「2014年広島豪雨に関する予測検討会」の報告

津 口 裕 茂^{*1}・下 瀬 健 一^{*2}・加 藤 亮 平^{*3}・栃 本 英 伍^{*4} 横 田 祥^{*5}・中 野 満寿男^{*6}・林 修 吾^{*7}・大 泉 伝^{*8} 伊 藤 純 至^{*9}・大 元 和 秀^{*10}・山 浦 剛^{*11}

吉田龍二^{*12}•鵜沼 昂^{*13}

1. はじめに

第2回メソ気象セミナー(下瀬ほか 2016)に先立 つ2015年6月6日(土)の午前中に,2014年8月20 日に発生した広島での大雨(以下,広島豪雨)に関す る予測検討会を開催した。検討会では、参加者の有志 がさまざまな気象モデルを使って広島豪雨を予測・再 現した結果を持ち寄り、それらの比較を行った。本検 討会の趣旨は、以下のとおりである。

- ・さまざまなモデルや手法で得られた予測・再現結果を比較することにより、広島豪雨の予測・再現にとって何が重要であるかを検討する。
- ・異なるモデルや手法による予測・再現結果を相互 に比較することでそれぞれの問題点を把握し、モ
- *1 (連絡責任著者)Hiroshige TSUGUTI, 気象研究所. htsuguti@mri-jma.go.jp
- *2 Ken-ichi SHIMOSE, 防災科学技術研究所.
- *3 Ryohei KATO, 防災科学技術研究所.
- *4 Eigo TOCHIMOTO, 東京大学大気海洋研究所.
- *5 Sho YOKOTA, 気象研究所.
- *6 Masuo NAKANO,海洋研究開発機構.
- *7 Syugo HAYASHI, 気象研究所.
- *8 Tsutao OIZUMI,海洋研究開発機構
- *9 Junshi ITO, 気象研究所.
- *10 Kazuhide OMOTO, 九州大学大学院.
- *¹¹ Tsuyoshi YAMAURA,理化学研究所計算科学研究 機構.
- *12 Ryuji YOSHIDA,理化学研究所計算科学研究機構.
- *13 Takashi UNUMA, 京都大学防災研究所.

© 2016 日本気象学会

デル・手法の開発に有益な情報を共有する.

モデル・手法の良し悪しをただ単に評価することを目的としない。そもそも、それぞれのモデル・
 手法において、前提条件(利用目的、開発状況、
 実験手法など)が異なっていることから、優劣をつけることに意味はない。

参加者からは全部で11個の結果が提出された.使用 された気象モデルは、JMA-NHM (Saito *et al.* 2006), CReSS (Tsuboki and Sakakibara 2007), WRF-ARW (Skamarock *et al.* 2008), NICAM (Satoh *et al.* 2014), SCALEモデル (Nishizawa *et al.* 2015; Sato *et al.* 2015) である.実験手法は、気 象庁メソ解析を初期値・境界値とする一般的な予測・ 再現実験にとどまらず、3次元変分法やアンサンブル カルマンフィルタによるデータ同化,気象庁全球解 析・気象庁55年長期再解析・NCEP全球解析 Final-Analysis (FNL) からの力学的ダウンスケール、超 高解像度モデルの使用,アンサンブル予報など、多岐 にわたるものであった.

日本国内において、一つの集中豪雨事例を対象にこ れほど多種多様な気象モデルや手法で予測・再現実験 を行い、それらを相互比較した例はこれまでにみられ ない.このような試みはたいへん興味深いことから、 得られた知見を検討会の参加者のみで共有するのでは なく、気象コミュニティ全体で広く共有したいと考 え、本検討会の概略を報告することとした.以下、第 2節では広島豪雨の概要について述べ、第3節で予 測・再現プロトコルについて説明する.第4節で各参 加者の結果の特徴について示し、第5節で全体のまと

第1図(a)解析雨量による2014年8月20日1200JSTの前24時間積算降水量の分布,(b)20日1200JSTの前12 時間積算降水量の分布(下瀬健一),(c)20日1200JSTの前15時間積算降水量の分布(加藤亮平),
(d)20日1200JSTの前24時間積算降水量の分布(栃本英伍),(e)20日1200JSTの前18時間積算降水量 の分布(横田祥),(f)20日1200JSTの前24時間積算降水量の分布(中野満寿男),(g)20日1200 JSTの前21時間積算降水量の分布(林修吾),(h)20日0600JSTの前9時間積算降水量の分布(大泉 伝),(i)20日1200JSTの前18時間積算降水量の分布(伊藤純至),(j)20日1200JSTの前24時間積算 降水量の分布(大元和秀),(k)20日1200JSTの前24時間積算降水量(山浦剛・吉田龍二),(l)20 日0600JSTの前6時間積算降水量の分布(津口裕茂).単位は,すべて(mm).

めを述べる.

2. 広島豪雨の概要

2014年8月20日の未明から明け方にかけて,広島市 で集中豪雨が発生した(第1図a).広島県三入(ア メダス)では,最大3時間積算降水量で217.5mm (20日0430JST),最大1時間積算降水量で101.0mm (20日0400JST)を観測し,いずれも観測史上1位を 更新した。この豪雨によって,広島市内では大規模な 土砂災害が多数発生し,75名の尊い命が失われた。こ の豪雨は,線状降水帯が広島市付近に数時間停滞する ことでもたらされた。広島市付近の大気下層(高度1 km以下)には,豊後水道を通って多量の暖湿気塊が 流入していた。また,広島市付近は日本海上に停滞し ていた停滞前線の約300 km 南側に位置しており,大 集中豪雨が発生しやすい環境場であったと考えられ る.豪雨をもたらした線状降水帯は,広島県と山口県 の県境付近で次々と発生した積乱雲が南西から北東に 向かって複数個連なることで形成されていた(バック ビルディング型形成;Bluestein and Jain 1985).広 島豪雨については,現在も引き続き解析が行われてお り,今後,上記の見解が変わる可能性があることを付 け加えておく.

使用する気象モデルには,特に制限は設けなかった.計算開始時刻,積分時間,計算領域,水平格子間

気中層は非常に湿っていた(気象研究所 2014). さら に、四国地方の南海上には上空寒冷渦が存在していた

(廣田ほか 2015)、これらのことから、広島市付近は

隔,鉛直層数・格子間隔,初期値・境界値の種類は, 原則自由とした。ただし,初期値は,2014年8月20日 0000JST(日本標準時)以前のものを使用することと した。この時刻は,広島県三入(アメダス)におい て,強い降水が観測され始めた時刻(20日0130JST) の1.5時間前にあたる。また,境界値には解析値を使 用しても良いこととしたことから,厳密には"予測" 実験とはならない場合もある(このことから,"予測・ 再現"実験と記述している)。可能であれば,データ 同化やアンサンブルの手法を用いることも許容した。

4. 結果

本節では、本検討会の参加者から提出された結果の 特徴を発表順に紹介する。各参加者が使用した気象モ デルと実験手法の詳細については、付録を参照された い。参考として、各計算結果で得られた積算降水量の 図を第1図の(b)-(1)に示す(降水量の積算時間 は、各々のモデルの積分時間となっており、同一では ないことに注意).

水平格子間隔1kmのCReSSと初期値に気象庁メ ソ解析(20日0000JST)の組み合わせで実験を行っ た.また,初期値にレーダーの動径風を同化し,その 効果を調査した.同化を用いない実験では,最大積算 降水量は観測より少ないものの,実際の降水分布に近 い水平分布を再現できた.3次元変分法を用いたレー ダー動径風(国交省XバンドMPレーダー牛尾山・ 野貝原)の同化実験では,降水の位置は大きく変化し なかったものの,ピークの降水量が観測値に近づく結 果となった.問題として,実際には20日0600JSTに は豪雨は終了しているが,実験ではその時間以後も継 続的に雨が降り続き,降水の終わりを十分に再現でき ていなかったことを挙げておく.

(下瀬健一:第1図b)

CReSS を用いて,水平解像度及び数値粘性に対す る積算降水量の感度を調べた(加藤ほか 2015).強い 降水が開始した時刻の約4.5時間前(19日2100JST) の初期値を用い,水平格子間隔を0.5,0.75,1.0, 1.5,2,5kmと変化させた結果,最大積算降水量 と降水分布を精度よく再現するには1km以下の水平 格子間隔が必要であり,0.5kmの場合がもっとも優 れた再現性を示した。また,水平格子間隔を0.5km に設定して水平方向の数値粘性係数を0.25,0.5,1, 2倍に変化させた結果,再現された降水分布に大きな 違いは見られなかったものの,再現された最大積算降 水量は観測された最大積算降水量の101.7~135.2%で あり,33.5%の不確実性を持っていることがわかっ た. (加藤亮平:第1図 c)

気象庁55年長期再解析を初期値・境界値として, WRF-ARWを用いて3重(25,5,1km)にネスト した実験を行った。対象とする広島市付近ではある程 度の降水を表現することはできているものの,最大積 算降水量が100 mm以下となり,観測よりも非常に少 ない結果となった。(栃本英伍:第1図 d)

2重ネストした20メンバーのNHM-LETKF(水 平格子間隔15,5km)を用いて、気象庁メソ解析に同 化されている観測データと同様の観測データ(衛星 データと解析雨量を除く)を同化し、19日1800JSTの 解析値を作成した。この解析値を初期値として、水平 格子間隔 2 km の JMA-NHM による18時間予報を 行ったところ,広島市の降水は再現された。しかし, 降水量(132-133E, 34-35N で平均した18時間積算降 水量)は、気象庁メソ解析を初期値にした同様の実験 よりも少なかった。この降水量に対する19日1800JST の解析値の相関を、気象庁メソ解析にNHM-LETKF の摂動を加えた場を初期値としたアンサンブ ル予報の結果から計算すると,風上(広島の南西側) の下層の水蒸気量や気温についての相関が正であっ た. このことから,風上で水蒸気量が多く,気温が高 いほど降水量が多くなることが示唆された.また, NHM-LETKF 解析値の方が気象庁メソ解析より水 蒸気量は少なく,気温は低かった(観測データやメン バー数の不足などが原因と考えられる).以上のこと から,この豪雨の予測には、風上の水蒸気量や気温を 正しく与えることが重要と考えられる.

(横田 祥:第1図e)

水平格子間隔14kmのNICAMを用いて,19日 0900JSTのALERA2解析値(64メンバー)を初期値 とするアンサンブル実験を行ったところ,すべてのメ ンバーで広島付近の24時間積算降水量が10mm以下 であった。そこで,同時刻の気象庁全球解析に ALERA2の各メンバーから求めた摂動を加えた初期 値を用いてアンサンブル実験を行った。その結果,い くつかのメンバーが広島付近に100mm以上の大雨を 予測した。ALERA2と気象庁全球解析の可降水量に 大きな差は見られなかったが、下層(1000-850 hPa) の鉛直積算水蒸気量は九州・四国の南海上で気象庁全 球解析の方が多かった。 (中野満寿男:第1図 f)

4種類の異なる解析値(気象庁メソ解析,気象庁全 球解析,気象庁55年長期再解析,NCEP全球解析 FNL)を初期値・境界値に用いて,水平格子間隔1 kmのJMA-NHMを実行した。気象庁メソ解析およ びNCEP全球解析FNLを用いた実験では,いずれ も広島市付近で24時間積算降水量が200mmを超える 大雨を再現した。一方,気象庁全球解析および気象庁 55年長期再解析を用いた実験では,広島市付近の大雨 は全く再現されなかった。それぞれの解析値における 最下層の水蒸気量を比較すると,水蒸気の流入源にあ たる九州・四国南海上での水蒸気量が多いと再現に成 功し,少ないと再現に失敗していたことが明らかと なった。(林 修吾:第1図g)

「京|コンピューターに最適化した JMA-NHM を 用いて、旧LFM (気象庁局地モデル)領域 (1600 km×1100 km)を対象に、水平格子間隔を5 km、2 km, 500 m, 250 m として, 9 時間積分(初期時刻は 19日2100IST)を行った。初期値・境界値には、気象 庁メソ解析を用いた。水平格子間隔5kmの実験で は, 強い雨はほとんどあらわれなかった。水平格子間 隔2kmの実験では、豪雨をもたらした強い降水帯が 観測よりも北側に再現された。水平格子間隔500mと 250 mの実験では、観測に近い位置に強い降水帯が再 現された.本実験では、水平解像度が高いほど降水帯 の位置が良く再現された。広島市を中心とする200 km 四方を対象にネストした実験では、気象庁メソ解 析から直接計算した実験と同様に豪雨をもたらした降 水帯が再現されたが、観測されていない強雨域も再現 されていた.この結果から、ネスト実験でもある程度 広い領域を確保することが重要であると考えられる. (大泉 伝:第1図h)

使用したモデルは,JMA-NHM である.水平格子 間隔は,本検討会の中で最も細かい90 m に設定した. 地形は,国土地理院の50 m メッシュデータを利用し, モデルへの地形導入時のスムージングを弱め,なるべ く現実的な斜度を保つようにした.このような地形を 利用した場合でも,本事例の再現実験が実行可能で あったことはひとつの収穫であった.広島市付近であ る程度の降水量はあったものの,現実的な降水の集中 はまったくみられなかった.この要因の一つとして, 初期値・境界値に気象庁メソ解析(19日1800JST)を そのまま利用し,単に狭い計算領域(水平90 km×90 km)へ直接ネストするナイーブな手法であったためと 考えられる.また,他の参加者の結果と比較すると, 高解像度であるにも関わらず,降水量の空間分布のば らつきは小さかった.より観測に近い結果を得るため には,計算領域側面付近での乱れの生成やネストの手 順等の検討が必要である.(伊藤純至:第1図i)

使用したモデルは、WRF-ARW である。初期値・ 境界値として気象庁メソ解析と NCEP 全球解析 FNL を用い、3重ネスティング(水平格子間隔は外側から 10 km,2 km,500 m)をした再現実験を行った。そ の結果、線状降水帯の発生や一時的な発達は再現でき た。しかし、再現された降水帯は長時間持続せず、積 算降水量の最大値も72.9 mmと再現性は乏しかった。 (大元和秀:第1図j)

SCALE モデルを用いて再現実験を行った. SCALE モデル (http://scale.aics.riken.jp/ (2016.1.1閲覧))は、理化学研究所計算科学研究機構 で研究開発を進めている領域気象気候モデルである。 親モデルのデータに対する感度を調べるために、初期 値・境界値として気象庁メソ解析,および NCEP 全 球解析 FNL の2種類のデータを用いた。また,格子 設定は格子幅に対する感度を調べるためにいくつかの 設定を試し,気象庁メソ解析の場合は水平格子間隔が 最小で500m,鉛直層数は150層とし,NCEP全球解 析 FNL の場合は水平格子間隔が最小で1km,鉛直 層数は80層とした、いずれの場合も、実際に降水が観 測された時刻付近に広島市付近において降水が再現さ れた.しかし、24時間積算降水量でみると降水量は過 少であり,降水帯の発生位置が現実より北東側へずれ ていた. 鉛直層数を増やすと、降水量はそれほど変化 しなかったが,わずかながら発生時刻や位置に対する 改善が見られた.気象庁メソ解析の場合は、計算開始 時刻を変更することで総降水量の変化がみられた、大 別して,広島県から島根県へかけて降水がある多雨 ケースと、広島市付近でだけ降水がある少雨ケースに 分けられた. 少雨ケースでは、特に停滞性が弱くなる 傾向が見られた。一方,NCEP 全球解析 FNL の場合

には、計算開始時刻に対する感度は小さかった。 (山浦 剛・吉田龍二:第1図k)

JMA-NHMを用いて、気象庁メソ解析から力学的 ダウンスケール実験を行った。同一の初期値(20日 0000JST)・境界値、同一の物理過程を用いて、複数 の水平格子間隔(1km,500m,250m,125m)に よる計算を行った。もっとも観測に近かったのは、水 平格子間隔500mの結果であった。今回の実験では、 水平格子間隔を500mより細かくしても、積算降水量 や線状降水帯の表現に大きな差異はあらわれなかっ た。それどころか、水平格子間隔を細かくすることは 領域内最大積算降水量の減少をもたらすとともに、線 状降水帯の位置を北東方向にやや移動させる結果と なった。(津口裕茂:第1図1)

5. 全体のまとめ

2014年8月20日に発生した広島豪雨について,さま ざまな気象モデルを用いて,多種多様な手法による予 測・再現実験を行った。それぞれの気象モデルの予 測・再現結果については、20日1200JSTの前24時間積 算降水量(第1図a)と各気象モデルの積分時間内の 全積算降水量を比較することで確認した。それぞれの 結果を相互に比較することで,普段はあまり認識する ことができない個々のモデル・手法の優位性や問題点 を確認することができたと考えている。本来であれ ば,予測・再現された環境場の解析や線状降水帯の詳 細な構造等の比較を入念に行うべきであるが,時間の 関係上,それらについてはあまり深い検討を行うこと ができなかった。これらの点については、今後の個別 の調査・研究に委ねたい。

本検討会の試みが、今後の各自のモデル開発や研究 に少しでも役立つことを願っている.

謝 辞

「2014年広島豪雨に関する予測検討会」の参加者 (発表者・聴講者)には、有益な質問・意見を数多く 頂きました。深く感謝します。

国交省 X バンド MP レーダーデータについては, 国交省「X バンド MP レーダーに関する技術開発コ ンソーシアム」よりデータの提供を受けました.(下 瀬健一)

気象庁全球解析の解析値は,京都大学生存圏データ ベースより取得しました.モデルの計算には,地球シ ミュレーターを用いました。(中野満寿男)

SCALE モデルの計算結果は,理化学研究所のスー パーコンピューター「京」を利用して得られたもので す.(山浦 剛・吉田龍二)

略語一覧

- AFES-LETKF: AGCM for Earth Simulator Local Ensemble Transform Kalman Filter
- ALERA2: AFES-LETKF Experimental Ensemble Reanalysis 2
- CReSS: Cloud Resolving Storm Simulator
- JMA-NHM: Japan Meteorological Agency Nonhydrostatic Model
- $MP \ \nu \mathscr{I} : Multi Parameter \ \nu \mathscr{I} -$
- MYNN: Mellor-Yamada-Nakanishi-Niino Model
- NHM-LETKF: Nonhydrostatic Model (JMA-
- NHM) Local Ensemble Transform Kalman Filter NICAM: Nonhydrostatic Icosahedral Atmospheric Model
- NSW6: NICAM Single-Moment Water 6
- SCALE: Scalable Computing for Advanced Library and Environment
- WRF-ARW: Weather Research and Forecasting Model - Advanced Research WRF
- WSM6: WRF Single-Moment 6-Class Microphysics Scheme
- YSU: Yonsei University Planetary Boundary Layer Scheme

参考文献

- Bluestein, H. B. and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711– 1732.
- Enomoto, T., T. Miyoshi, Q. Moteki, J. Inoue, M. Hattori, A. Kuwano-Yoshida, N. Komori and S. Yamane, 2013: Observing-system research and ensemble data assimilation at JAMSTEC. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) (S. K. Park and L. Xu ed.), Springer, 509-526.
- 廣田渚郎,高藪 縁,加藤雅也,荒金 匠,2015:平成26 年8月広島豪雨に対するARと上層渦の役割.日本気 象学会2015年度春季大会講演予稿集,B459.
- 加藤亮平,下瀬健一,清水慎吾,2016:雲解像数値モデル による2014年広島豪雨の予測可能性一水平解像度と数値 粘性に対する感度一.防災科学技術研究所研究報告, (82),1-16.

99

100

- 気象研究所,2014:平成26年8月20日の広島市での大雨の 発生要因〜線状降水帯の停滞と豊後水道での水蒸気の蓄 積〜.気象研究所報道発表資料.http://www.mrijma.go.jp/Topics/H26/260909/Press_140820hiro shima heavyrainfall.html (2016.1.1閲覧)
- Kunii, M., 2014: Mesoscale data assimilation for a local severe rainfall event with the NHM-LETKF system. Wea. Forecasting, 29, 1093-1105.
- Nishizawa, S., H. Yashiro, Y. Sato, Y. Miyamoto and H. Tomita, 2015: Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev., **8**, 3393-3419.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 1266–1298.
- Sato Y., S. Nishizawa, H. Yashiro, Y. Miyamoto, Y. Kajikawa and H. Tomita, 2015: Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation? Prog. Earth Planet. Sci., 2, 23, doi: 10.1186/s40645-015-0053-6.

Satoh, M., H. Tomita, H. Yashiro, H. Miura, C. Kodama, T. Seiki, A. T. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa, M. Hara, T. Ohno, S. Iga, T. Arakawa, T. Inoue and H. Kubokawa, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.

下瀬健一,津口裕茂,栃本英伍,鵜沼 昂,加藤亮平, 2016:第2回メソ気象セミナー開催報告.天気,63, 125-129.

- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, 113pp.
- Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, **86A**, 121–142.
- Tsuboki, K. and A. Sakakibara, 2007: Numerical prediction of high-impact weather systems. The textbook for Seventeenth IHP Training Course in 2007, 281pp.

付 録

ここには,各参加者が使用した気象モデル,実験手法, 及び主な計算設定と物理過程について記述する. 【下瀬健一】

```
モデル:CReSS(Tsuboki and Sakakibara 2007)
実験手法:
```

レーダー動径風(牛尾山・野貝原の国交省Xバンド MP レーダー)の3次元変分法同化実験

設定: 水平格子間隔:1km 鉛直層数:50層

計算領域:440 km×440 km

物理過程:

積雲対流パラメタリゼーション:無し

雲物理過程:3iceバルク法(氷相のみ2モーメント)

境界層過程:乱流運動エネルギーを用いた1.5次クロー ジャー

初期値・境界値:

気象庁メソ解析(2014年8月20日0000JST)

積算降水量:

2014年8月20日1200JSTの前12時間積算降水量.3次 元変分法による同化を行った2014年8月20日0000JST の初期値を用いた計算結果(第1図b).

【加藤亮平】

モデル: CReSS (Tsuboki and Sakakibara 2007) 実験手法: さまざまな水平格子間隔での実験と水平方向の数値粘性 係数を0.25, 0.5, 1, 2倍に変更(水平格子間隔は0.5 km)した実験.

設定:

水平格子間隔:0.5, 0.75, 1, 1.5, 2, 5 km 鉛直層数:50層

計算領域:600 km×600 km

物理過程:

積雲対流パラメタリゼーション:無し

雲物理過程:3iceバルク法(氷相のみ2モーメント)

乱流過程:乱流運動エネルギーを用いた1.5次クロー ジャー

初期値・境界値:

気象庁メソ解析(2014年8月19日2100JST)

積算降水量: 2014年 8 月20日1200JST の前15時間積算降水量。水平

格子間隔0.5 km,数値粘性係数1倍の場合の計算結果 (第1図 c).

【栃本英伍】

モデル:WRF-ARW (Skamarock *et al.* 2008) 実験手法: 3重ネスト-2way 設定:

水平格子間隔:25,5,1km 鉛直層数:40層 計算領域: 3500 km×3500 km (25 km), 1300 km× $1150 \text{ km} (5 \text{ km}), 286 \text{ km} \times 261 \text{ km} (1 \text{ km})$ 物理過程: 積雲対流パラメタリゼーション:25,5kmのみKain-Fritsch スキーム、1km は無し 雲物理過程:WSM6 境界層過程:MYNN2.5 初期值•境界值: 気象庁55年長期再解析 25 km: 2014年8月18日0300JST 5 km: 2014年8月19日0900JST 1 km: 2014年8月19日0900 IST 積算降水量: 2014年8月20日1200JSTの前24時間積算降水量。最内 側の水平格子間隔1kmの計算結果(第1図d)。

【横田 祥】 モデル:JMA-NHM (Saito *et al.* 2006) 実験手法: NHM-LETKF (Kunii 2014)を用いたアンサンブル同 化・予報実験 設定: 水平格子間隔:2km 鉛直層数:50層 計算領域:800 km×800 km 物理過程: 積雲対流パラメタリゼーション:無し

*1 NHM-LETKFの設定 水平格子間隔:親15 km,子5 km 鉛直層数:親・子ともに50層 計算領域:親1200 km×1200 km,子1000 km×1000 km メンバー数:20 予報解析サイクル開始時刻:親2014年8月17日0900JST, 子2014年8月19日0900JST 同化データ:親・子とも1時間間隔の地上観測(気圧),ラ ジオゾンデ観測(風・気温・湿度),航空機観測(風・気 温), ウィンドプロファイラ観測(風), レーダー観測 (動径風·湿度), GNSS 観測(可降水量) 同化ウインドウ:親6時間,子3時間 水平局所化半径:親200 km,子100 km 誤差共分散膨張:親・子ともに予報誤差摂動を1.05倍 物理過程: 積雲対流パラメタリゼーション:親・子ともにKain-Fritsch スキーム 雲物理過程:親・子ともに3 ice バルク法(1モーメン ト) 境界層過程:親・子ともに MYNN3 初期値・境界値:気象庁全球予報+気象庁週間アンサンブ ル予報の摂動(6時間間隔)

```
境界層過程:MYNN3
初期值:
 気象庁メソ解析+NHM-LETKF*1による摂動(2014年
 8月19日1800IST)
境界值:
 上記初期値からの延長予報*2
積算降水量:
 2014年8月20日1200ISTの前18時間積算降水量。"気象
 庁メソ解析に NHM-LETKF の摂動を加えた場"を初
 期値としたアンサンブル予報のうち,広島市付近で最も
 18時間積算降水量の多かったメンバーの計算結果(第1
 図 e)
【中野満寿男】
モデル: NICAM (Satoh et al. 2014)
実験手法:
 気象庁全球解析と ALERA2 (Enomoto et al. 2013) を
 用いたアンサンブル予報
設定:
 水平格子間隔:14 km
 鉛直層数:38層
 計算領域:全球
物理過程:
 積雲対流パラメタリゼーション:無し
 雲物理過程:NSW6 (Tomita 2008)
 境界層過程:MYNN2
初期值:
 ALERA2 (64メンバー),気象庁全球解析(京都大学生
 存圏データベースより取得)+ALERA2から求めた摂
 動(64メンバー)
積算降水量:
 2014年8月20日1200JSTの前24時間積算降水量。"気象
 庁全球解析+ALERA2から求めた摂動"を初期値とし
 たアンサンブル予報のうち、広島付近に前24時間積算降
 水量で100mm以上を予想したメンバーの例(第1図f).
【林 修吾】
モデル: IMA-NHM (Saito et al. 2006)
実験手法:
```

雲物理過程:3iceバルク法(氷相のみ2モーメント)

*	2	延長予報	の設	定
	水	、平格子間	膈:	5 km
	釕	`直層数:	50層	
	늵	算領域:	1000	km×1000 km
	牧	」理過程:		
		積雲対流	パラ	メタリゼーション:Kain-Fritsch スキーム
		雲物理過	程:	3 ice バルク法(氷相のみ 2 モーメント)
		境界層過	程:	MYNN3
	境	5界值: 気	象庁	全球予報(1時間間隔)

101

複数の初期値・境界値の利用 設定: 水平格子間隔:1km

鉛直層数:50層 計算領域:800 km×800 km

物理過程:

積雲対流パラメタリゼーション:無し

雲物理過程:3 ice バルク法(氷相のみ2モーメント) 境界層過程:MYNN3

```
初期值•境界值:
```

- ・親モデルの初期時刻は、全て2014年8月19日0900 IST
- ・気象庁メソ解析(水平格子間隔5kmモデル面デー タ):3時間毎に境界値を与え、水平格子間隔1km の JMA-NHM を直接実行.
- 気象庁全球解析(水平解像度約20kmモデル面デー) タ):6時間毎に境界値を与え、水平格子間隔5km のJMA-NHM を実行し、3時間後のデータから毎 時境界値を与え、水平格子間隔1kmのJMA-NHM をダウンスケール実行。
- ・気象庁55年長期再解析(水平解像度約55kmモデル 面データ):6時間毎に境界値を与え、水平格子間隔 5 km の IMA-NHM を実行し、3 時間後のデータか ら毎時境界値を与え、水平格子間隔1kmのJMA-NHM をダウンスケール実行.
- ・NCEP 全球解析 FNL(水平解像度1度気圧面デー タ):6時間毎に境界値を与え、水平格子間隔20km のJMA-NHM を実行し、3 時間後のデータから水 平格子間隔5kmのJMA-NHM を実行し、その結果 を用いてさらに3時間後から毎時境界値を与え,水平 格子間隔1kmのJMA-NHMのダウンスケール実 行.

積算降水量:

2014年8月20日1200JSTの前21時間積算降水量。初期 値・境界値に NCEP 全球解析 FNL を用いた水平格子 間隔1kmの計算結果(第1図g).

【大泉 伝】

モデル: IMA-NHM (Saito et al. 2006) 実験手法: 旧LFM (気象庁局地モデル)領域 (1600 km×1100 km) を対象とした高解像度実験 設定: 水平格子間隔: 5 km, 2 km, 500 m, 250 m 鉛直層数:50層(5km),60層(2km),85層(500 m), 168層 (250 m) 計算領域:1600 km×1100 km 物理過程:

積雲対流パラメタリゼーション:5kmのみKain-Frit-

```
sch スキーム,他は無し
 雲物理過程:3iceバルク法(氷相のみ2モーメント)
 境界層過程: MYNN3, Deardorff スキーム
初期值•境界值:
 気象庁メソ解析(2014年8月19日2100JST)
2014年8月20日0600JSTの前9時間積算降水量。水平
 格子間隔500mの計算結果(第1図h).
```

【伊藤純至】

モデル: JMA-NHM (Saito et al. 2006) 実験手法: 高解像度実験 設定: 水平格子間隔:90 m 鉛直層数:50層 計算領域: 90 km×90 km 物理過程: 積雲対流パラメタリゼーション:無し 雲物理過程:3iceバルク法(氷相のみ2モーメント) 境界層過程:Deardorff スキーム

地形データ:国土地理院50mメッシュデータを使用。 モデル内地形のスムージング時、斜度の制限を標準的な 設定より緩め、より現実の地形に近くした.

初期值•境界值:

気象庁メソ解析(2014年8月19日1800IST)

```
積算降水量:
```

2014年8月20日0600JSTの前18時間積算降水量。水平 格子間隔90mの計算結果(第1図i)。

【大元和秀】

モデル:WRF-ARW (Skamarock et al. 2008) 実験手法: 3重ネスト 設定: 水平解像度:10 km, 2 km, 500 m 鉛直層数:51層 計算領域: 2000 km×2000 km (10 km), 530 km×640 km (2 km), $192 \text{ km} \times 234 \text{ km}$ (500 m) 物理過程 積雲対流パラメタリゼーション:10kmのみKain-Fritsch スキーム, 2 km, 500 m は無し 雲物理過程:WSM6 境界層過程:YSU 初期值·境界值: 気象庁メソ解析・NCEP 全球解析 FNL (2014年8月19 日0900JST) 積算降水量:

2014年8月20日1200ISTの前24時間積算降水量。最内 (第1図k). 側の水平格子間隔500mの計算結果(第1図i)。 【津口裕茂】 【山浦 剛・吉田龍二】 モデル: JMA-NHM (Saito et al. 2006) モデル: SCALE モデル (Nishizawa et al. 2015; Sato et 実験手法: al. 2015) 初期値・境界値と物理過程を統一したさまざまな水平格 子間隔によるダウンスケール実験 実験手法: 初期値・境界値の変更、水平・鉛直格子間隔の変更、計 設定: 算開始時刻の変更 水平格子間隔: 1 km, 500 m, 250 m, 125 m 設定: 鉛直層数:50層 初期値・境界値が気象庁メソ解析の場合 計算領域: 375 km×300 km 水平格子間隔:最小500m,2段オンラインネスティ 物理過程: ング 積雲対流パラメタリゼーション:無し 鉛直層数:最大150層 雲物理過程:3iceバルク法(氷相のみ2モーメント) ・初期値・境界値が NCEP 全球解析 FNL の場合 境界層過程:Deardorff スキーム 初期值•境界值: 水平格子間隔:最小1km,3段オンラインネスティ ング 気象庁メソ解析を初期値・境界値(2014年8月19日1800 鉛直層数:最大80層 JST)として水平格子間隔 5 kmの JMA-NHM (5 物理過程: km-NHM)を実行.5km-NHMのFT=3を初期 積雲対流パラメタリゼーション:無し 値・境界値(19日2100JST)として水平格子間隔1km 雲物理過程:NSW6 (Tomita 2008) のJMA-NHM (1km-NHM) を実行。1km-NHM 境界層過程:MYNN2.5 の FT = 3 を初期値・境界値(20日0000JST)とする。 初期值•境界值: 積算降水量: 気象庁メソ解析, NCEP 全球解析 FNL 2014年8月20日0600JSTの前6時間積算降水量。水平 積算降水量: 格子間隔500mの結果(第1図1). 2014年8月20日1200ISTの前24時間積算降水量、気象 庁メソ解析を初期値とした水平格子間隔500mの結果