暖化)

5. 気候感度の不確実性と地球温暖化予測

吉森正和*

1. はじめに

「(平衡)気候感度」という専門用語がある.気候 変動に関連した話題でよく耳にする言葉である.もっ とも一般的に使われる定義は,大気中のCO2濃度を 2倍にした際の地球平均地上気温の平衡応答である (放射効果は対数で効いてくるため相対変化を問題に する).このとき,植生分布や氷床の変化は含めない. このたった1つの数字を巡って,IPCC評価報告書を はじめ,多くの文献でさかんに議論が行われている. 当然,この値は観測できないものであり,気候モデル の仮想世界に限られた話のように感じられる.しか し,これに相当する概念は,1896年のスヴァンテ・ア レニウスにまで遡る.以降,気候システムに関する 我々の知識は着実に増え,多くの推定値が提案されて

* 東京大学大気海洋研究所(現:北海道大学大学院地球 環境科学研究院). myoshimo@ees.hokudai.ac.jp © 2015 日本気象学会

第1図 気候感度推定値の歴史的推移.縦軸は, 横軸のそれぞれの時代に推定された気候 感度の値.初期の3つの推定は理論的に 導出,数字は推定に使用されたモデルの 数,それ以外は古気候記録から推定. ○:最良の推定値,△:可能性のある範 囲. Maslin and Austin (2012)より転 載. きたが,気候感度の不確実性はそれほど順調に小さく なってはいない(第1図).本稿では,多くの研究者 が「執着している」,この一見非実用的な指標につい て,その不確実性と地球温暖化予測における意味を紹 介したい.特に,天気第59巻第1~3号に掲載された 解説「気候感度 Part 1~3」(吉森ほか 2012a, b, c) 以降の進展を中心にまとめ,そこで触れられなかった 概念についても言及する.

2. 温暖化予測のばらつき

明日の天気を予報するように,将来の気候を予測し ようと考えるのはごく自然の発想であり,そうした社 会的要請も多い.気候予測では,想定されるいくつか の社会経済シナリオに沿って CO₂排出量または濃度 などの時間変化する境界条件を与え,その条件下で気 候モデルを走らせて気温などの時間発展を計算する. 第2図は,気温予測において不確定要素の寄与が時間 とともに変化する様子を表している.21世紀初頭は内 部変動が卓越し,外部強制力が徐々に大きくなるにつ れて気候モデルのばらつきが顕著になり,やがて社会 経済シナリオのばらつきが支配的となる.地球平均気 温は,降水量など他の気候変数と一般に強い相関があ り,したがって影響評価とも結びつきが強く,気候安 定化目標としてもよく言及される.

第2図 21世紀の地球平均気温変化予測のばらつ きへの寄与(2000年を基準とした10年ご との予測の平均値に対する予測の90%信 頼区間の割合). 点線は適切な初期化に よって低減の可能性のあるばらつきを示 す. Hawkins and Sutton (2009) より 転載.

3.気候モデルの不確定要素

気候システムは、大気中 CO_2 濃度の増加などによ り大気上端でのエネルギー収支が余剰になる(放射強 制力 F>0)と、その一部を海洋が吸収(ごく少量は 雪氷の融解などで消費)し(ΔN)、地上気温上昇 (ΔT)を通じた赤外放射の増加により残りを宇宙空 間に放出してエネルギーの過不足を解消しようとす る。同時に、 ΔT に応答して水蒸気が増えるなど気候 状態が変化し、放射収支にさらなる過不足が生じ、 ΔT を増幅したり緩和したりする。これらの過程は 次式により簡略化して表現される(吉森ほか 2012a の第1図参照):

$$\Delta N = \Delta F - \lambda \Delta T \tag{1}$$

 λ はフィードバックパラメータと呼ばれる. λ を決め る個々のプロセスの詳細については吉森ほか (2012 a) に譲るが、ここで重要なのは ΔT の不確実性が ΔN 、 ΔF 、 λ の3つの要素に起因することである。 海洋熱吸収 ΔN は、鉛直拡散や深い対流、子午面循環 の応答などに依存するが、平衡応答の ΔT には直接関 係しない、次節以降では、 $\Delta F \ge \lambda$ の不確実性を中 心に最近の知見を紹介する。

4. 放射強制力の不確実性

放射強制力 (ΔF)の不確実性は,瞬時・成層圏調 節後の放射強制力と対流圏調節に分けて考えることが 多い.前者は,現在気候の再現バイアスの影響も受け るが,主に放射伝達計算を効率よく行うための近似誤 差の問題と考えられ,ある程度は調整が可能なはずで ある.しかし,実際にはモデル間で意外とばらつきが 大きい (Collins *et al.* 2006).後者は,エアロゾルの 間接効果に代表されるように,地上気温変化に対する 応答として生じる放射効果 ($\lambda \Delta T$)ではなく,外部 強制によって直接雲などが変化することによって生じ る ($\Delta T = 0$ 時の)放射効果を指す.

Kamae and Watanabe (2012, 2013) は, CO₂の 増加によって対流圏下層の温度が上昇し[†], それより 下の安定度が増加,蒸発の減少による乾燥化と雲量の 減少,境界層が薄くなることによる下層雲の高度低下 などが数日以内に起きることをモデル実験とマルチモ デル解析で示した.その他,植物の気孔開閉応答や海

 ^{*} CO₂と水蒸気の吸収帯の重なり(オーバーラップ)効果によって生じる(Sugi and Yoshimura 2004).

陸昇温コントラストを介した対流圏調節による雲の変 化も指摘されている(Andrews *et al.* 2012). ただ し,陸上の昇温は $\Delta T \neq 0$ を意味し,時間スケール (≪1年)という点では調節に近いが,強制力と見な すべきか応答と見なすべきかについて,より明確な整 理が必要である.雲応答の時間スケールについては Watanabe *et al.* (2012a)も参照されたい.

黒色炭素や対流圏オゾンなどの放射吸収物質が変化 した際の瞬時・成層圏調節後の放射強制力 1 W/m²あ たりの ΔT が CO₂の 1 W/m²あたりの ΔT と異なる (前者の後者に対する比を強制力のエフィカシーと呼 ぶ; すなわち, CO₂のエフィカシーは 1 である) 主な 原因は,こうした対流圏調節が考慮されていないこと にある (Yoshimori and Broccoli 2008).この効果 は, CO₂以外の物質による温暖化の大きさを考える際 に重要になる.

5. フィードバックの不確実性

フィードバックパラメータ(λ) は地球平均地上気 温変化1°Cあたりの放射効果を表す.しかし,南大洋 のように海洋深層との混合が盛んで有効熱容量が大き い地域では,温暖化時の海面温度の上昇速度は小さ い.したがって,同じ $\Delta T = 1$ °Cであっても,平衡時 と非平衡時ではその空間分布が異なり,したがってそ れに対する大気の放射フィードバックも異なってく る.この効果は,しばしば海洋熱吸収エフィカシーと いうパラメータによって表現される (e.g., Winton *et al.* 2010).同様の理由で,前節の強制力のエフィカ シーは,対流圏調節に加えて,強制力の空間分布に よっても影響を受ける.

第3図は、CO₂増加に対する平衡応答と過渡応答の モデル間のばらつきへの、各不確定要素の寄与率を表 している.両者において平衡時フィードバックパラ メータ (図中 λ)のばらつきが支配的で、強制力 (図 中 F)がそれに続く要因であることがわかる.過渡 応答については海洋鉛直混合と海洋熱吸収エフィカ シーのばらつき (図中 $\gamma \ge \epsilon$)も無視できない.よ く知られているように、フィードバックのばらつきが 雲によることを考慮すると (Dufresne and Bony 2008),結局、将来の地球平均気温変化予測のモデル 間のばらつきの主要因は雲フィードバックであること がわかる.ここで、モデルのばらつきと不確実性の大 きさは等価ではないことを注記しておく.

IPCC の第4次評価報告書(IPCC 2007)によると,

温暖化時には対流圏界面の上昇とともに熱帯外の上層 雲量がモデル間で一貫して増加し,熱帯の対流圏界面 直下や中緯度中層の雲量が一貫して減少する.第4図 は,雲頂高度と光学的厚さによって分類した雲の放射 フィードバックを表している.下層雲応答の不確実性

第3図 2層の簡易海洋モデルパラメータで診断した平衡気候感度(ECS)と過渡気候応答(TCR)の気候モデル間差異への寄与率.C:海洋表層の熱容量,C:海洋深層の熱容量,γ:海洋の鉛直混合,ε:海洋熱吸収エフィカシー,F:放射強制力,λ:平衡時のフィードバックパラメータ,I:パラメータの相互作用(残差).Geoffroy et al. (2012)に記号を追記.

Medium+Thick. Zelinka et al.

(2012) より転載。

が大きいことはこれまでも多くの研究で指摘されてき たが(最近では Soden and Vecchi 2011),長波と短 波に分けると上層雲の応答にも大きな不確実性がある ことがわかる.下層雲問題は,観測,理論,パラメタ リゼーションの精緻化,雲解像モデル,スーパーパラ メタリゼーション,ラージェディシミュレーション, シングルコラムモデル,衛星データや衛星シミュレー タの活用など様々なアプローチがとられているが,吉 森ほか(2012b)や野田(本稿)でも議論されている ように非常に困難な課題である.高緯度では,雲水・ 雲氷の相変化が雲量や光学的厚さに影響を与える混合 相雲の重要性も指摘されているが(Tsushima *et al.* 2006),観測や理論から応答を規定する強い制約条件 はまだ見つかっていない.

一方,低緯度上層雲の長波フィードバックについて は,有力な仮説が提唱されている.上昇流域のかなと こ雲が広がる(アンビル)高度は下降流域での鉛直流 の収束高度に対応しており,後者は下降流の断熱昇温 と水蒸気による放射冷却とのつり合いで規定されてい る.水蒸気による放射冷却はクラウジウス・クラペイ ロンの関係を通じて温度で強く規定されるため,結 局,温暖化時にアンビルの高度は上昇してもその温度 変化は小さい(成層が強くなる効果により少し昇温す る).温室効果は地表面とアンビルの温度差に依存す るため,このメカニズムは上層雲の長波フィードバッ クを正の方向に大きくする傾向がある(Zelinka and Hartmann 2010).

6. モデルアンサンブル

1つのモデル内でパラメータを振って応答を調べる シングルモデルアンサンブル (Shiogama et al. 2012) やモデル間の構造上の違いによる影響を調べるマルチ モデルアンサンブルの解析も行われている. ばらつき の要因を特定・理解し, 観測データによってそれを制 約する狙いがある. 最近の研究では, パラメータを変 化させても構造の異なるモデル間の応答の違いは説明 できず, また, あるモデルで成り立つ変数間の関係が 別のモデルでは成り立たないことがよく指摘されてい る (Yokohata et al. 2010). Watanabe et al. (2012 b) は, 2つのシングルモデルアンサンブル間の差異 を, 両モデルを構成するモジュールを少しずつ入れ替 えることによって説明することに成功した. こうした 取り組みは,気候感度の推定値そのものが得られるわ けではないが, プロセス理解に非常に有効である. Fasullo and Trenberth (2012) は、マルチモデルで 現在条件下の亜熱帯中層の相対湿度バイアスと気候感 度に良い相関があることを示し、観測された相対湿度 によって気候感度幅を規定できる可能性を指摘した。 ただし、こうした統計的関係を利用した方法では、そ の物理的根拠を明確にする必要がある。

7. 古気候からの不確実性の制約

言うまでもなく,過去の気候は実際に地球上で起き た出来事であり,事実である.気候感度の推定でも, 約1億年前の白亜紀から過去千年まで様々な時代が利 用されてきた(吉森ほか 2012c).ここでは最も頻繁 に利用されている最終氷期最盛期(LGM)に焦点を 当てた最新成果を紹介したい.

推定には、復元された温度、その地球平均値の推定、LGM 強制力のエフィカシー(Yoshimori *et al.* 2009, 2011),植生の変化や鉱物性ダストの効果に関して大きな不確実性があることに注意する必要がある.前節のモデルアンサンブルによる気候感度の推定

第5図 LGM の気候をもとに推定された気候感 度(2006年以降の主な研究).現在を基 準にした LGM の放射強制力と復元され た寒冷化の程度を CO₂増加時の気温変 化に換算,あるいはモデル間の LGM の 寒冷化と CO₂増加時の温暖化の関係を 利用して復元された LGM の寒冷化を制 約条件にして推定.灰色:個々の研究結 果,黒線:5~95%信頼区間の平均(た だし,2つは統計的表現が異なるため平 均から除外).IPCC(2013) Table5.3 を参照.

30

"天気"62.4.

が現在気候の再現性を評価基準にしているのに対し て、古気候アンサンブルでは、過去の気候応答を評価 基準にしている。しかし、マルチモデル解析から LGM の地球平均気温変化と気候感度にほとんど相関 がないことが最近わかってきた。そこで、Hargreaves *et al.* (2012)はLGM の熱帯の気温応答と 気候感度に相関があることに注目し、この再現性を評 価基準にすることにより気候感度の推定を試みた。第 5 図に LGM の気候をもとに推定された気候感度の最 近の研究結果をまとめる。ばらつきはあるものの、そ の平均はマルチモデルの示す気候感度や過去6500万年 の気候を包括的に利用して推定された値(Rohling *et al.* 2012)と整合的である。

8. おわりに

冒頭で述べたように、気候感度は1つの数字に過ぎ ない。改めてその不確定要因を辿ってみると、この数 字は気候システムの変動に対する我々の理解や地球温 暖化予測の不確実性をある意味集約しており、どうや らそれゆえ多くの研究者を「魅了している」ようであ る。推定幅こそ長年にわたって大きく狭まってはいな いものの、対流圏調節や強制力のエフィカシー、海洋 熱吸収エフィカシーなど概念的な進展やその背後にあ る物理的理解は着実に深まっているように思われる。 詰まる所,不確実性の幅は観測データでしか制約する ことはできず、長期観測とそのデータ整備が重要であ ることは言うまでもない。シングルモデルアンサンブ ルは各モデルの理解に有効である一方、マルチモデル アンサンブルでは統計的関係の抽出にとどまらず、物 理メカニズムの理解に力を注ぐべきと考えられる。地 球温暖化予測において「想定外」を起こさせないため には、我々の想定を常に検証する必要があり、事実に もとづく古気候の活用はそうした意味でも重要であ る.

謝 辞

本稿の執筆に際し,環境省環境研究総合推進費 (S-10)の支援を受けました.また,以下の方々との 継続的な議論がなければまとめることができませんで した:阿部彩子,岡 顕,小倉知夫,釜江陽一,木本 昌秀,佐藤正樹,塩竈秀夫,杉 正人,横畠徳太,渡 部雅浩(敬称略).厚く御礼を申し上げます.

略語一覧

- IPCC: Intergovernmental Panel on Climate Change 気候変動に関する政府間パネル
- LGM: Last Glacial Maximum 最終氷期最盛期

参考文献

- Andrews, T., J.M. Gregory, P.M. Forster and M.J. Webb, 2012 : Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619-635.
- Collins, W.D. *et al.*, 2006: Radiative forcing by wellmixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, doi:10.1029/2005 JD006713.
- Dufresne, J.L. and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Climate, 21, 5135-5144.
- Fasullo, J.T. and K.E. Trenberth, 2012: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 338, 792–794.
- Geoffroy, O., D. Saint-Martin and A. Ribes, 2012: Quantifying the sources of spread in climate change experiments. Geophys. Res. Lett., 39, L24703, doi: 10.1029/2012GL054172.
- Hargreaves, J.C., J.D. Annan, M. Yoshimori and A. Abe-Ouchi, 2012: Can the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett., 39, L24702, doi:10.1029/2012GL053872.
- Hawkins, E. and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095-1107.
- IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S. and others (eds.)]. Cambridge University Press, Cambridge, 996pp.
- IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F. and others (eds.)]. Cambridge University Press, Cambridge, 1535 pp.
- Kamae, Y. and M. Watanabe, 2012: On the robustness of tropospheric adjustment in CMIP5 models. Geophys. Res. Lett., 39, L23808, doi:10.1029/2012GL054275.
- Kamae, Y. and M. Watanabe, 2013: Tropospheric

adjustment to increasing CO_2 : its timescale and the role of land-sea contrast. Clim. Dyn., 41, 3007-3024.

- Maslin, M. and P. Austin, 2012: Uncertainty: Climate models at their limit? Nature, 486, 183-184.
- Rohling, E.J. *et al.*, 2012: Making sense of palaeoclimate sensitivity. Nature, 491, 683-691.
- Shiogama, H. *et al.*, 2012: Perturbed physics ensemble using the MIROC5 coupled atmosphere-ocean GCM without flux corrections: experimental design and results. Parametric uncertainty of climate sensitivity. Clim. Dyn., **39**, 3041-3056.
- Soden, B.J. and G.A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/ 2011GL047632.
- Sugi, M. and J. Yoshimura, 2004: A mechanism of tropical precipitation change due to CO₂ increase. J. Climate, 17, 238–243.
- Tsushima, Y. *et al.*, 2006: Importance of the mixedphase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study. Clim. Dyn., 27, 113-126.
- Watanabe, M., H. Shiogama, M. Yoshimori, T. Ogura, T. Yokohata, H. Okamoto, S. Emori and M. Kimoto, 2012a: Fast and slow timescales in the tropical lowcloud response to increasing CO₂ in two climate models. Clim. Dyn., **39**, 1627-1641.
- Watanabe, M. *et al.*, 2012b: Using a multiphysics ensemble for exploring diversity in cloud-shortwave feedback in GCMs. J. Climate, 25, 5416–5431.
- Winton, M., K. Takahashi and I.M. Held, 2010: Importance of ocean heat uptake efficacy to transient

climate change. J. Climate, 23, 2333-2344.

- Yokohata, T., M.J. Webb, M. Collins, K.D. Williams, M. Yoshimori, J.C. Hargreaves and J.D. Annan, 2010: Structural similarities and differences in climate responses to CO₂ increase between two perturbed physics ensembles. J. Climate, 23, 1392–1410.
- Yoshimori, M. and A.J. Broccoli, 2008: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 4399-4423.
- Yoshimori, M., T. Yokohata and A. Abe-Ouchi, 2009: A comparison of climate feedback strength between CO₂ doubling and LGM experiments. J. Climate, 22, 3374–3395.
- Yoshimori, M., J.C. Hargreaves, J.D. Annan, T. Yokohata and A. Abe-Ouchi, 2011: Dependency of feedbacks on forcing and climate state in physics parameter ensembles. J. Climate, 24, 6440-6455.
- 吉森正和ほか,2012a:気候感度 Part 1:気候フィード バックの概念と理解の現状.天気,59,5-22.
- 吉森正和ほか,2012b:気候感度 Part 2:不確実性の低 減への努力.天気,59,91-109.
- 吉森正和ほか,2012c:気候感度 Part 3:古環境からの検 証. 天気,59,143-150.
- Zelinka, M.D. and D.L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.
- Zelinka, M.D., S.A. Klein and D.L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 3715–3735.