エルニーニョ現象と太平洋赤道域の西風について

——エルニーニョ現象 1997／98をふりかえる——

気象庁 気候•海洋気象部 エルニーニョ監視予報センター
栗原 和夫

1．はじめに

1997 年春に発生し，1998 年夏に終息したエルニーニョ現象は，非常に顕著なものであ った。このエルニーニョ現象に関しては，発生と同時にマスコミによって大きく報じられ，当センターには期間中に900件以上もの問い合わせや取材が相次いだ。これを契機として， これまで一般にはあまり知られていなかったエルニーニョ現象が，津々浦々にまで知られ るようになった感がある。

それと同時に，エルニーニョ監視予報センターでは海洋データ同化システム（Ocean Data Assimilation System：0DAS，吉川と石井，1994，吉川，1997，石井，1997，Kimoto et al．， 1997）が，平成 7 年から業務化されており，初めて現象時の海洋の 3 次元構造がリアルタ イムに明瞭に捕らえることができたという点でも，今回のエルニー二ョ現象は興味深いも のであった。

ここでは，エルニーニョ現象 1997／98 の発生から発達，裏弱に至るまでをふりかえり， ODAS などのデータに見られた特徴について解説を行う。またエルニーニョ現象では，海洋と大気の風との相互作用が現象の発生，維持に大きな影響を及ぼすが，エルニーニョ現象における西風について，数値モデルを用いて調べた結果を示す。

2．エルニーニョ現象 1997／98 の概要

エルニーニョ現象 1997／98 は，1997年春に始まり，1998 年夏に終息した。このエルニ

図1 エルニーニョ監視海域（B海域）

図2 B海域における月平均海面水温平年偏差時系列図太線は5か月移動平均を表す。

図3 3 か月平均海面水温平年偏差。
等値線は $1{ }^{\circ}$ Cごと。点線の等值線は負偏差を表す

ーニョ現象はこれまでの ものに比べて海面水温の偏差等が大きかった。エ ルニーニョ監視予報セン ターで監視海域としてい る B 海域（図1）におけ る海面水温平年偏差の時間変化を図 2 に示す。B海域では1997年5月頃 から値が急激に上昇し， 11 月には月平均平年偏差が $+3.6^{\circ} \mathrm{C}$ を記録して， データが整備された 1949 年以降最大となっ た。月平均の海面水温も， 1998年3月に $29.0^{\circ} \mathrm{C}$ と なり，1949 年以降第 1位の記録になっている。

1996年12月から1998年 8 月までの 3 か月平均海面水温平年偏差（図 3）を示す。1996年12月～1997年2月の太平洋熱帯域では，東部で負偏差，西部で正偏差とな っている。1997年6月 ～8月にはこれが逆転し，東部•中部太平洋赤道域 はほぼ正偏差になってお り，$+1^{\circ} \mathrm{C}$ 以上の正偏差域 が 170° W付近から南米

沿岸までおおっている。正偏差の値は南米沿岸で高く，$+3^{\circ}$ C以上の海域も見られる。正偏差の値は次第に大きくなり，B 海域の海面水温偏差の値が最大に近い1997年9月～11月 では $+4^{\circ} \mathrm{C}$ 以上の海域が 110° Wから南米沿岸にまで広がった。その後，正偏差の値は減少 し，1998年6月～8月になると 160° Wから 120° W付近に -1° C以下の負偏差域が現れて， エルニーニョ現象は終息した。

図4 月平均海面水温（上）1996年12月と（下）1997年12月。等値線は $1^{\circ} \mathrm{C}$ ごと。
海面水温の偏差が最大に近い1997年12月の月平均海面水温（図4下）では，海面水温 $28^{\circ} \mathrm{C}$ 以上の海域が，太平洋赤道付近全体に広がつている。一方，1997年12月～1998年2月の 3 か月平均の偏差で見ると（図 3），$+2^{\circ} \mathrm{C}$ 以上の海域が南米沿岸から 160° Wにまで のびている。海面水温で見ると赤道上はほぼ一様な水温なのに，東部太平洋赤道域で強い正偏差になつているのは，通常，この領域の海面水温が低いためである。図4上に示した エルニーニョ現象の起こる前の1996年12月の月平均海面水温で見ると，エルニーニョ現象の発生していない時期には低海面水温域が赤道に沿って南米沿岸から西に向かってのび ている様子がわかる。このようにエルニーニョ現象時には，太平洋赤道域の海面水温は，東西方向に一様に近くなる。

赤道における海面水温偏差の時間－経度断面図を図5に示す。1997年4月に，日付変更線付近より東の海域で，海面水温偏差が $+0.5^{\circ} \mathrm{C}$ 以上になった後，正偏差の値が増大した。南米沿岸付近では，それより少し早く，3月頃に海面水温が増大し始めた。正偏差は東部太平洋で急速に増大し，7月には $+4^{\circ} \mathrm{C}$ の正偏差域も現れ始めた。日付変更線付近から 120° W付近の海域では，正偏差は徐々に大きくなり，1997年秋に最大になった。日付変更線以東の正偏差は1998年にはいると減少し始め，1998年5月には120․ 以西で負偏差にな るが，南米沿岸では1998年秋まで正の値を維持している。

図5 太平洋の赤道に沿った（左）海面水温および（右）偏差の時間－経度断面図。
等値線は $1^{\circ} \mathrm{C}$（左）， $0.5^{\circ} \mathrm{C}$（右）こと。海面水温の図（左）で陰影は $28^{\circ} \mathrm{C}$ 以上，点彩は $23^{\circ} \mathrm{C}$ 以下の領域，偏差の図（右）では陰影は $+0.5^{\circ} \mathrm{C}$ 以上，点彩は $-0.5^{\circ} \mathrm{C}$ 以下の領域を表す。

SOUTHERN OSCILLATION（SOI，SLP ANOMALY）

SOI

図6 大気の各指数の時系列図。
（上段）南方掁動指数（SOI）。（中段） 850 hPa の東西風の指数。正は西風の強まりに対応する。
（下段）高層雲量の指数。正は雲量が多い場合を表す。太楾は5か月移動平均，乿影はエルニーニ ヨ現象の傾向を表す。

このような海面水温の変動は，貿易風の変動とも関連がある。通常は太平洋赤道域では，貿易風の東風が吹いているが，エルニーニョ現象期間中には貿易風が弱い。貿易風の強さ の目安である南方振動指数は，エルニーニョ現象の発生する少し前の1997年3月に正偏

差から責偏差に変わり，この負偏差はエルニーニョ現象期間の1998年4月まで続いてい た（図6上段）。 850 hPa 赤道上の東西風指数で見ると， 3 月ころから西部太平洋（U850－WP） で， 5 月ころから中部太平洋（ $\mathrm{U} 850-\mathrm{CP}$ ）でそれまでの東風偏差が，西風偏差へと変化し，南方振動指数と同じ1998年4月まで西風偏差が持続した（図6中段）。

貿易風の変動は，熱帯域の対流活動の変化と結びついている。図6下段に海洋大陸付近 と，日付変更線付近の上層雲量指数の時系列を示す。エルニーニョ現象の発生とともに西部太平洋の海洋大陸付近での上層雲量指数（HCLD－MC）が滅少し，日付変更線付近の上層雲量指数（HCLD－DL）が増大していたことがわかる。日付変更線付近では，1998年に入るとほ ほ平年並みに戻り，海洋大陸付近では，1998年6月に平年並みに戻った。

3．海面下の状況

3． 1 表層水温

図7はODAS によって得られた，エルニーニョ現象発生前の1996年12月から3か月ご との赤道に沿った太平洋表層における月平均水温の鈖直断面を示したものである。1996年12月には西部太平洋の海面付近に，暖かく，かつ鋁直方向に水温の変化の小さい海水 からなる暖水層がある。最大値は $28^{\circ} \mathrm{C}$ 以上になる。その下の深さ 100 m から 250 m 付近で は，水温の急に変化する層（水温䠰層）があり，躍層下では水温が低くなっている。一方，同じ月の東部太平洋では海面付近の水温は西部に比べて低く，罹層は浅い。これは貿易風 の東風による西向き応力のために，深い層からの涌昇が起こるとともに，躍層が浅くなり，海面付近の層の水温が低下していることを表していると考えられる。
1997年4月以降，東部太平洋では，水温が上昇するとともに躍層より上の暖かい層の厚みが增した。一方，西部では，1997年6月頃から，躍層以浅の暖水層の厚さが薄くな り，同時に， $28^{\circ} \mathrm{C}$ 以上の領域が東に向かってひろがった。B 海域の月平堄海面水温偏差が最大に近い 12 月には暖水層の厚さは太平洋赤道域全域でほぼ一様になり， 100 m から 200 m前後になっているように見える。また海面付近の水温の東西方向の傾度が小さくなった。東西方向に一樣な水温分布は，海面水温の平面分布図でも見ることができ，エルニーニョ現象は，太平洋赤道域の海面水温，表層の水温，躍層の深さなどの構造が東西方向に一様 になる現象であることがわかる。
B 海域の月平均海面水温偏差が減少しつつある1998年3月になると，東部では水温躍層が再び浅くなった。しかし，海面近くでは $28^{\circ} \mathrm{C}$ 以上の高い水温の層が残っている。こ れはごく薄い層であるが，貿易風の強まった 5 月末まで残っていた。中部太平洋において は， 3 月には表層の水温は $28^{\circ} \mathrm{C}$ 以下になり，低下し始めた。一方，西部においては躍層の深さが次第に深くなり始めた。6月にはエルニーニョ現象はほとんど終息し，躍層の深さ は発生前に比べ全般に薄くなっているが，西部で深く，東部で浅くなり，エルニーニョ現象発生前の状態に近くなった（図略）。

図7 海洋データ同化システム（ODAS）により得ら れた赤道に沿った月平均表層水温の鉛直断面図

維軸は深さ（m），撗軸は経度を表す。等値線 は $1{ }^{\circ} \mathrm{C}$ こと。 $28^{\circ} \mathrm{C}$ 以上を謴い陰影， $20^{\circ} \mathrm{C}$ 以上 を薄い陰影で示した。

図 8 赤道に沿った月平均表層水温の偏差の鉛直断面図
等値線は $1^{\circ} \mathrm{C}$ こと。 $+1^{\circ} \mathrm{C}$ 以上を瀑い陰影，$-1^{\circ} \mathrm{C}$ 以下を薄い陰影で示し た。

3． 2 水温の平年偏差

図8の水温の平年偏差で見ると，発生前の1996年12月には，太平洋西部から中部の 150° W以西の深さ 250 m 以浅で，最大 $+3^{\circ} \mathrm{C}$ 程度の正偏差が現れた。値は，海面よりも海中で大 きい。この偏差の極大域は水温躍層付近の深さに位置し，この正偏差は，躍層の深さが平年に比べて深まったために現れている。つまり，この正偏差の層の厚さだけ暖水の層が平年に比べ厚くなっており，この海域に暖水が平年より多く蓄えられていたことになる。

この正偏差は1997年3月まで西部太平洋に残っていた。一方南米沖の 90° W付近には， 12 月末に西部太平洋で励起された Kelvin 波の東進（詳しくは 4 節参照）の名残と思われ る $+1^{\circ} \mathrm{C}$ 以上の正偏差が 1997 年 3 月頃に現れた。

その後4月から，西部にあった正偏差は急激に東部へ広がって行き，5月には強い正偏差域が南米沿岸に達した（図略）。 5 月から 6 月にかけて，正偏差の領域は，西部を除い て，太平洋表層の大部分に広がった。その大きさも 6 月では最大 $+6^{\circ} \mathrm{C}$ 程度になっている。 この正偏差域は，5月ころから東部で海面に現れた。海面での $+1^{\circ} \mathrm{C}$ 以上の正偏差域は，次 に，急速に西に向かって広がり，6月には 170° Wに至った。この状況は図 3 の 3 か月平均海面水温偏差とも一致する。この正偏差は，最盛期の 12 月には 100 m 付近の深さを中心 に強まった。それ以後この正偏差域は，次第に東部太平洋の海面付近に縮小し，厚さも薄 くなった。
その間，1997年9月ころから西部太平洋の深さ 150 m 付近を中心として，負偏差域が明瞭になった。負偏差は図7 で見える水温躍層付近に現れた。これは躍層が浅まって，この深さが躍層下の冷水の頒域に入ったためである。この負偏差域も，正偏差と同じように，海面下を東に向かって伝搬して行く。1997年12月には－ $1^{\circ} \mathrm{C}$ 以上の負偏差域は 120° Wに， 1998年3月には 105° ㅍ 付近に到達した。この後，負偏差域は海面に近づき，貿易風の強まった 1998 年 5 月下旬には表面に現れて，エルニーニョ現象は終息した。

4．海洋貯熱量の変動と東西風

この節では海洋貯熱量（Ocean Heat Content：OHC）の変動と東西風について発生期，最盛期，衰弱期等に分けて述べることにする。海洋貯熱量は海面から 260 m 深までの表層水の熱量を温度に換算した量（海面から 260 m 深までの平均水温とほぼ等しい）と定義し ているが，表層における暖水層の厚さと関連していて，エルニーニョ現象に伴う海洋の変動をとらえやすい。発生期は1996年12月から1997年6月頃まで，最盛期はB海域の月平均海面水温偏差が最大になる1997年11，12月頃，衰弱期は1998年1月から6月頃を指すことにするが，このような段階分けは，便宜的なものである。

4． 1 エルニーニョ現象発生期

エルニーニョ現象はいつ頃からその兆候が現れ，どのように変動しているのであろうか。図9右に太平洋の赤道に沿った海洋貯熱量（ OHC ）の平年偏差の時間－経度断面図を示した。 この図から，1997年1月頃に，太平洋西部， $150^{\circ} \mathrm{E}$ 付近で励起された 0 HC 正偏差域が，

図9 赤道に沿った，風応力の東西成分（左）と海洋詝熱量（OHC：右）の偏差の時間－経度断面図。左図の等値線は $0.02 \mathrm{~N} / \mathrm{m}^{2}$ こと。 $+0.02 \mathrm{~N} / \mathrm{m}^{2}$ 以上は陰影で，$-0.02 \mathrm{~N} / \mathrm{m}^{2}$ 以下は点彩で表した。右図の等値線は $0.5^{\circ} \mathrm{C}$ こと。 $+0.5^{\circ} \mathrm{C}$ 以上は陰影，$-0.5^{\circ} \mathrm{C}$ 以下は点彩で示した。

それまで負偏差域だった太平洋東部へと東向きに伝搬している様子が見られる。これは Kelvin 波の伝搬によるものである。このような伝搬はそれ以前にもなくはないが，ごく弱いものであった。しかし，1月の 0 HC の正偏差の伝搬に伴い， 0 HC 平年偏差の $0^{\circ} \mathrm{C}$ の等值線の動きから見られるように，正偏差域が弱いながらも中部•東部太平洋に広がり始め ている様子が見える。強い正偏差が現れるのは，3月に $150^{\circ} \mathrm{E}$ 付近で励起されたKelvin波の伝搬以後である。この伝搬とほぼ同じ時期の 4 月に太平洋中部で海面水温にも正偏差 が現れ始めた（図 5）。南米沿岸でも 3 月に海面水温の正偏差が明暸になり始めているが， これはちょうど 1 月に西部で励起された弱い Kelvin 波が南米浻岸に到達する時期と同じ頃になる。この後も Kelvin 波が 4 から 6 月に西部太平洋付近で次々と励起されて，それ ぞれ東に伝搬している。これに伴い，日付変更線以東の中部，東部太平洋では 0 HC の正偏差の値が時間と共に増大した。

同じ図 9 左に，太平洋の赤道に沿った海面の風応力東西成分の時間－経度断面図を同時 に示した。OHC の正偏差が励起されたのと同じ時期に，ほぼ同じ場所で強い東向き応力（西風に対応）が現れている。これは強い西風バーストが発生したことに対応する。強い東向 き応力により励起された Kelvin 波は，中部•東部太平洋の継続的な西向き応力の領域内 をほぼ一定の速度で伝搬し，南米にまで達している。一方，中部，東部太平洋においては， それまで継続的に明暸な西向き応力の場（東風に対応）であったのに，1997年1月，3月 の西部における西風バーストに伴う東向き応力の発生と，その後の明膫な OHC 正偏差の伝搬と共に，この継続的な西向き応力場が弱まっている。

図10 1996年12月における（上）月平均850hPa高度および風ベクトルと（下）流線関数平年偏差と風平年偏差ベクトル。
上図の高度の等値線は 20 m （ 1400 m 以上）， $100 \mathrm{~m}(1400 \mathrm{~m}$ 以下）ことと。下図の流線関数偏差の等値線 は $2 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}$ こと。

西部（ $150^{\circ} \mathrm{E}$ 付近）での，西風バーストに伴う強い東向き応力の発生は，4月から6月 ころまでの間に何回か起こっている。先に述べた OHC 正偏差域に見られる Kelvin 波の励起は，この強い東向き応力の発生時期と場所とに対応が見られ，相互に密接に関連してい ることがわかる。
1996年12月以降，西風バーストが何回か起こっているのは，この期間に大規模場が西風バースト発生に適していたと考えられる。ここでは西風パーストの発生時の大規模場を月平均の平年偏差図で見る。図 10 はエルニーニョ現象の発生する直前の1996年12月に おける 850 hPa の月平均の流線関数の偏差，風の偏差ベクトルである。大規模場における西風は局地的な循環によるものではなく，流線関数の偏差と風の偏差ベクトルで見ると， インド洋全域から $150^{\circ} \mathrm{E}$ までの太平洋西部に広がり，南北両半球の緯度 30° の熱帯域 にわたる構造を持っている。また1996年12月の月平均外向き長波放射量，およびその平年偏差（図略）で見ると，西風域，および西風偏差域付近に，強い対流域があり，その強度は平年に比べても強いことがわかる。西風バーストの発生はこのような大規模場におけ る西風偏差域と対流域の中で先に示したように何回か発生し，0HC 正偏差の東への伝搬を引き起こしている。
エルニーニョ現象の際に起こった西風バーストそのものの様相を細かく見るために，図

図11 西風バーストの発生した1997年3月3日から18日までの850hPa流線

11に1997年3月3日から18日までの西部太平洋における 850 hPa の流線を示す（二階堂，1999）。3月9日あたりから，南北両半球に中心を持つ低気圧が形成され，赤道付近は，両半球の低気圧に挟まれた強い西風域になっていることがわかる。

1997年3月には月平均平年偏差場でみた時，大規模場における赤道を挟んで両半球に見られる流線関数の負偏差は中心を $150^{\circ} \mathrm{E}$ と日付変更線の間付近に移し，大規模場の西風の領域は日付変更線を越えるあたりまで広がっている（図略）。

4． 2 エルニーニョ現象の発生後から最盛期頃まで

1997年6月には，南米沿岸から日付変更線付近までの太平洋赤道域で明膫な海面水温 の正偏差域が形成され，この状態は1998年5月頃まで続いた。

1997年6月から，B海域の月平均海面水温偏差が最大になった同年11月頃までにおい ても，東に向かって伝搬する成分が OHC 偏差を表した図 9 右に見られる。これらの 0 HC正偏差の増大を伴ら Kelvin 波が 12 月頃まで数回励起された。それと同時に，中部•東部太平洋の $0 H C$ 正偏差の値は増減を繰り返しながら次第に増大し， 12 月頃には最大 $+4.5^{\circ} \mathrm{C}$

以上になった。この頃には，東部太

図12 赤道に沿った風応力東西成分の偏差の時間－経度断面図。
等値線は $0.01 \mathrm{~N} / \mathrm{m}^{2}$ ごと。 $+0.01 \mathrm{~N} / \mathrm{m}^{2}$ 以上は陰影で， $-0.01 \mathrm{~N} / \mathrm{m}^{2}$ 以下は点彩で示した。平洋赤道域の海面水温偏差もほぼ最大を迎え（図 3），赤道の海面下で は，温度躍層の深さが東西でほぼ一定になっている（図7）。

この間の7月から11月頃にかけ て，図9左に示した風応力の東西成分の時間－経度断面図で見ると，西風バーストの発生位置の中心が次第 に東へ移動している。1996年12月 から1997年4月頃までは $140^{\circ} \mathrm{E}$ から 150° Eで発生していた西風バ ーストが，1997年10月から12月頃には，日付変更線付近で発生して いた。これとともに OHC の正偏差域 の西端は $150^{\circ} \mathrm{E}$ から日付変更線付近までゆっくりと東進した。最盛期

図13 1997年11月における（上）月平均850hPa高度および風ベクトルと（下）流線関数平年偏差と風平年偏差ベクトル
上図の高度の等値線は $20 \mathrm{~m}(1400 \mathrm{~m}$ 以上）， 100 m （ 1400 m 以下）ごと。下図の流線関数偏差の等値線は $2 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}$ ごと。

の1997年12月以降には，このような強い西風（西風バースト）に伴う東向き応力場は起 こらなくなり，これと時を同じくするように $0 H C$ 正偏差も弱まった。

しかし，風の場の変動はそれで終わった訳ではない。太平洋赤道域における風応力東西成分の平年偏差についての時間－経度断面図（図 12）を見ると，東向き応力の偏差（西風偏差に対応）は1998年1月以降も弱いながら存在し，全体にゆっくりと東へ動いている ように見える。

この状況を月平均場で見てみる。 850 hPa の東西風の時系列（図 6 中段）で見ると太平洋中部から東部にかけては，西部から少し遅れ，1997年5月頃以降になって，西風偏差 になっている。図13に1997年11月における850hPaの月平均高度と風べクトル（上図）， およびその平年偏差（下図）を示した。実際の風の場は，太平洋熱帯域では東風が弱く，殆ど無風の領域も多い。太平洋中部，東部の貿易風の弱まりは，エルニーニョ現象継続期間中続いており，1998年5月ころまで見られる。図13の平年偏差で見ると，太平洋赤道域は西風偏差に覆われる。西風偏差は，南北両半球に中心を持つ低気圧性循環の間に現れ ている。この低気圧性循環は，南北両半球の緯度 20 度程度にまで及んでいることがわか る。
再び図 9 右の $0 H C$ の平年偏差で見ると，この時期のもう一つの特徴は，西部太平洋赤道域で，OHC 負偏差の領域が 1997年7．月頃に現れて，正偏差域の東進に伴い，時間と共に東へ広がってきていることである。1997年12月ころには東端が 150° Wに達し，東部太平洋の正偏差と強いコントラストをなしている。しかし，この時，OHC の値で見ると，東西方向には一焃に近くなっており，偏差の東西方向の傾度はOHC の平年値が太平洋西部で高く東部で低いことによって見れていることがわかる。

4． 3 エルニーニョ現象の哀退期

エルニーニョ現象は，1997年11月に B 海域の海面水温の月平均平年偏差が最大の $+3.6^{\circ} \mathrm{C}$ になった後，次第に値が減少し， 3 か月平均海面水温平年偏差図（図 3）で見ても，1998年 3 月～5月には $+3^{\circ} \mathrm{C}$ 以上の領域が 90° W以東のエクアドルとペルー沿岸を除いて消失 するなど，衰退の傾向が現れた。

赤道に沿った太平洋の OHC 偏差の時間－経度断面図（図9右）では，1997年秋に太平洋西部に現れた負偏差域が，次第に東に伝搬する様子が見えることを述べた。エルニーニョ現象の衰退期には，この負偏差域がさらに広がって，正偏差域にかわって太平洋を覆うよ うになった。一方， 850 hPa 東西風（図 6 中段）は中部及び東部太平洋においては，西風偏差は弱まっているが，この期間，まだ正の値を維持しており，平年より貿易風の東風は弱い。また，図 12 の風応力の東西成分の偏差で見ると，東向き偏差（西風偏差に対応）域が，衰退期においても明暸であり，全体に時間とともに東に向かって移動しているよう に見える。

5．貿易風に対する海面水温のインパクト

エルニーニョ現象発生時には，海面水温の変動と同時に，熱帯大気循環場に， 850 hPa で貿易風の弱まりが現れ，西風偏差が時間と共に東へ向かって移って行くことは 4 節で述 べた。このようなことは他のエルニーニョ現象についても（Gill and Rasmusson，1983）報告されている。
（a）

（b）

（c）

（d）

図 14 （a）SMIPでシミュレーションに用いた1983年2月の月平均海面水温平年偏差。等値線は $1^{\circ} \mathrm{C}$ ことと。（b）客観解析 から求められた 850 hPa の月平均風偏差ベクトルと流線関数偏差。等値線は $2 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}$ こと。（ c 海面水温に実況の解析値を用いた場合にシミュレートされた 850 hPa の月平均風偏差ベクトルと流線関数偏差。（d）海面水温 に気候値を用いた場合。

貿易風における下層風の西風偏差の強まりは，4節で述べた 0HC 偏差場に見られるKelvin波の発生に関連し，エルニーニ ヨ現象の維持に重要な役割を担 っていると考えられる。またこ のような貿易風の西風偏差は，熱帯大気の海面水温の変動に対 する応答として現れる。このこ とより，海面水温の変動が西風偏差を形成し，それが海面水温 の変動を強めるという，フィー ドバックが起こることが考えら れる。

ここでは，まず，エルニーニ ヨ現象発生時における海面水温 の変動が太平洋熱帯域下層大気 の西風偏差を形成することを，気象庁で作成された SMIP（力学的季節予報モデル国際計画） と AMIP2（大気モデル相互比較国際計画）のデータを用いて確認する。
5． 1 モテルシミュレーショ ンの概要

SMIP の実験で用いられた全球大気モデルは，気象庁数値予報課で開発された，現業1か月予報用のT63L30 のモデルであ る（数値予報課，1995，NPD／JMA， 1997）。積雲対流スキームには

荒川・シューバートスキーム，地表面過程にはSiBモデルが使われている。予報は 5 メン バーによるアンサンブル予報で， 24 時間間隔の LAF 法（タイムラグ法）により計算する。積分時間は 120 日間である。月ごとの海面水温は米国 NCEP の解析の月平均値を与えた場合と，気候値を与えた場合の二通りの実験を行っている。陸上における土壌水分量や積雪深については両実験とも気候値を与えている。SMIP のデータは既に楠ら（1997，1998）や小林ら（1997）がアジアモンスーンや北半球の予報成績について解析しているが，ここに示す のはエルニーーョ現象時の太平洋熱帯域におけるシミュレーション結果である。
AMIP2 の実験で使われたモデルはSMIP で用いられたモデルとほぼ同じである。ただし計算期間は1973年1月1日からの 23 年 2 か月としており，最初の 6 年間に海面水温の解析値にバランスするような大気循環のスピンアップを行っている。その後海面水温の解析値を与えてシミュレーションを実施した。

5． 2 熱帯下層大気における西風偏差

SMIP のデータは 4 つのエルニーニョ期間の結果を含んでいる。ここでは，エルニーニ ヨ現象 1982／83における1983年2月の月平均場を示す。この時期はB海域の月平均平年偏差が 1982 年 12 月に最大になった後，次第に減少した時期に当たる。月平均海面水温平年偏差は図14（a）のようになっており，日付変更線以東の赤道域では $1^{\circ} \mathrm{C}$ 以上の正偏差域 になっている。
客観解析から求められた 850 hPa の月平均の流線関数と風ベクトルの平年偏差を，図 14（b）に示す。これより，太平洋赤道域には，日付変更線付近から 100° W付近にかけて，明暸な西風偏差があらわれていることがわかる。この西風偏差は，南北両半球に中心があ り，南北緯度 20 度程度まで及んでいる低気圧性循環の間におこっている。太平洋赤道域 での西風偏差はこの領域での貿易風の弱まりに対応するものである。このような場は，エ ルニーニョ現象 $1997 / 98$ における太平洋赤道域の状況（図 13）によく似ている。

図 14 （c）はモデルにより再現された太平洋付近での 850 hPa の月平均風ベクトルと流線関数の平年偏差である。これは初期値を 12 月とした 4 か月予報の， 3 か月目の月平均値 より計算されたものである。太平洋熱帯域の予報は，アンサンブル予報の各メンバー間で かなり異なり（図略），海面水温の大気へのインパクトは単純ではないことを伺わせる。 また中高緯度においては解析と必ずしも一致する訳ではない。しかし，太平洋熱帯域に議論を限ることにすると，アンサンブル予報の結果を見ると，南北両半球に中心を持つ低気圧性の循環が見られ，赤道のやや南を中心に西風偏差が強まり，日付変更線から 100° W付近までおおっている。流線関数の偏差でも低気圧性循環が明暸である。ただし，実況に比べて偏差の値は小さい。海面水温に気候値を与えた予報結果の場合（図 14 （d））にはこ のような西風偏差は現れず，日付変更線以東の太平洋赤道域では，風ベクトルの平年偏差 は，ほとんど 0 か東風偏差になっている。

これらのことから，太平洋赤道域における西風偏差は，エルニーニョ現象時における海面水温の変動に対する熱帯大気の応答に大きな原因があることが確認された。

5． 3 西風偏差の東進

西風偏差が，時間と共に東に移動して行くことは 4 節で述べた。SMIP の結果 から西風偏差の形成の原囚は，エルニー ニョ現象時の海面水温の変動によるもの であることがわかったが，この西風偏差 の東進も海面水温の変動によるのである うか。SMIP の結果は4か月までの予報 なので，このような東進を確認すること はできなかった。そこで，AMIP2 のデー夕を用いてこのことを示す。対象とした のはSMIP の場合と同じエルニーニョ現象1982／83である。まず，実況を，ECNWF の客観解析で見てみる。図 15（a）は客観解析から求められた風応力の東西成分の平年偏差を $5^{\circ} \mathrm{N} \sim 5^{\circ} \mathrm{S}$ で平均し，時間－経度断面図で示したものである。白抜きの部分が東向き応力偏差（西風偏差 に対応）を表している。この図から，1981年から1984年にかけて，赤道付近を西風偏差が東に向かって伝搬してゆくのが明暸に分かる。
図 15 （b）はモデルによりシミュレート された風応力東西成分平年偏差の時間－経度断面図である。やはり白抜きが東向 き応力偏差（西風偏差）を表す。値の大 きさは解析結果より強弱が強いが，解析

と同じように1981年から1984年にかけて東進してゆく成分が見える。この結果と SMIP の結果により，海面水温の変動の実況値を取り入れたシミュレーションでは，熱帯赤道域 の西風偏差とその東進を再現することができることが確認された。

これらのことから，エルニーニョ現象が起こり海面水温が変動すると，それに対応して太平洋の貿易風に西風偏差が現れ，東風が弱まり，それが次第に太平洋全域に広がること がわかる。この貿易風の東風の弱まりは，当然海面水温の変動となって現れ，ますます工 ルニーニョ現象的な海面水温分布を強めるというフィードバックの機構が働いていること が予想できる。

図16（a）左上：シミュレートされた海洋貯熱量 （OHC）偏差の赤道に沿った時間－経度断面図（CNTL）。等値線は0． $5^{\circ} \mathrm{C}$ ごと。 $1^{\circ} \mathrm{C}$ 以上は陰影で，$-1{ }^{\circ}$ C以下は点彩で示した。
（b）左下：NOW（西風なし）の場合の海洋貯熱量（OHC）偏差の赤道に沿った時間－経度断面図。
（c）右上：シミュレートされた海面水温 （SST）の，NOW－CNTLの値の赤道に沿った時間－経度断面図。等値線は0． $5^{\circ} \mathrm{C}$ ごと。 $1^{\circ} \mathrm{C}$以上は陰影て，$-1^{\circ} \mathrm{C}$ 以下は点彩で示した。負の値は西風により励起されたKelvin波 の伝搬により海面水温が上昇したことを表す。

6．西風が海面水温に及ぼす影響

前節で，海面水温が大気に与える影響について述べた。一方，海洋も大気ひ影響を受け ている。このことは 4 節で示したように，西風バーストが貯熱量（ 0 HC ）の偏差に見られる ような Kelvin 波を励起し，その伝搬とともに OHC の偏差が増大している様子（図 9）か

らも推測される。この，大気が海面水温に及ぼす影響を，西風の効果にしぼって調べる ために，大気海洋結合モデル「空海」によるシミュレーションを行った。

6． 1 シミュレーションモテルの概要

モデル「空海」の大気部分には，気象庁数値予報課で開発された全球スペクトルモデル T42（21層）を用いている（Sugi et al．，1990，数値予報課，1991）。積雲対流にはKuoス キームを用いている。海洋モデルは緯度 2 度，経度 2.5 度ごとに格子点をとり，赤道付近 では緯度方向の分解能を 0.5 度にあげている。鉛直方向には深さ 4000 m までに 20 層を設定している。モデルの概要は吉川（1997）に詳しく解説されている。

6． 2 エルニーニョ現象発生時の西風の効果

実験ではエルニーニョ現象が発生する状況での西風の効果を調べた。実験の初期値は， 1997／98のエルニーニョ現象発生の直前にあたる，1997年2月であり，既に最初の西風バ ーストが起こり，OHC の正偏差域が東へ広がりつつある期間である。予報期間は14 か月 とする。この実験では次の二通りのシミュレーションを行った。

CNTL：通常のモデルでのシミュレーション
NOW：海洋モデルに与える風応力のうち西風に対応する成分を 0 にリセットする。風応力を変える領域は $20^{\circ} \mathrm{N} \sim 20^{\circ} \mathrm{S}$ の熱帯域とする。

図16（a）にCNTL によってシミュレートされた OHC 偏差の，赤道に沿った時間－経度断面図を示す。実況の変化（図 9）とやや異なるが，予報期間の最初から最後にかけて，いく つかの Kelvin 波が伝搬し，東部太平洋を中心に $+2^{\circ} \mathrm{C}$ 以上の正偏差が予報期間中続いてい る。
図 16 （b）はNOW による 0 HC 偏差の時間－経度断面図である。これで見ると，1997年8月 ころには 140° 付近で $1^{\circ} \mathrm{C}$ 以上の領域がなくなり， 10 月には中部•東部太平洋で $+1^{\circ} \mathrm{C}$ の正偏差域がなくなっている。

海面水温のNOW－CNTL の差の時間－経度断面図を図 16 （c）に示す。負の偏差が，西風が起 きないことによる海面水温の低下を表す。西風のある場合とない場合の差が，中部•東部太平洋で，1997年9月ころから1998年3月ころまで明膫であり，$-2^{\circ} \mathrm{C}$ 以下の領域（ハッ チで示す）もかなり広い。このことから，エルニーニョ現象における中部•東部太平洋で の海面水温の上昇に，西風が重要な役割を演じており，西風がなくなると 0 HC 正偏差の伝播がとまり，海面水温正偏差が維持できず，衰弱することが確認できた。

ただし， 0 HC 偏差の場では CNTL，NOW とも，初期は中部•東部太平洋で同じように正偏差になる。これは，初期値の海洋の場の中に正偏差を形成する情報が既に含まれていたこ とによると考えられる。その 1 つの例は，初期に 160° W两あっりから東に伝搬してゆく Kelvin波が CNTL，NOW ともに見られることである。

6． 3 エルニーニョ現象がない場合の西風の効果

赤道付近の西風がエルニーニョ現象の維持に重要であり，西風がなければエルニーニョ現象が終了することが以上の結果でわかった。それでは，逆に西風がエルニーニョ現象の

図17（a）左上：シミュレートされた海洋貯熱量（OHC）偏差の赤道に治った時間－経度断面図（CNTL）。等値線は $0.5^{\circ} \mathrm{C}$ ごと。 $1^{\circ} \mathrm{C}$ 以上は陰影で，$-1^{\circ} \mathrm{C}$ 以下は点彩で示した。
（b）左下：WBC（強制的に西風を与えた場合）の海洋貯熱量（ OHC ）漏差の赤道に治った時間一経度断面図。
（c）右上：CNTLでシミュレートされた海面水温（SST）偏差。等値線は $0.5^{\circ} \mathrm{C}$ ごと。 $1^{\circ} \mathrm{C}$ 以上は陰影 で，-1° C以下は点彩で示した。
（d）右下：WBCでシミュレートされた海面水温（SST）偏差。Kelvin波の伝搬とともに海面水温が上异する様子が見られる。

引き金になりうるか否かということに興味がわく。そこで，エルニーニョ現象の起こらな い場合において西風バーストがどのような効果を持つかを，シミュレーションにより調べ た。

初期値は1998年4月とし，次の 2 つのシミュレーションを行った。このときは，エル ニーニョ見象 1997／98が終息に近づいている。

CNTL：通常の条件でのシミュレーション
WBC：西部太平洋の $130^{\circ} \mathrm{E} \sim 160^{\circ} \mathrm{E}$ で 1998 年 5，6，7， 8 月の各 $1 \sim 15$ 日までの期間， $0.06 \mathrm{~N} / \mathrm{m}^{2}$ の東向き風応力（西風バーストを想定）を与える。

この結果得られた，0HC 偏差の赤道における時間－経度断面図を，図17（a）（CNTL）と図 17 （b）（WBC）に示す。CNTL では1998年中は，中部•東部太平洋で弱い正偏差になっている。 この時 WBC では，強いKelvin 波の伝搬に伴う $0 H C$ 正偏差が現れ，その値は最大で $1.5^{\circ} \mathrm{C}$以上となっている。
この時の海面水温の偏差を，図17（c）（CNTL）と図17（d）（WBC）に示す。CNTL の場合は1998年中に中部•東部太平洋では，弱い正偏差が見られるだけだが，WBC の場合は，OHC 正偏差が伝播するのに伴い，1998年8月から 12 月にかけて 160° W以東において $+1^{\circ} \mathrm{C}$ 以上の海面水温の正偏差域があらわれており，エルニーニョ現象的な状況になっていることがわ かる。このことは，Kelvin 波により熱が少しずつ東に伝搬されることを示している。ま た，6． 2 節の結果もあわせて，Kelvin 波が海面水温上昇の主要な原因となっていることが推測できる。

このように，西部太平洋における強い西風は，太平洋中部から東部にかけての 0 HC 正偏差域や，海面水温正偏差域の形成に大きな効果を与えることがわかった。即ち，西部太平洋において強い西風が吹けば，エルニーニョ現象的な状況が発生する。しかし，このよう に人工的に発生させた海面水温正偏差の強まりは，エルニーニョ現象 1997／98の実際の海面水温偏差に比べて，より強い東向き風応力を与えたのに，海面水温の正偏差の値は小さ い。このことは，エルニーニョ現象の発生には，強い西風だけではなく，より広範囲な風 の循環や，発生期前における暖水の蓄積など，その他の要素の効果も大きいことを示唆し ていると考えられる。

7．まとめ

この報告では，エルニーニョ現象 1997／98について，海面水温，表層水温，海洋貯熱量，海面水位などについてその特徴について述べた。また，海洋貯熱量の偏差で見ると，エル ニーニョ現象時に明瞭な Kelvin 波の励起と伝船がおこっていること，またそれが，西部太平洋での西風バーストと関連していることが推測されることがわかった。またエルニー ニョ現象時には，大規模場で見ると，太平洋の下層風に西風偏差域と，それに関連する低気圧性循環が南北両半球に現れていることを示した。
エルニーニョ現象時の海面水温の変動に対する，熱帯大気の応答がどのように現れるか を，SMIP と AMIP2 データを用いて調べた。その結果，エルニーニョ現象時に太平洋赤道域に西風偏差が形成されること，西風偏差域は，時間と共に東へ移動していることなど， これまでのエルニーニョ現象に関連して指摘されてきた貿易風の変動の特徴が，海面水温

の実況データを与えたシミュレーションで，ある程度再現できることがわかった。
また，海洋が，大気の西風に対応する東向き風応力に関してどのような応答をするかを，大気海洋結合モデル「空海」により調べた。それによると，エルニーニョ現象の維持には，大気の西風による風応力の効果が重要であることがわかった。強い東向き風応力は，エル ニーニョ現象時の OHC 平年偏差で見られるような Kelvin 波の励起を引き起こす。Kelvin波は，大気の風が東風であっても，東へ向かって伝播し，これにより熱が東方向へ運ばれ る。これが繰り返されるらち海面水温の正偏差域が形成される。ただし，西部太平洋の暖水が直接東部太平洋に運ばれるわけではないことに注意すべきであろう。また，人工的に発生させた現象の強度はあまり強くなく，エルニーニョ現象1997／98のような明膫な現象 の発生には，広範囲な大気循環や，西部太平洋域での暖水の蓄積など，種々の条件がそろ ら必要があることを示唆している。海洋が大気に与える効果も考え併せると，エルニーニ ヨ現象は，暖水が西部太平洋赤道域に蓄積された状況時に強い西風が発生して，KeIvin波の発生が引き続き，それに伴い，少しずつ熱が運ばれて海面水温が次第に上昇し，海面水温の変動が大気の西風偏差を強め（あるいは貿易風を弱め），貿易風によって維持され ていた海面水温の東西方向の順度が弱まって，海面水温や海洋の表層の構造が東西方向に －様になる現象であることを示していると考えられる。
（注）この章で使用した図の多くは，気象庁発行の気象系監視報告および気象庁海洋月報から転載した。

参考文献

Gill，A．E．and E．M．Rasmusson，1983：The 1982－83 climate anomaly in the equatorial Oacific． Nature（London），305，229－234．
石井正好，1997：海洋データ同化システム．平成9年度季節予報研修テキスト，30－36．
Kimoto，M，I．Yoshikawa and M lshii，1997：An ocean data assimilation systemfor climatemonitoring． J．Meteor．Soc．Japan，75，471－487．
小林ちあき，高野清治，楠昌司，杉正人，鬼頭昭雄，1997：アンサンプル季節予報実験 北半球の予報
成績。 日本気象学会秋季大会講演予稿集，72，B211．
楠昌司，杉正人，鬼頭昭雄，小林ちあき，高野清治，1997：インドモンスーンのアンサンブル季節予報実験：1987，88年秋．日本気象学会秋季大会講演予稿集，72，B210．
楠昌司，杉正人，鬼頭昭雄，小林ちあき，高野清治，1998：冬のアンサンブル季節予報実験に現れるテ レコネクションパターン，日本気象学会春季大会講演予稿集，73，P165．
二階堂義信，1999：大気海洋結合モテル「空海」による1996年初期値予報の系統的誤差．平成10年度全国季節予報技術検討資料，78－86．
NPD／JMA，1997：Outline of the operational numerical weather prediction at the Japan
Meteorological Agency，March，1997．Appendix to progress report on numerical weather prediction，126pp．
Sugi，M．，K．Kuma，K．Tada，K．Tamiya，N．Hasegawa，T．Iwasaki，S．Yamada and T．Kitade， 1990 ： Description and performance of the JMA operational global spectral model（JMA－ GSM88）．Geophys．Magazine，43，105－130．
数値予報課，1991：全球モデルの検証．平成 3 年度数値予報研修テキスト．
数値予報課，1995：新COSMETS と解析予報システム。平成7年度数値予報研修テキスト。
吉川郁夫，石井正好，1994：気候監視のための海洋データ同化システムー大気海洋結合モデルによる季
節予報にむけて一。数値予報課報告•別冊， $40,104 \mathrm{pp}$ 。
吉川郁夫，1997：大気海洋結合モデル「空海」．平成9年度季節予報研修テキスト，21－29．

エルニーニョ現象 1997／98 時に見られた大気の特徴

気象庁気候•海洋気象部気候情報課
藤川典久

1．はじめに

1997年から1998年にかけて発生したエルニーニョ現象は，エルニーニョ監視海域 の海面水温が計 9 か月にわたって1949年の統計開始以来の各月の高い記録を更新し た。海面水温の変化に対応して熱帯の活発な対流活動域も大きく変化し，インドネシ アなど海洋大陸周辺で著しい干ばつに，ペルーなど南米太平洋沿岸では記録的な大雨 となった。さらに，対流活動域の変化は，中•高緯度の大気大循環にも大きな影響を及ぼし，各地で記録的な大雨や高温が観測された。そこで，今回のエルニーニョ現象 に関連して観測された大気大循環の状況を解析した。

2．利用したデータ

主に 3 か月平均場を用いて解析を行った。文中の 3 か月平均の時期については，北半球の四季を用いて表現しており，春が $3 \sim 5$ 月，夏が $6 \sim 8$ 月，秋が $9 \sim 11$ 月，冬が 12 月から翌年 2 月までとしている。

大気の特徴を解析するにあたっては，熱帯の対流活動を見るものとして主にNOA AによるOLRを，循環場については気象庁客観解析値（GANAL）を用いた。比較に用いる平年値は，一部，平年値作成期問や使用したデータが異なるので注意が必要であるが，基本的にはECMWFによる再解析データ（ERA）を利用した。

ここでERAとGANALの違いについて記しておく。図1は，現在気象庁で気候系監視報告等に使用している平年値を作成する際に利用したデータ（JMA－NOR M），ERAおよび最近のGANALの3者から計算した熱帯域における発散の二乗和の時系列である。JMA－NORMの熱帯域の発散は，1987年以前で最近のGA

図 1200 hPa 発散の熱帯域における樑準偏差の時系列

図2 3 か月平均外向き長波放射量（OLR）平年偏差
等値線間隔は $15 W / \mathrm{m}^{2}$ 。負偏差域が平年より活発な対流活動に対応。
OLRはNOAAによるもので，平年値は1979－1996年から計算した。

NALより系統的にかなり弱いことがわかる。一方，ERAの発散はJMA－NOR Mより強く，最近のGANALより若干弱い程度となっている。エルニーニョ現象に関連した大気の特徴を解析する際には対流活動に伴った発散の変動が重要となるため，今回の解析には熱帯域の発散が現在のGANALにより近いERAから求めた平年値 を用いることにした。

3．熱帯の対流活動

図 2 はエルニーニョ現象が発生した 1997 年春から終息した 1998 年夏までの 3 か月平均OLR（外向き長波放射量）平年偏差の分布である。96／97年冬の対流活動は，海洋大陸付近で平年より活発，日付変更線から太平洋東部の赤道域で平年より不活発 というラニーニャ現象時によく見られる分布であったが，97年2月後半から3月前半にかけて，活発な対流活動を伴った季節内変動がインド洋から太平洋中部へ東進し た（図 12）。この対流活動域の西側では対流圏下層で顕著な西風が吹いでおり，太平洋西部に西風バーストをもたらした（図 13）。この西風バーストをきっかけとして海面水温の分布は急激に変化し，97年春の対流活動も96／97年冬とは一転して海洋大陸付近で平年より不活発，日付変更線付近で平年より活発となった。さらに97年5月から6月初めにかけては，活発な対流活動とその西側対流圈下層での顕著な西風偏差を伴った季節内変動が再びインド洋がら太平洋東部にかけて東進し，それ以降 97年夏には対流活動が日付変更線付近から太平洋東部にかけての赤道域で平年より活発， インド洋東部からニューキニアにかけて平年より不活発というエルニーニョ現象時に特徴的な偏差分布となった。97年夏のアジアモンスーンに注目すると，モンスーン に伴う対流活動はインドネシア付近で平年より非常に不活発だったものの，インド，東南アジア，フィリピン付近などモンスーン域の北半分ではほぼ平年並であった。

エルニーニョ現象時に特徵的な対流活動の偏差分布は $97 / 98$ 年冬にかけて続き，太平洋では熱帯収束帯（I T C Z ）が平年より赤道側に，南太平洋収束帯（S P C Z ） が平年より東および赤道側にシフトするような形となって赤道域で対流活動が非常に活発となった。OLR平年偏差は，インド洋東部から海洋大陸にかけての正偏差域と太平洋中部から東部にかけての負偏差域がともに 97 年秋から $97 / 98$ 年冬にかけて最 も顕著となった。また，アフリカ東部沿岸からインド洋西部にかけては対流活動が平年より活発な状態が，南米北東部では対流活動が平年より不活発な状態が 97 年秋か ら 97／98 年冬にかけて続いた。97／98 年冬のオーストラリアモンスーンに伴ら対流活動は，インドネシア東部からニューギニアにかけては非常に不活発であったものの， オーストラリア北部ではほぼ平年並であった。

98年春になると，熱帯域の対流活動は，太平洋中部の赤道から $15^{\circ} \mathrm{S}$ にかけてと太平洋東部赤道域では平年より活発となり，太平洋西部や中部の赤道から $15^{\circ} \mathrm{N}$ にかけ ては平年より不活発となった。また，インド洋の対流活動も，赤道より北で平年より

図35日平均OLRの緯度•時間断面図
等値線間隔は15w／m²で裂線は省略。ハッチのかかつていない領域は平年並の状態を示 す。OLRはNOAAによるもので，平年値は1979－1996年から幛算した。

不活発，南で平年より活発という分布が見られ，熱帯域の対流活動は全球的に平年よ り南偏した。図3はインド洋の経度帯および太平洋西部•東部の経度帯で平均した○ LRの緯度時間断面図である。これを見ると，インド洋では97年12月まで平年より北偏した状態が続いていた対流活動が 98 年 1 月以降は平年より南偏した状態に変わ ったことが，また，太平洋東部では対流活動が 98 年 5 月に急激に弱まったことがわ かる。98 年夏になると，太平洋東部では中米沖の一部を除き対流活動が平年より不活発となり，一方，インド洋から海洋大陸西部にかけては対流活動が平年より活発と なった（図2）。

ここで述べた 97 年から 98 年にかけての対流活動の特徴は，偏差分布の進行が時間的に比較的早かった点（97 年夏にすでに太平洋東部の対流活動がかなり活発であっ た点）とオーストラリアモンスーンが平年並みだった点を除けば，82年から83年に かけてのエルニーニョ現象時に見られたものと非常によく一致している。

4．熱帯，亜熱帯の循環

（1） 200 hPa の循環

図 4 は 200 hPa における発散およびその平年偏差の分布，図 5 は 200 hPa における流線関数と風ベクトルの平年偏差の分布である。97年春には，対流活動が活発で発散

図43か月平均 200 hPa 発散および同平年偏差
ハッチのかかっている領域が収束域，白抜き領域が発散域を示す。等値線は平年偏差であり，等値線間隔は $2 \times 10^{-6} / \mathrm{s}$ ，負偏差（収束偏差）を点線で表している。平年値はERA（1979－1993） から計算した。

図5 3 か月平均 200 hPa 流線関数平年偏差および風ベクトル平年偏差等値線は流線関数平年偏差で，等値線間陵は $5 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}$ 。
風ベクトルの凡例を右下隅に記してある（単位 m / s ）。平年値はERA（1979－1993）から計算 した。

域となった日付変更線付近で高気圧性偏差の循環が見られ，他の領域では低気圧性偏差の循睘が卓越した。高気圧性偏差の循環は，対流活動の推移とともに月を追うごと に強まりながら東に移動し，97／98年冬を中心として太平洋中部から東部にかけて南北両半球ペアの高気圧性偏差の循環が顕著な状態が続いた。一方，97年春にインド洋で見られた低気圧性偏差の循環も月を追うごとに東に移動し，97／98 年冬には海洋大陸から太平洋西部に達した。また，インド洋西部には活発な対流活動による発散に対応して別の高気圧性偏差の循環が現れた。これらの循環は，98年春以降，全体と してさらに東に移動しながら，98年夏には急激に弱まり，インド洋西部や太平洋西部から中部にかけて低気圧性偏差の循嘸が，太平洋東部からアフリカにかけて高気圧性偏差の循環が見られるようになった。
（2） 850 hPa の循環
対流圈下層 850 hPa の循環の様子を見ると（図6）， 97 年春には太平洋西部で南北両半球ペアになった低気圧性偏差の循環が見られ，西風バーストが現れた赤道上では西風偏差が卓越した。一方，インド洋では弱いながら高気圧性偏差の循環が見られた。太平洋の低気圧性偏差とインド洋の高気圧性偏差の循環は月を追うごとに強まりなが ら東に移動し，97年秋から97／98年冬にかけては，太平洋中部から東部にかけて南北両半球で低気圧性偏差が，インド洋は南北両半球で高気圧性偏差が顕著に見られた。 また， $97 / 98$ 年冬から 98 年春にかけては，フィリピン付近で高気圧性偏差の循環が卓越したほか，インド洋西部や太平洋では赤道を北半球側から南半球側に横切る流れ が見られ，南北非対称性が目立った。低気圧性偏差の循環は98年春以降も東に移動 し，98 年夏には急激に弱まって太平洋東部のごく一部に残るのみとなり，インド洋東部から太平洋中部にかけては高気圧性偏差の循環が卓越するようになった。

（3）東西循環

次に，赤道域の東西鋁直断面により東西循環（ウォーカー循環）の様子を見てみる。図7は赤道域における風の東西成分と発散の高度経度断面図で，図 8 はその平年偏差 である。平年偏差を見ると， 97 年春の太平洋西部では，対流圈上層で東風偏差，下層で西風偏差となっていて，この図において左回りの偏差循環が見られた。一方，イ ンド洋では，上層で西風偏差，下層で東風偏差という右回りの偏差循環が見られた。 これらの偏差循環も月を追うごとに強まりながら東進し，97／98 年冬にはインド洋東部から太平洋西部にかけて右回りの偏差循環が卓越した。また，そこでは上層収束，下層発散の下降流偏差場となり，特にインド洋東部では実況でも下降流場となった。一方，太平洋中部から東部にかけては左回りの偏差循環が卓越し，そこでは実況にお いても上層発散，下層収束の上昇流場となった。98年春以降もこれらの偏差循環は東進を続け，98年夏には太平洋ごく東部とアフリカからインド洋西部にかけて左回 りの偏差循環が見られ，上昇流偏差場となった。一方，太平洋西部では右回りの偏差

図6 3 か月平均 850 hPa 流線関数平年偏差および風ベクトル平年偏差
等値線は流線関数平年偏差で，等値線間隔は $3 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}$ 。
風ベクトルの凡例を右下隅に記してある（単位 m / s ）。平年值はERA（1979－1993）から計算 した。

図7 3 か月平均赤道域東西風および発散の高度•経度断面図
等値線は発散で，等値線間原は $2 \times 10-6 / \mathrm{s}$ ，負（収束）の領域に陰影を付加。東西風ベクトルの凡例を右下隅に䟕してある（単位 m / s ）。

循環が見られ，上層発散，下層収束共に平年より弱く，上昇流が平年より弱かった。

（4）海面気圧

図 9 は海面気圧平年偏差の分布である。 97 年春の時点で既に，太平洋で負偏差，イ ンド洋から海洋大陸で正偏差というエルニーニョ現象時に特徵的な東西シーソー型の分布が見られた。この分布も他の循睘と同様に月を追うごとに東進し，97年秋から 97／98年冬にかけては 160° Wを境にして西側で正偏差，東側で負偏差という分布と なり，両偏差ともに大きな絶対値になった。98年春以降，この分布はさらに東進し ながら次第に偏差が小さくなり，98年夏にはインド洋から海洋大陸にかけてと太平洋東部で負偏差，太平洋西部から中部にかけて正偏差という分布となった。
（5）ENSO監視指数
ENSOを監視する大気側のほとんどの指数は， 97 年春から 98 年春にかけてエル ニーニョ側の符号を取った（図 10）。なかでも，ダーウィンの海面気圧，太平洋中部 と東部の 850 hPa 東西風指数，海洋大陸付近の上層雲量指数は標準偏差の 2 倍を越え， 1982／83 年のエルニーニョ現象時と同程度かそれ以上の値となった。監視指数の推移 の中で今回のエルニーニョ現象に特徴的な点として，1）タヒチの海面気圧があまり下 がらなかった，2）太平洋東部の東西風指数が極端に大きな値となった，3）日付変更線付近の上層雲量指数が 97／98冬以降平年並みとなったことなどが挙げられる。これら はすべて，対流活動活発域が太平洋東部まで移動したことに伴い対流圏上層，下層の循環や海面気圧の分布が過去のエルニーニョ現象時よりさらに東へ移動したことによ って説明できる。
（6）季節内変動
図 $11 ~ 13$ は5日平均データを用いた赤道域の東西風，OLR，速度ポテンシャル の時間経度断面図である。96年秋以降季節内変動の振幅が大きくなり，活発な対流活動を伴った位相は12月，2月および5月に太平洋西部を通過した。この位相の通過後には，対流圏下層で西風偏差が非常に強まり，太平洋西部から日付変更線付近に かけて西風バーストが見られた。97年夏から98年春にかけては季節内変動の振幅は小さくなり，速度ポテンシャル平年偏差で見ても地球を一周東進する位相は全く見ら れなかった。この間，太平洋東部やインド洋西部の対流活動は非常に活発な状態と活発な状態を繰り返した。98年5月には，比較的振幅の大きな季節内変動の東進が見 られ，これと同時に太平洋東部の活発な対流活動が急速に収まった。
（7）大気におけるENSOサイクル
熱帯の対流活動や循襄場は，97年春から98年夏にかけてゆっくりと東進が見られ たことを記したが，このような東進モードは1979年以降のデータからも見ることが できる。図14は速度ポテンシャル平年偏差5か月移動平均の時間経度断面図である。

図9 3 か月平均海面気圧平年偏差
等値線間隔は 2 hPa 。平年値は GANAL（1988－1996）から㖕算した。
波形の陰影はモデル標高が 500 m 以上の領域であり，等値線を描画していない。

図10エルニーニョ・南方振動監視指数の時系列
細線が各月の値を，太線が5か月移動平均の値を示す。エルニーニョ側の符号に陙影を付加。

图11 赤道付近の5日平均 200 hPa 速度ポテンシャル平年偏差の時間•経度断面図等値線間隔は $3 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}$ で，雾線を省略。各経度の値を 3 半旬移動平均して描画。平年値は JMA－NORM（1979－1996）から計算した。

図12 赤道付近の5日平均OLR平年偏差の時間•経度断面図
等値線問隔は $15 \mathrm{~W} / \mathrm{m}^{2}$ で，需線を省略。各経度の値を 3 半旬移動平均しで描画。
OLRはNOAAによるもので，平年値は1979－1996年から計算した。

図13（a）赤道付近の 5 日平均 200 hPa 東西風速平年偏差の時間•経度断面図
等値線間隔は $4 \mathrm{~m} / \mathrm{s}$ で，雷線を省略。各経度の値を 3 半旬移動平均して描画。平年値は JMA－NORM（1979－1996）から計算した。

図 13 （b）赤道付近の 5 日平均 850 hPa 東西風速平年偏差の時間•経度断面図
等値線間隔は $2 \mathrm{~m} / \mathrm{s}$ て，篹線を省略。各経度の値を 3 半旬移動平均して描画。
平年値は JMA－NORM（1979－1996）から計算した。

図 14 赤道付近の月平均 200 hPa 速度ポテンシャル平年偏差の時間•経度断面図等値線間阴は $2 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}$ で，零線を省略。各経度の値を 3 か月移動平均して描画。平年値はERA（1979－1993）から計算した。

この図においては，1993年までがERA，1994年以降がGANALを使用しており，特に1996年3月以降は 2 章冒頭で述べたように熱帯域の発散が強くなっているため速度ポテンシャルの振幅が大きくなっている点に注意が必要である。この図において大きな振幅に注目すると，波数 1 が 4 年程度の周期を持って東進しており，エルニー ニョ現象やラニーニャ現象期間中に振幅が大きくなっていることがわかる。東進の速度は一定ではなく，エルニーニョ現象の発生時期と終息時期には東進速度が非常に速 くなっている。ラニーニャ現象の期間中は東進速度が遅くなる傾向が見られるが，両現象の遷移期間は比較的順拥に東進している。また，振幅は小さいものの波数 2 を見 ることができる。
今回のエルニーニョ現象に伴う変化を見てみると，96／97年冬から97年春にかけて波数 1 の位相が急速に東進した後， 98 年春にかけて順調に東進が見られた。今回の特徴でもある振幅の大きい波数 2 の位相の東進はゆっくりとしており，上層の大規模 な発散域は 97 年秋のアフリカ東部から 98 年夏のインド洋へとゆっくりと東進した。
（8）亜熱帯ジェットとハドレ—循嘸
図 15 （左）は帯状平均した東西風の高度•緯度断面図である。対流圏の亜熱帯ジ エットに注目すると，北半球では 97 年夏から 98 年春にかけての軸の南偏と $97 / 98$ 年冬における著しいジェットの強化が起こった。一方，南半球においても97年夏から 98 年春にかけて亜熱帯ジェットの強化が見られた。図 16 は帯状平均した東向き運動量（西風運動量）の北向き輸送量およびその平年偏差である。97／98 年冬の北半球に注目すると，平均子午面循環と定常擾乱による輪送が全体的に平年より南偏しており，輸送量は $20^{\circ} \mathrm{N}$ 以南で平年より多く，以北で平年より少なかった。高周波変動による輸送量は， $30^{\circ} \mathrm{N}$ 以南でやや多かったものの，以北でかなり少なかった。運動量輸送 の収束が西風加速となることから，97／98 年冬における亜熱帯ジェットの南偏と著し い強化は，熱帯の対流活動の南偏による平均子午面循環の変化と定常的な対流活動が もたらした熱帯，亜熱帯域の循環の変化およびこれらに比べて寄与が小さかった高周波変動がバランスした結果であると言える。また，97年秋や98年春の亜熱帯ジェッ トの南偏についても同様に考えることができる。
次に，亜熱帯ジェットの特徴を見ると（図 17），太平洋東部から北米にかけてのジ ェットとアフリカから太平洋西部にかけてのジェットの 2 つの特徴的なジェットに分 けることができる。前者は主に97年秋から98年春にかけてのジェットの強化が顕著 であり，ジェットの強化には図 19 に見られるように赤道付近の活発な対流活動に伴 う南北循環が（帯状平均での議論と同様な仕組みで）大きく寄与していた。一方，後者は97年春から98年春にかけてジェットの軸の南偏が顕著であり，ユーラシア大陸上では亜熱帯ジェットと寒帯前線ジェットの集中が弱く，寒帯前線ジェットが独立し てはっきりと見られた。

図 153 か月平均帯状平均東西風（左）および気温（右）の高度•稦度断面図
東西風：等値線間隔は $5 \mathrm{~m} / \mathrm{s}$ 。ハッチは平年偏差で凡例を参照。
気温：等値線間隔は10K。ハッチは平年偏差で凡例を参照。
ともに平年値はERA（1979－1993）から計算した。

図 163 か月平均帯状平均東向き運動量の北向き輸送量（左）および同平年偏差（右）翰送量は $500 \mathrm{hPa} \sim 100 \mathrm{hPa}$ の積算。平年値は GANAL（1988－1995）から㖕算した。
momentum flux contributed by high frequency disturbance
momentum flux contributed by stationary disturbance
momentum flux contributed by mean meridional circulation

図 17 3 か月平均北半球 200 hPa 東西風速および同平年偏差
等値線間隔は $10 \mathrm{~m} / \mathrm{s}$ 。ハッチは平年偏差で凡例を参照。平年値はERA（1979－1993）から計算した。

図183か月平均東西風，南北風，発散（左）と平年偏差（右）の高度•緯度断面（ $90^{\circ} \mathrm{E} \sim 180^{\circ}$ ）等値線は東西風速を表し，等値線間隔は $10 \mathrm{~m} / \mathrm{s}$ 。ハッチバターンは発散を表し，間隔は $1 \times$ $10^{-6} / \mathrm{s}$ 。矢印は南北風を表し，右下隅にサンプルを表示（単位：m／s）。平年値はERA （1979－1993）から計算した。

図193か月平均東西風，南北風，発散（左）と平年偏差（右）の高度•緯度断面（ $180^{\circ} \sim 90^{\circ} \mathrm{W}$ ）等値線は東西風速を表し，等値線間隔は $10 \mathrm{~m} / \mathrm{s}$ 。ハッチパターンは発散を表し，間隔は $1 \times$ $10^{-6} / \mathrm{s}$ 。矢印は南北風を表し，右下隅にサンプルを表示（単位：m／s）。平年値はERA （1979－1993）から計算した。
（9）亜熱帯高気圧
図 20 は， 850 hPa 流線関数平年偏差に $200 \mathrm{hPa}-850 \mathrm{hPa}$ 間の層厚平年偏差を重ねた ものである。この図においては， 850 hPa 流線関数平年偏差を基準として，高気圧性偏差で層厚が負偏差の領域はバロクリニックな構造を持った亜熱帯高気圧が平年より強いことを，低気圧性偏差で層厚が正偏差の領域はバロクリニックな構造を持った低気圧が平年より強いことを示している。また，高気圧性偏差で層厚が正偏差の領域は バロトロピックな高気圧が平年より強いことを，低気圧性偏差で層厚が負偏差の領域 はバロトロピックな低気圧が平年より強いことを示しており，これらは主に偏西風帯 の長波のリッジ，トラフを，一部には熱帯の対流活動を強制力としたロスビー波を表 している。これによると，97年秋から98年春にかけてインド洋東部から太平洋西部 にかけて亜熱帯高気圧が平年より強く，太平洋中部から東部にかけては活発な対流活動を伴った低気圧が平年より強かった。また， $97 / 98$ 年冬を中心に太平洋中部から東部にかけての活発な対流活動によって励起されたロスビー波によるバロトロピックな高気圧がハワイからカリフォルニア半島沖にかけて見られた。北西太平洋の亜熱帯高気圧に注目してみると， 97 年夏には日本の南東海上に規模は小さいもののバロクリ ニックな構造をもった亜熱帯高気圧が平年より強かった。97年秋から98年春にかけ ては，バロクリニックな構造を持った亜熱帯高気圧がフィリピン付近から南西諸島に張り出した状態が続いた。97／98 年冬や 98 年春には朝鲜半島から本州にかけて高気圧性偏差の循環が卓越したが，これはバロトロピックな構造を持っており，偏西風帯 に現れた高気圧性偏差であることがわかる。98年夏は太平洋中部やフィリピンから南西諸島付近にかけて平年より強い亜熱帯高気圧が見られたが，本州付近はバロトロ ピックな構造を持った低気圧に覆われた。

5．中•高緯度の循環

（1）北半球 $500 \mathrm{hPa}, ~ 100 \mathrm{hPa}$ 高度
図 21 に 500 hPa 高度および平年偏差の分布を図 22 に各季節におけるエルニーニョ現象発生年の合成図（以下 E Y C と記す）を示す。 97 年春は E Y C とは全く似てい なかったが，97年夏から秋にかけては中緯度帯で亜熱帯ジェットの南偏に対応した帯状の負偏差域が見られるなど，ユーラシア大陸から日本付近にかけてを除くと E Y Cと比較的よく一致した。また，97年秋には太平洋東部から北米にかけてPNAパ ターンが見られた。97／98 年冬には偏差の大きな特徴的な分布が卓越し，太平洋東部 から北米大陸にかけてのTNHパターン（Mo and Livesey：1986），ユーラシア大陸上 のEUパターン，太平洋西部のWPバターン（Wallace and Gutzler：1981）が顕著に見 られた。このうちTNHパターンとWPパターンは，EYCと見事に一致するもので あったが，EUパターンについてはEYCでははっきりとせず，エルニーニョ現象の影響ではない $97 / 98$ 年冬の特徴であった。 98 年春についても，北米中部の帯状の負

図 203 か月平均 850 hPa 流線関数，風ベクトル，層厚の平年偏差等値線は流線関数平年偏差を表し，間隔は $2 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}$ 。ハッチバターンは畓厚平年偏差を表し，間隔は 20 m 。矢印は風ベクトル平年偏差を表し，右下隅にサンプルを表示（単位：m／s）。平年値はERA（1979－1993）から計算した。

図213か月平均北半球 500 hPa 高度および平年偏差
等値腺間滆は 60 m 。ハッチパターンは平年偏差を表し，間隔は凡例による。平年値はERA（1979－1993）から計算した。

図22 エルニーニョ現象発生年の 3 か月平均北半球 500 hPa 高度の合成図
等値線間隔は $60 \mathrm{~m}_{0}$ 。ハッチバターンは，エルニーニョ現象もラニーニャ現象も発生して いない年の平均からの偏差を表し，間隔は凡例による。利用したデータは，1951～1996年の気象庁月平均北半球 500 hPa 高度データであり，エルニーニョ・ラニーニャ現象の期間も気象庁による。

偏差域，カナダから大西洋北部にかけての正偏差域という冬のTNHパターンとよく似た分布が見られ，東シベリアからベーリング海にかけての負偏差域なども含めてE Y C とよく一致していた。98年夏については，E Y C とほとんど似ていなかった。

100 hPa 高度（図 23 ）を見ると，極渦は 97 年春に非常に強かったが，その後は平年並程度となった。97／98 年冬には極渦がシベリア方面に偏って位置したため，カナダ北部を中心に顕著な正偏差となった。チベット高気圧は，97年夏，98年夏ともに高度は平年より高く，東西に伸びた軸の位置は平年の位置であった。

また， 97 年秋以降は $500 \mathrm{hPa}, ~ 100 \mathrm{hPa}$ 高度ともに熱帯，亜熱帯域全体で平年より高 くなっており，98年春から夏にかけては中•高緯度でも一部の負偏差域を除けば平年より高くなった。

図23 3 か月平均北半球 100 hPa 高度および平年偏差
等値線間隔は $60 \mathrm{~m}_{\mathrm{o}}$ 。ハッチパターンは平年偏差を表し，間隔は凡例による。平年値はERA（1979－1993）から計算した。
（2）北半球の偏西風，総観規模擾乱
97 年秋から 98 年春にかけて，特に $97 / 98$ 年冬を中心とした偏西風の様子は， 2. でも述べたように2つの地域の特徴で記される。まず，最も特徴的であったのは太平洋東部から大西洋にかけての地域であり，ここでは $20^{\circ} \mathrm{N} \sim 40^{\circ} \mathrm{N}$ 帯での著しく強い偏西風と $40^{\circ} \mathrm{N}$ 以北での平年より弱い偏西風が見られた。もう一つの地域はユーラシ アから太平洋西部にかけてであり，ここでは亜熱帯ジェットの南偏と寒帯前線ジェッ トの北偏が継続し，特に東アジア中緯度におけるジェットの強化が平年よりも著しく弱かった。

ここで，特に特徴が顕著に現れた $97 / 98$ 年冬に焦点を絞って，偏西風の維持機構に ついて調べてみる。西風の運動方程式を Hoskins et al（1983）によって提案された Eベクトルを用いて表すと，

$$
\mathrm{D} u=\mathrm{f} \mathrm{v}_{\mathrm{x}}+\nabla \cdot \mathrm{E}+\mathrm{F}
$$

となる。ここで
v_{χ} ：発散風
$\mathrm{D}=(\partial / \partial \mathrm{t}+\mathrm{v} \cdot \nabla)$
$\mathrm{E}=\left(\mathrm{v}^{{ }^{2}}-\mathrm{u}^{{ }^{2}}\right.$ ，$\left.-\mathrm{u}^{\prime} \mathrm{v}^{\prime}\right)$
f ：コリオリパラメータ
F ：摩擦項など
であり，ダッシュ項は時間平均からの偏差である。西風の変化には第 1 項の発散風に よる寄与と第2項の渦（擾乱）による寄与があることを示しており，南風およびEべ クトルの発散が西風加速に，北風およびEベクトルの収束が西風減速に対応する。図 24 は 200 hPa における東西風偏差の分布に各項による寄与の平年偏差を矢印で重ねた ものであり，擾乱による寄与は10日以上の低周波と 10 日未満の高周波にわけてある。 これを見ると，ユーラシア大陸から太平洋西部における亜熱帯ジェットの南偏は，西風加速に対する発散風の寄与がアフリカからアラビア海にかけて平年より強く，東南 アジアから太平洋西部にかけて平年より弱かったことに対応している。また，太平洋東部から大西洋にかけてのジェットの著しい強化は，西風偏差域南半分で発散風によ る寄与が平年より強く，北半分で高周波擾乱による寄与が平年より非常に強かったこ とに対応しでいる。さらに，アラスカ付近からカナダにかけてのジェットの弱化は，発散風による西風加速が平年より弱かったことと対応しており，これは平年より上層発散が弱く東に偏ったストームトラックと関連している。

次に，総観規模擾乱の活動を図 25 から見ると，大西洋のストームトラックの活動 は 97 年夏から 98 年夏にかけてずっと平年より不活発な状態が続いた。太平洋のスト ームトラックは97年春から97年秋にかけて平年より不活発な状態が続いたが，97／98年冬にはストームトラックの中緯度帯で平年より活動が活発，高緯度帯で不活発とな

図 24 97／98 冬平均の 200 hPa 東西風加速の分布
左：発散風による寄与，中：高周波揠乱による寄与，右：低周波摂乱による寄与。上段：平年値，中段：97／98冬平均値，下段：平年偏差
等値線は 200 hPa 東西風を表し：上段，中段は実況値で間隔は $10 \mathrm{~m} / \mathrm{s}$ ，下段は平年偏差で間隔は $5 \mathrm{~m} / \mathrm{s}$ 。点線は，発散風（左）またはE－vector の発散（中，右）を表す。上段の矢印は E－vector，中段の矢印はその平年偏差を表し，右下隅にサンプルを表示（単位： $\mathrm{m}^{2} / \mathrm{s}^{2}$ ）。下段の矢印は，各寄与による西風加速度の平年偏差をベクトルとして表示したもので，右下に サンプルを表示（単位：m／s ${ }^{2}$ ）

図 253 か月平均北半球 500 hPa 運動エネルギーおよび平年偏差
等値線間隔は各季篚における逗動エネルギーの基準線。ハッチパターンは平年偏差を表し，間隔は凡例による。平年値はJMA－NORM（1979－1996）から計算した。

り，メキシコからフロリダ半島にかけても平年より活発な総観規模擾乱が見られた。一方，98年春にはストームトラックの北半分で平年より活動が活発に，南半分で活動が不活発になった。
（3）北半球のプラネタリー波
図 26 は 300 hPa における波の活動度フラックスである。波の活動度フラックスは Takaya and Nakamura（1997）によっており，地理的要因を主とする定常波を除いた波 の活動度フラックスが示され，ロスビー波の伝播の様子を見ることができる。97年春は，波数 3 のプラネタリー波の振幅が大きく，カナダ北東部から大西洋北部，北欧， シベリアへと向から波の活動度フラックスが顕著だった 97 年夏～秋と 98 年春～夏の プラネタリー波の振幅は一部の地域を除いて小さく，顕著な波の活動度フラックスは見られなかった。97／98 年冬には，太平洋北東部からカナダ北東部へ，およびメキシ コ南西の太平洋からアメリカ合衆国へ向から波の活動度フラックスが顕著に見られた。前者は平年より東にシフトして強かった定常挃乱や平年より南にシフトして強かった総観規模擾乱による上層発散によって励起されたロスビー波が，後者は熱帯の対流活動によって励起されたロスビー波が波源となって伝播した。また，後者の一部はカナ ダ北東部へ伝播し，前者と合流することによって正偏差の位相を強めており，これら のプラネタリー波の伝播がTNHパターンを形作る一翼を担っていたと考えられる。
（4）南半球の 500 hPa 高度
図 27 は南半球 500 hPa 高度および平年偏差である。 97 年春から夏にかけては，南極大陸付近が負偏差， $40 \sim 60^{\circ} \mathrm{S}$ が帯状に正偏差，太平洋の $30^{\circ} \mathrm{S}$ に沿って負偏差と いう分布が続いた。97年秋から97／98年冬にかけては，波数3の偏差分布が卓越し，特にチリの南西の太平洋で正偏差が顕著となり，太平洋東部の中緯度帯では帯状に負偏差域が広がった。 3 か月平均 500 hPa 高度の主成分分析（1979～1997 で計算）の結果を見ると（図省略），第 1 主成分はどの季節も極渦の強弱に伴う高緯度と中緯度の シーソーパターンを，第2主成分は季節ごとに若干の違いはあるものの南極海の太平洋側で最も大きな振幅を持つ波数 3 のパターンを示している。 97 春から夏にかけて は第1主成分の振幅が大きい時期が続いていた。97年秋から97／98年冬にかけては第2主成分の振幅が大きくなり，特に太平洋東部における中緯度で負偏差，高緯度で正偏差というパターンはエルニーニョ現象時に特徴的なものであった。
（5）対流圏気温について
帯状平均した気温偏差の分布を見る（図 15 右）と，熱帯の対流圏の気温は 97 年夏 までは平年並かやや低かったが 97 年秋以降は平年より高くなり， 98 年春には平年よ り $1 \sim 2{ }^{\circ} \mathrm{C}$ と非常に高くなった。また，中高緯度の対流圏の気温は $97 / 98$ 年冬までは ほぼ平年並であったが，98年春以降全般に平年より高くなった。図28は帯状平均し た層厚換算温度の時系列であり，これによっても熱帯域の対流圈の気温は $97 / 98$ 年冬

図 263 か月平均北半球 300 hPa 波の活動度フラックスおよび高度平年偏差
等値線は高度平年偏差を表し，間搌は 30 m 。矢印は波の活動度フラックスを表し，サンプル を右下隅に表示（単位： $\mathrm{m}^{2} / \mathrm{s}^{2}$ ）。平年値はERA（1979－1993）から計䈌した。波の活動度フラ ックスはTakaya and Nakamura（1997）のよる。

図 273 か月平均南半球 500 hPa 高度および平年偏差
等値線間隔は 60 m 。ハッチパターンは平年偏差を素し，間隔は凡例による。平年値はERA（1979－1993）から計算した。

図 28 帯状平均屬原換簐温度の時系列
細線が各月の値を表し，太線が 5 か月移動平均値。平年値はGANAL（1985－1995）から計算し た。

NINO．3と対流噌平均気温の相関の変化

\mid－－熱帯＝－北半球 \mid
図29エルニーニョ監視海域（Nino．3）の海面水温と対流図平均気温のラグ相関
実線：熱帯域（ $25 \mathrm{~N} \sim 25 \mathrm{~S}$ ）平均の $100 \mathrm{hPa} \sim 850 \mathrm{hPa}$ の層厚換算気温
破線：北半球（ $30 \mathrm{~N} \sim 90 \mathrm{~N}$ ）平均の 200 hPa （ 60 N 以北は 300 hPa ）$\sim 850 \mathrm{hPa}$ の層厚換算気温 1979～1998年までの月データ（JMA－NORM）を使用して計算した。

から 98 年春をピークに平年より $1^{\circ} \mathrm{C}$ 以上高くなり，北半球でも 98 年夏をピークに平年よりも $1^{\circ} \mathrm{C}$ 近く高かったことがわかる。エルニーニョ現象が発生するとやや遅れて対流圏の気温が上昇することが言われている（Angell，1990）。図 29 は NIN0． 3 と熱帯および北半球平均の層厚換算気温とのラグ相関係数の関係であり，熱帯では高度を $5 \sim 8$ か月遅らせた場合，北半球では高度を $7 \sim 10$ か月遅らせた場合の相関係数が最も高くなっており，これからもAngell の説が裏付けられる。エルニーニョ現象 1997／98の場合，エルニーニョ監視海域の海面水温の上昇より $1 \sim 2$ 季節遅れて熱帯 の対流圏気温が， $2 \sim 3$ 季節遅れて中高緯度の対流圏気温がもっとも高くなった。

6．まとめ

以上の解析から，エルニーニョ現象1997／98の際に見られた大気大循環の特徴は次 の項目にまとめられる。
－熱帯の対流活動はエルニーニョ現象 1982／83 時と比べて，季節的に早く典型的 な分布となった。これは，海洋側（海面水温偏差）の早い進行に対応している。

- 南米沿岸やアフリカ東部の対流活動は1982／83時よりも活発であった。
- 1998年春には，対流活動域の全球的な南偏が1983年春と同様に顕著に見られた。
- 太平洋域のウォーカー循環は非常に弱まり，1997年秋には太平洋東部で逆の循環となるほどであった。
－北半球の亜熱帯ジェットは全般に平年より南下し，北米ジェットの著しい強化 が見られた。
－北半球 500 hPa 高度は，1997年秋から98年春にかけて太平洋～北米域において エルニーニョ現象時に現れやすい偏差分布となった。

また，1997／98年冬の北半球 500 hPa 高度で顕著に見られたTNHおよびWPの両テ レコネクションパターンの構造を解析した結果，次のようなことがわかった。
－WPパターンの南半分は，亜熱帯ジェットの南下を伴った傾圧構造を持ったア ノマリーとして現れており，亜熱帯ジェットの南下はアフリカ～太平洋西部に かけての南北循環による西風運動量輸送のアノマリーで主に説明される。WP パターンの北半分については，EUパターンの影響が顕著に現れる場所である ためエルニーニョ現象時に偏差分布が有意な領域ではなく，1997／98年冬の場合 もEUパターンにマスクされた格好となった。
－TNHパターンは，強化した東太平洋ジェットと南下しかつ強化した北米ジェ ットを伴った順圧構造を持ったアノマリーであった。東太平洋ジェットの変動 は太平洋中部における南北循睘による西風運動量輸送のアノマリーおよびジェ ット自身の変動にも付随した総観規模摂乱活動のアノマリーで主に説明される。北米ジェットの変動は太平洋東部における南北循環による西風運動量輸送のア

ノマリーで主に説明される。また，北米大陸北東部の偏差については，太平洋東部熱帯域の熱源のアノマリーに伴って励起されたロスビー波の北東方向への伝播および太平洋北東部のストームトラックの上層発散によって励起されたロ スビー波の東への伝播が寄与していた。

7．最後に

今回の解析結果を見てみると，大気大循環の様子は 1982／83年と1997／98年とでか なりよく似たものであり，この兩年の解析を進めれば，海面水温偏差の大きなエルニ ーニョ現象に対する大気の応答の仕組みがかなりはつきりするものと思うれる。一方， この両年の間にもその地域の天候に注目するとかなりの違いが見られる地域がある。 このうち中•高緯度についてはエルニーニョ現象の影響がほとんど及ばず，中•高緯度の大循環によって支配されているわけであるが，熱帯域については，各エルニーニ ョ現象ごとの局所的な大気•海洋の現象がかなり寄与しているものと思われる。 1997／98 年のように規模の大きなエルニーニョ現象の場合，熱帯域における大規模な循環場の持続性が非常に高いことから，大規模な循環場と矛盾しないローカルな現象 が現れた場合，その現象も比較的持続性が高く，現象の影響が及ぶ地域にとっては洪水あるいは熱波•干ばつ等の被害をもたらす原因になるであろう。このことは，エル ニーニョ現象終息後の夏であった1998年夏の特徵的な熱帯の循環にも言えることであり，大規模場が決まった際に起こりうるローカルな現象についても解析を進めてゆく必要があ ると思われる。
なお，この原稿は1998年秋の月例会で発表した内容をベースとして編集した気候系監視報告別冊第4号～エルニーニョ現象1997／98について～の内容を元に，若干の加筆•訂正を行ったものである。

参考文献

Angell J．K．， 1990 ：Variation in global tropospheric temperature after adjustment for the El nino influence，Gephys．Res．Lett．，17，1093－1096．
Takaya，K．and H．Nakamura，1997：A formulation of a wave－activity flux for stationary Rossby waves on a zonally varying basic flow．Geophys．Res．Lett．，24， 2985－2998．

Hoskins B．J．，I．N．James and G．H．White， 1983 ：The shape，Propagation and Mean－ Flow Interaction of Large－Scale Weather Systems．J．Atmos．Sci．，40，1595－1612．
Mo，K．C．and R．E．Livezey， 1986 ：Tropical－extratropical geopotential height teleconnections during the Northern Hemisphere winter．Mon．Wea．Rev．，114， 2488－2515．

Wallace，J．M．and D．S．Gutzler， 1981 ：Teleconnection in the geopotential height field during the Northern Hemisphere winter．Mon．Wea，Rev．，109，784－812．

エルニーニョと日本の冬季気候との関係について

東京大学気候システム研究センター

安富奈津子•木本昌秀
1．はじめに

年々スケールの気候変動の代表例としてエルニーニョ現象があげられる。エルニーニョ の大気循環に対する影響については数多くの研究がなされてきた。しかしながら，熱帯で の偏差および太平洋中央部から北米にかけてのテレコネクションパターンに関するものを除くと，統計的な調査が多く，力学的な因果関係にまで言及されることは少ない。とくに日本やその周辺の東アジア域での影響に関する理解は未だ不十分である。エルニーニョと日本とその近辺の天候との関わりに関しては，平均気温等の統計（気象庁，1994；Halpart and Ropelewski，1992）や，ケーススタディ（Zhang otcoll，1996），コンポジット解析（Hanawa et a（1989）などいくつかある。統計的にはエルニーニョ時日本は暖冬「傾向」にあると指摘されているが，海洋上のデータ，サンプル数の不足もあって，循環偏差との関連は不明膫である。

このような背景を踏まえ，本研究では最近になって入手可能になった長期間にわたる再解析データから，日本の冬季気候，アジアモンスーンの年々変動とエルニーニョの関わり を全球規模， 3 次元的に見直してみる。

季節程度の時間スケールでは時間変化項は無視できるため，大気循環偏差は，海面水温等の変動にともなら対流活動の変化のような外部強制に対する定常応答として理解できる と考えられる。そこで， 3 次元定常線形応答モデルをもちいて，解析によって得られた大気の循環偏差パターンが形成されるしくみの力学的解析も試みる。

2．日本の冬季天候と大気循環の解析

まず，NCEP／NCAR の再解析データを用いてエルニーニョ時の大気循嘸の特徴を解析した。解析期間は，1958年12月から1998年2月までで，冬（DJF）の月平均データを用いた。こ の期間中エルニーニョ現象は 10 回あった。

図1はエルニーニョ時の水蒸気輸送の偏差をコンポジット平均で示したものである。エ ルニーニョのとき，西太平洋では赤道近くの発散域にともなってRossby response（Matsuno，1966；Gill，1981）と考えられる高気圧性循環が生じている。この高気圧性循澴によって，日本の南岸には南西風偏差が現れ，熱帯の暖かく湿った空気がもた らされている。平均的には，エルニーニョ時，日本は熱帯から直接的に影響を受けること によって暖冬傾向になるといえる。今世紀最大規模といわれた＇97／98DJF では，解析期間 のすべてのエルニーニョのコンポジット平均と比較して南西風偏差が非常に大きく，水蒸気量もコンポジット平均の 4 倍から 5 倍程度あった。この冬は暖冬で関東平野の降水量が多かったのが特徴であったが，これはこのような熱帯からの影響を受けたためであると考 えられる。

図 1 水蒸気フラックス偏差（矢印）と比湿（等値線）の地表から 300 hPa までの鉛直積分のエルニーニ ヨ年の冬（10 例）のコンポジット平均。単位はそれぞれ $\mathrm{m} / \mathrm{s} \cdot \mathrm{g} / \mathrm{g}, \mathrm{kg} / \mathrm{kg}$ 。水蒸気フラックスの

しかしながら， $\operatorname{NiN03(5^{\circ }\mathrm {S}-5^{\circ }\mathrm {N},150^{\circ }\mathrm {F}-90^{\circ }\mathrm {W})\text {の海面水温偏差と日本の平均気温偏差}}$ （Tsjp）との相関係数を計算してみると 0.31 である。これは 95% の信頼度では有意だが， 99% では有意ではない。両者の散布図を示した図 2 から確認されるようにエルニーニョの強さと日本の平均気温偏差は単純な線形関

図2 NIN03 の海面水温偏差（横軸）と日本の平均気温偏差（縦軸）の解析期間 （1958／59DJF－97／98DJF）の分布。単位は ${ }^{\circ} \mathrm{C}$ 。係にはなく，エルニーニョで寒冬であった年もある。そこで，エルニーニョで日本が暖冬，寒冬になるときの違いはどこにある のかを考えるために，エルニーニョで暖冬 （ $\mathrm{Ts} \mathrm{jp}>1.0^{\circ} \mathrm{C}$ ）の年，寒冬（ $\mathrm{T} \mathrm{s} j \mathrm{p}<-0.5^{\circ} \mathrm{C}$ ） の年を分けてコンポジットをとり，エルニ ーニョでなかった暖冬，寒冬（Tsjpが正，負の年のそれぞれ絶対値の上位 $1 / 3$ の年 からエルニーニョ年を除外）のコンポジッ トと比較した。
熱帯の海面水温のコンポジット平均には， エルニーニョ年の場合，暖冬年，寒冬年と

図3 500 hPa 面高度偏差の日本か暖冬だった年（8例）と寒冬だった年（ 5 例）の差のコンポジット平均。等値線間隔は 10 m 。 95% 以上の信頼度で有意なコンポジットの領域に影

もに熱帯東部太平洋で海面水温が高いという特徴が現 れていたが，エルニーニョ で寒冬の場合には，熱帯東部太平洋の海面水温の正偏差の大きさは小さく，熱帯 の下層の発散域，上層の収束域がインド洋上にずれて いた（図略）。これは日本 が寒冬であった場合では工 ルニーニョが成熟期を過ぎ ていたためであると考えら れる。

中高緯度では，エルニー ニョかつ暖（寒）冬の時とエ ルニーニョ年以外の暖（寒）冬の時の風や高度偏差の分布は互いに似ており，かつ暖冬と寒冬はほぼ鏡像関係にある。 500 hPa 面高度偏差の暖冬年－寒冬年のコンポジットと して，PNA パターンと EU パターンの要素を合わせもつ，冬季中高緯度大気の変動の主要 モードとして知られているパターンに似た偏差分布が得られた（図3）。

図4 500 hPa 面高度偏差の冬の月平均値（DJF）のEOF 解析の（a）第1モード（寄与燢 18．5\％），（b）第2 モード（寄与燢 12．77\％）の線形回版図。99\％以上の信頼度で有意な高度偏差の回帰の領域に影。

EOF 解析を行って，このコンポジット図と大気変動を客観的に解析した場合のパターン を比較した。図4にEOF 第1，第2モードのパターンを，図5にその時系数PC1，PC2 を示した。解析には 500 hPa 面高度偏差の $15^{\circ} \mathrm{N}$ から $90^{\circ} \mathrm{N}$ までの範囲で，期間は1958年12月から1998年2月までの冬季（DJF）の月平均データを用いた。EOF 第2モード（図4b）と暖冬－寒冬のコンポジット図が，非常に高い pattern correlation（0．90）をもって対応し た。また図 5b から，PC 2 と日本の平均気温偏差との相関は 0.65 と高い相関をもってい ることがわかった。日本の気温変動は局所的なものではなく，全球規模の変動の一環であ

図5 図4の解析の（a）EOF 第1モードの時系数PC1（実線，黒丸）とNINO3（破線，白丸）のSST偏差 の時間変化（相関係数 0．71）（b）EOF 第2モードの時系数PC2（実線，黒丸）とTsjp（破線，白丸） の時間密化（相関係数 0．65）

ることが確認された。
EOF1（図 4a）は，TNH（Tropical／Northern Hemisphere）パターン（Barnston and Livezey， 1987）と似ており，その時系数 PC1 は熱帯東部太平洋の海面水温の変動と高い相関を持つ。図5（a）に示した PC1 とNIN03 の平均海面水温偏差との相関は 0.71 である。このパターン はエルニーニョ時に中高緯度大気に卓越する循䍗偏差パターンと考えられる。図は省略す るが，このモードの変動に伴う 850 hPa 風等の偏差パターンをみると，西太平洋域に高気圧性循環が見られ，さきに述べたエルニーニョ～熱帯からの日本への影響が確認できる。

図6は，PC2 と 200 hPa 面の速度ポテンシャルとの相関を計算したものである。ユーラ シア大陸上に相関の高い領域がある。速度ポテンシャルのgradient は発散風であるので， この上層の発散域は日本付近下層の北西季節風を弱める循褱を形成する。日本の冬季天候 は，エルニーニョの影響を受けはするが，暖冬，寒冬を決定づけるのはアジアモンスーン の強弱と関連するこのEOF2 パターンの正負である。

3． 3 次元定常線形応答モデルによる偏差パターンの解析

データ解析によって，エルニーニョのときや，日本が暖冬，寒冬になるときの大気の偏差パターンを同定することができた。しかしながら，これらの偏差パターンがカ学的にど のように形成されるのかということは，まだきちんと示されてはいない。

そこで， 3 次元定常線形応答モテルを用いて，熱帯や中緯度の外部強制に対して大気が どう応答するかを理解することによって偏差パターン形成の仕組みを考える。

図6 200 hPa 速度ポテンシャルの変動と EOF 第 2 モードとの相閑係数
95\％以上の信頼度で有意な相関の領域に影（漂：正の相関，淡：負の相関）。

大気の線形応答に関する研究は以前から多くなされている。帯状平均流を基本場とした プリミティブモデルから，Hoskins and Karoly（1981）は，熱帯の forcingに対する線形応答として，ロスビー波が熱帯から中緯度に伝播してPNAパターンのような波列を形成する ことを指摘した。一方，Navarra and Miyakoda（1988）の計算では，基本場を 3 次元的に変化する気候値にした場合の線形応答は，北半球の広い範囲で波列が現れる，複雑なパタ ーンになつた。Held et al．（1989）は，帯状平均場を基本場とする傾圧計算によって，中緯度波列形成において非定常擾乱の feedback を考慮することの重要性を指摘した。この ような研究においてはGCM計算の結果を基本場や強制項の見積もりにもちいる場合が多い。

本研究では， 3 次元的な構造をもつた観測値を基本場として，観測値から見積もった forcing から 3 次元定常線形応答をもとめ，やはり観測された偏差場と対比することとす る。

3． 1 解析方法

プリミティブ方程式系は，CCSR／NIES AGCM（T21，鈶直 5 層）のうち力学過程のみを用いる ことによって表現した。

プリミティブ方程式系は，変数を渦度ら，発散 D ，温度 T ，地表面気圧 $\pi=\ln P_{S}$ と して，それらを成分にもつベクトル $x=(\xi, D, T, \pi)$ を用いると

$$
\frac{d x}{d t}=F(x)
$$

と表せる。 3 次元的に変化する時間平均場 \bar{x} に対して，$x=\bar{x}+x^{\prime}$ として x の微小擾乱成分を考える（＇は偏差を表す）。近似的に

$$
F\left(\bar{x}+x^{\prime}\right)+\left.R \cong \frac{\partial F}{\partial x}\right|_{x-\bar{x}} x^{\prime}=A x^{\prime}
$$

という形でプリミティブ方程式を線形化することができる。ただし，$R \equiv-F(\bar{x}), \frac{\partial F}{\partial x}$ は，$F(x)$ J Jacobian である。
1カ月から季節くらいの時間スケールの現象を考えるので，forcing は定常だと考える。 よって，線形化したプリミティブ方程式は

$$
A x^{\prime}+f^{\prime}=0
$$

と表せる。forcing f^{\prime} と行列 A から，x^{\prime} はその定常線形応答として求められる。
基本場として，NCEP／NCAR の再解析データの1月の気候値を用いた。

3． 2 解析の結果

図 7 （a）から，熱帯東太平洋にエルニーニョの上昇偏差に対応する熱源を置いた場合，
線形応答として下層の風が収束していることが確認できた。このとき，西太平洋の高気圧性循環は形成されなかった。一方，西太平洋にエルニーニョの下降偏差に対応する冷源を おいた場合（図 7 b）には，図1 のエルニーニョのコンポジット平均で現れていたような，南シナ海上の高気圧性循環や，日本の南岸の南西風偏差が現れた。これらの熱源，冷源は，

観測値を用いた見積もりに基づいて理想化したもので，水平方向には Gaussian，鋁直方向 にはモデル第3層（ $\sigma=0.44$ ）にピークをもつ分布になっており，Jin and Hoskins（1995）， Ting and Yu （1998）等がもちいたものと類似している。
もちろん，実際には西太平洋の冷源は東太平洋の熱源に呼応して生じている。しかし， ここでの結果は，日本に影響を与える南海上の高気圧性偏差が，熱源への遠隔応答ではな く冷源に対する直接応答であることを明確にし，エルニーニョの強さそのものよりも西太平洋における冷源の場所と強さをモニターすることの優位性を示すものである。
一方，東太平洋の熱源に対する線形応答として，上層では赤道を中心に北太平洋まで流線関数の正負の偏差が現れた（図 8 a ）。また，この線形応答の鉛直構造から，熱帯の上昇流が中緯度で下降する，局所的なハドレー循環が加熱域で生じており，そのときジェット が加速されていることが確認できた。しかし，熱帯熱源のみでは観測されるような振幅の
（a）heating at 150 W

（b）cooling ot $130 E$

図7（a）東太平洋に熱源（薄い影と等値線）（b）西太平洋に冷源 （濃い影と等値線）を置いたときの $\sigma=0.70$ での風の linear response。forcing は地表から上端までの鉛直積分で，等値線間㼨は $0.5 \mathrm{~K} / \mathrm{day}$ 。（a） $0.5 \mathrm{~K} / \mathrm{day}$ 以上の領域，（b）$-0.5 \mathrm{~K} / \mathrm{day}$ 以下の領域にそれぞれ陸影をつけた。単位は m／s。

中緯度波列は生じない。
そこで，ジェットが加速 され東に伸びたことに伴 う非定常擾乱による渦度 forcing の偏差をやはり観測から理想化して中緯度に置くと，その線形応答として，熱帯から北米大陸上にTNHパターンの ような波列が現れた（図 8 b ）。このように，エル ニーニョ時に見られる北太平洋～北米の波列は，直接的には中緯度非定常擾乱のフィードバックの偏差によってより効果的 に励起され，熱帯熱源は そのような擾乱活動の変化をもたらすジェット気流の偏差を形成するのに貢献している，と理解さ れるべきであることが確認された。
（a）heating ot 150 W （sigma＝0．22）

（b）vorticity forcing at 150 W （sigma $=0.22$ ）

図8（a）東太平洋に図6（a）と同じ熱源（蓒い影）（b）中緯度上層に正の渦度（靯い影），負の渦度（薄 い影）の forcingを置いたときの $\sigma=0.22$ での流線関数の定常線形応答。（b）の渦度 forcing の等値線間瀜は $10^{-5} \mathrm{~ms}^{-1} \mathrm{day}^{-1}$ 。流線関数の等値線間隔は（a）か $3 \times 10^{6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ ，（b）は， $1.5 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ 。

4．まとめ

日本の冬の天候に関わる要因をデータ解析から2つ同定し，3次元線形定常応答 モデルを用いてどのように関わっているかを考察した。

一つはエルニーニョである。エルニーニョによって西太平洋の対流活動が抑えられてい るときに，下層では高気圧性循環が生じ，日本の南岸には南西風偏差が現れる。南西風偏

差による熱帯からの直接的な影響で，日本は暖冬傾向になる。
熱帯東太平洋の上昇域から励起されるロスビー波列は，中緯度でのジェットと非定常摄乱の相互作用によって強化されることが定常線形応答の計算から確認できた。TNH パター ンに似た，エルニーニョ時に中高緯度に現れる循環偏差は，ジェットの下流域にあたる北米には影響を及ぼすが，日本には影響しない。

もう一つは，EOF2 で表される PNA パターン，EU パターンの特徵を合わせもつ中高緯度大気の主要変動モードと考えられるパターンによる変動である。このパターンの正負は，
日本の冬の北西季節風の強弱と関連しているため，エルニーニョ時の熱帯からの影響より も，日本の暖冬，寒冬に対して強い影響力を持つ。このパターンの形成のしくみも，定常線形応答モデルを用いて解析を試みた。しかし，エルニーニョの場合と異なり，パターン を形成する forcing を特定することができなかった。大気の内部変動によって形成され るという指摘，東西平均流と準定常波とのつながりと関係があるという指摘もある。さら に詳細な循睘偏差の解析の上，EOF2 のパターン形成のしくみを解析することが，今後の課題である。

参考文献

Barnston，A．G．and R．E．Livezey，1987：Classification，seasonality and persistence of low－ frequency atmospheric circulation patterns．Mon．Wea．Rev．，115，1083－1126．
Branstator，G．，1990：Low－frequency patterns induced by stationary waves．J．Aimos．Sci．，47， 629－648．
Gill，A．E．，1980：Some simple solutions for heat－induced tropical circulation．Quart．J．R． Meteor．Soc．，106，447－462．
Halpert，M．S．and C．F．Ropelewski，1992：Surface temperature patterns associated with the Southern Oscillation．J．Climate，5，577－593．
Hanawa，K．，Y．Yoshikawa and T．Watanabe，1989：Composite analyses of wintertime wind stress vector fields with respect to SST anomalies in the western north Pacific and the ENSO events part II．ENSO composite．J．Meteor．Soc．Japan，67，833－845．
Held，I．M．，S．W．Lyons and S．Nigam，1989：Transients and the extratropical response to El Nino． J．Atmos．Sci．，46，163－174．
Horel，J．D．and J．M．Wallace，1981：Planetary－scale atmospheric phenomena associated with the Southern Oscillation Mon．Hea．Rev．，109，813－829．
Hoskins，B．J．and D．J．Karoly，1981：The steady linear response of a spherical atmosphere to thermal and orographic forcing．J．Atmos．Sci．\}, 38, 1179-1196.
jin，F．and B．J．Hoskins，1995：The direct response to tropical heating in a baloclinic atmosphere． J．Atmos．Sci．，52，307－319
気象庁，1994：近年における世界の異常気象と気候変動．444pp．
Kodera，K．，M．Chiba，H．Koide，A．Kitoh and Y．Nikaidou，1996：Interannual variability of the winter stratosphere and troposphere in the Northern Hemisphere winter．J．Meteor．Soc．Japan， 74，365－382．
Kodera，K．，1998：Consideration of the origin of the different midlatitude atmospheric response among El Nino events．J．Meteor．Soc．Japan，76，347－361．
Livezey，R．E．and K．C．Mo，1987：Tropical－extratropcal teleconnections during the Northern Hemisphere winter．Part II：relationships between monthly mean Northern Hemisphere circulation patterns and proxies for tropical convection．Mon．Wea．Rev．，115，3115－3132．
Matsuno，T．，1966：Quasi－geostrophic motions in the equatorial area．J．Meteor．Soc．Japan，44， 25－43．
Navarra，A．and K．Miyakoda，1988：Anomaly general circulation models．J．Atmos．Sci．，45， 1509－1530．
Ting，M．and L．Yu 1998：Steady response to tropical heating in wavy linear and nonlinear baloclinic models．J．Atmos．Sci．，55，3565－3582．

Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. -C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, C7, 14, 291-14, 324.
Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784-812.
Zhang, R., A. Sumi and M. Kimoto, 1996: Impact of El Nino on the East Asian Monsoon:A diagnostic study of the ' $86 / 87$ and '91/92 events. J. Meteor. Soc. Japan, 74, 49-61.

冬季 500 hPa 高度と地上温度場の特異値分解解析

気象研究所気候研究部

小出 寛，小寺邦彦

1．はじめに

まず，図 1 をご覧頂きたい。これは太平洋ハイブリッド結合モデルによる冬季 700 hPa

図1太平洋ハイブリッド結合モテルによる 6 ヶ月予報の 700 hPa 高度予報と実況の相関マップ。有意な正相関を陰影で示し，負の等値線は除いて ある。Grahamと Barnett（1994）による。

図2エルニーニョの最盛期の冬に現れやすい 700 hPa 高度場の偏差パターンの概念図。 Horel と Wallace（1981）による。

高度の予報と実況の相関図で，モデルの太平洋 SST による 6 カ月先の予測可能性を示したものである（Graham と Barnett，1994）。相関 0.6 以上を陰影で示し，負の等値線は省略してある。この図を見ているとアメリカやカナダ，特に そこで仕事をする長期予報官は，実に幸運であると言わざるを得ない。彼らは良 い ENSO 予報を出せば，少なくとも寒候期に関しては季節予報のスキルが自動的に上がるのである。可哀相なのはヨー ロッパや日本で，いくら ENSO 予報を良くしても，それだけで季節あるいはそ れ以上長いスパンの気候予測のスキルを得ることは難しい。ここで使われたモデ ル自体はもはや最新のモデルとは言い難 いが，気候システムそのものが大きく変化しない限り，示された傾向に変わりは ないであろう。

太平洋熱帯域のSST 変動と中緯度大気循環の関係については，Bjerknes （1969）以来の長い研究の歴史がある。
Horel と Wallace（1981）によって示され たエルニーニョ期間の冬季における対流圏の循嘸場の概念図（図 2）は，何度も人々 の頭脳に刷り込まれて既に固定観念と化 した感がある。エルニーニョの冬の天候 について考えるとき，中緯度に住む我々 の頭にまず浮かぶのはおそらくこの図に

違いない。実際，熱帯域まで含めた冬の海面水温（SST）と北半球の 500 hPa 高度場から， その両方に同時に現れやすい主要な変動成分を特異値分解（SVD）解析を使って取り出して みると（図 3），その第 1 モード（左列）には，Horel と Wallace の概念図によく一致した空間 パターンが得られる。後の解析結果と比較するためにこの解析を SST－SVD と称し，左列 の第 1 モードを SST－1，第 2 モードを SST－ 2 と呼ぶことにする。SST の空間パターンを見れば，SST－1 が ENSO に伴ら変動をとらえていることは明らかである。図には第2モ ードまで示したが，さらに下位のモードまでを調べても太平洋熱帯域の規模の大きな SST変動は見当たらない。従って SST と 500 hPa 高度の関係で見る限り，ENSO のシグナル はSST－1 に集約されていると見てよいであろう。ところで日本域はエルニーニョ現象下で暖冬•冷复となる傾向があると言われているが，図 3 左では SST ， 500 hPa 高度のどちらの空間パターンを見ても，日本付近は節になっていてあまり大きな偏差は見られない。

これに対して右列の第 2 モード（SST－2）には，中緯度に弱い帯状の構造が見られるもの の，熱帯域にはほとんど SST の偏差が見られないことが特徵的である。図1 と図3の大気側のパターンを見比べて頂きたい。図 1 で陰影のかかった部分と図 3 の第 1 モードの偏差が大きいところが一致することは当然だが，よく見ると図1 で白抜きになった予測可能性の低い部分，ヨーロッパから北アメリカ東海岸，北極域，東アジアは図 3 の第 2 モード が大きな偏差を示す場所ときれいに一致している。SST との関係が見られないことから， この変動は大気そのものに起因するものではないかと考えられる。中緯度ではこのような熱帯SST と直接関係しない変動が強いために，同じエルニーニョ現象の冬であっても，そ

図 3 12，1，2月の冬の 500 hPa 高度（上）と SST （下）の SVD 解析の第 1 （左列），第 2 （右列）モード。等値線は高度が 10 m ， SST が 0.3 K で表したへテロ回帰係数， 0 線は細線で表示，ヘテロ相関の絶対值が 0.4 以上に㓌影。

れぞれの大気循環の様相は大きく異なっている。この違いがどのようにもたらされている かを理解するために，また熱帯太平洋のSST 偏差と北半球の大気循環の関係が，我々のい る陸上の気候にどう反映されるのかを見るために，海上のSST だけではなく，北半球の 4割の面積を占める陸上の地上気温をも含めて SVD 解析を行ってみよう。行ったことは基本的に先のSVD 解析のSST を，海上のSST と陸上の地上気温を併合した温度場に入れか えたと思ってもらえばよい。ただし次節に述べるように温度場には一季節前の秋と次の春 も一緒に並べて使用したが，最も強い関係があるのは冬同士なので，得られた結果は冬だ けを用いた場合とほとんど変わりない。

2．解析

500 hPa 高度データについては，NMC による緯経度 $5^{\circ} \times 5^{\circ}$ の月平均解析値から北緯 20°以北で冬 3 ヶ月を平均した。温度場については Jones の陸上地上気温，海上 SST を併合 した $5^{\circ} \times 5$ 「月平均偏差から，冬だけでなく前後の季節とのラグ相関まで含めた関係を見 るために，連続する秋，冬，春の 3 ヶ月平均値を求めてその全てを用いた。温度場の解析領域は南緯 30 度以北，北側は経度により異なるが，北緯 75° あたりまではほとんどデー タがある。アフリカと南アメリカ，中東では地上気温データに抜けが多い。熱帯•南東太平洋のSST 欠測値は英ハドレーセンターの GISST2．0で埋めてある。期間はある程度の品質がそろった 1963／64 年から 1993／94 年の 31 冬を用いる。冬の 500 hPa 高度場と， 3 季節の温度場の格子点值に，それぞれ緯度の余弦の平方根の重みを付けて共分散行列を計算 し，特異値分解すると特異値の対角行列と 2 つの特異ベクトルの行列が得られる。それぞ れの特異値は，共分散の二乗の総和に占める各モードの変動の寄与を示し，特異ベクトル は 2 つの場の空間パターンに対応している。ここでは特異値の相対的な大きさと，冬季北半球 500 hPa 高度場の変動のどれだけをそのモードが説明するかで判断して，上位から 3 つのモードを取り上ぼた。得られた空間パターンでもとのデータを展開することにより，各モードに対応した時系列が計算できる。図4に示した空間パターンの等値線は，ヘテロ回帰図（Heterogeneous Regression Map）である。自分と異なる場の展開俰数時系列との線形回帰を計算して得られる。異なるモードのヘテロ回帰図同士は，共分散行列を用いた場合に厳密に直交である。 500 hPa 高度に対して地上気温（TS）と SST を用いたので，記述の簡便さのためにこの解析をTS－SVD，得られたSVD モードを上位からTS－1，TS－2，TS－3 と記す。この 3 つの SVD モードによって，共分散の総和の 9 割， 500 hPa 高度場の全変動 の 6 割が説明される。得られた結果は期間を半分に分けて解析しても，上位 3 つのモード で安定である（Koide と Kodera，1999）。

3．結果

図 4 左列はTS－SVD の第 1 モードである。上段の 500 hPa 高度の空間パターンは，中緯度と極域との顕著な南北シーソー構造を示している。SST では冬から春にかけて強まる北

図 4 冬の 500 hPa 高度（最上段）と，秋（ 2 段目），冬（3段目），春（最下段）の SST＋地上気温の SVD 解析の第 1 （左列），第 2 （中列），第 3 （右列）モード。表示の形式は図 3 と同じ。

大西洋の南北に並ぶ偏差が見られるだけで，熱帯太平洋のSST偏差はほとんど見られない。陸上については，秋から春にかけてユーラシア高緯度の気温偏差が著しい昇温を示し，逆 にトルコやエジプト付近では負偏差である。この 500 hPa 高度偏差の空間構造を，北極域 で負，ヨーロッパと東アジアで正の偏差中心を持つ特徴から PEA（Polar／Europe－Asia：極域 ノユーラシア）パターンと呼ぶ。後述するように，この変動は対流圏中層より上では下部成層圈まで等価順圧な構造を示していて，成層圈の極夜ジェットの強弱の年々変動と非常に よい相関がある。これは今まで知られている局所的なテレコネクションとは違って，現象 の空間スケールが半球規模であり，地上気温や海面水温，海氷や積雪分布などの大規模な変動と関係している。最近 Thompson と Wallace（1998）が提唱している AO（Arctic Oscillation）は海面気圧でこれと同じ変動を見ていると考えて良い。SST－SVD の第 2 モー ド（図3右）も北太平洋上の偏差の符号を除けばほぼ共通する特徴を備えている。変動の大 きいアリューシャン低気圧に関係した北太平洋上の偏差がどちらの符号で結びつくかで SST－ 2 とTS－1 に違いが見られるが，共に有意な相関は見られないことから，北太平洋上 の信号にあまり物理的な意味はないと考えられる。

このTS－1（PEA）の，最近 30 年の時系列（図6最上段）は卓越した十年規模変動を示してい るが，なぜ大気の内部変動と考えられるこのような変動のスペクトルが特定の時間スケー ルを持つのか，そのメカニズムについてはまだ明らかではない。

（c） SST（DJF）

（d） SST（DJF）

图5 1976／77（左列）と $1972 / 73$（右列）の冬の 500 hPa 高度（上）と SST （下）の偏差。等値楾間沓は上か 10 m で下が 0.5 K ，絶対値が 20 m と 1 K 以上に陵影。

图6 各 SVD モードの時䒩列，上からTS－SVD の第 1（PEA），第2（PNA），第3（WP）モード，SST－SVD の第1（ENSO），第2モード，TS－2 とTS－3 による回転SVD モード（ENSO 再搆成）。全て実線は 500 hPa 高度の展開係数時系列，破線 は温度場の時系列を示し，標準偏差で正規化済み。横軸は1月の西暦年に対応。

TS－SVD の第1 モードには熱帯太平洋 SST との関係は見られない。 SST－SVD で首位を占めていた熱帯太平洋SST と関係の高い大気循環の変動 は，下位のTS－2 とTS－3 に別れて現れ る。図 4 上段の 500 hPa 高度場は，中央 TS－2 が明膫な PNA（Pacific／North America：太平洋／北アメリカ）パターン，右列TS－3 は WP（Western Pacific：西太平洋）パターンに似た，ユーラシア北東部から北太平洋東岸にかけての南北双極 構 造を示す。Wallace and Gutzler（1987）が一点相関で定義した WP テレコネクションよりも偏差中心 が西よりだが，このパターンを便宜上 WP と呼ぶことにする。上から 3 段目 の冬の温度場を見ると，面白いことに TS－2，TS－3 が揃って熱帯太平洋上で エルニーニョ傾向の空間パターンを示 していることが分かる。温度場に SST のみを用いた SST－1（図 3 左列）の場合 との違いをどう考えるべきだろうか。 TS－SVD の温度場は連続する 3 季節を使ったが，これを冬だけにしてみても結果に差はない。従って図3と図4の違いは北半球で面積の大きい陸上の気温を解析に加えたことに起因している。 SST－1 はSST，特に面積の大きい熱帯 SST の変動をキーにして中高緯度の循嘸を見ているのに対して，TS－SVD は中高緯度の循環場の変動（とそれに伴う気温の変動）をキーにして，熱帯域のSST変動をとらえた見方と解积できる。そし て当然のことながら，TS－SVDは中高緯度に現れやすい大気循環の特徴をよりょ

図7 TS－SVD の第 2（PNA，横軸），第3（WP，縦軸）モー ドの温度場の展開係数の散布図，○印はエルニー ニョ時の冬，×印はラニーニャ時の冬。1月に対応 した西榃年の下 2 桁を右下に表示。

く説明する。このことは，500hPa高度の全変動をどれだけそのモー ドが説明できるかを示す VARF で比較しても明らかで，SST－1で はこの値が 8.8% に留まるのに対 して，TS－2 とTS－3 では共に 10% を超えている。
実際，エルニーニョの冬ごとに見られる中高緯度の大気循環場の偏差を見ていると，必ずしも Horel and Wallace の概念図や SST－1 の 500 hPa 偏差（図 3 左上） とは一致していないことに気づく。年によっては全くかけ離れた偏差場が現れている場合もある。例え ば，弱いエルニーニョが発生して いた 1976／77 年の冬は

図 8 SST－SVD モードの 500 hPa 高度パターンの全変動を TS－SVD モ ードの高度パターンで展開した百分军。上が第1モード，下か第 2 モード，群細は本文参照。

PNA パターンが極めて強かった（図 5 左）が， これよりはるかに中東部熱帯太平洋のSST 正偏差が大きかった 1972／73年の 500 hPa高度偏差（図5右）は， PNA とは明らかに異な っている。さらにこの 2 つの冬で極域や北大西洋周辺の偏差傾向は正反対になっている点 も注目される。

ここで得られた TS． 1（PNA）とTS－2（WP）の 500 hPa 高度偏差の展開係数の時系列を，散布図にしてみると（図 7），空間パターンが直交す

図 9 TS－SVDの第 2 モードから第3モードに 48 度回転させた回転SVDモードのヘテロ回帰図（左列）。表示は図 4 と同様。右は SST－SVD 第 1 モードの 500 hPa 高度へテロ回帰図から左上のパター ンを引いた残差。

ることからも予想できるが，全データではほとんど無相関（－0．264）である。ところが熱帯 からの強制力がかかるエルニーニョ年（ $($ 印）だけで考えると有意な逆相関 (-0.585) が現れる。 すなわちエルニーニョ時に限ると，PNA が強いときには WP は弱く，逆にWP が強いと きにはPNA が弱いという排他的な出現傾向になっている。ラニーニャ年（×印）については 1967／68 年を除くとエルニーニョ年ほどデータ点は散らず，どちらかといえば WP が逆符号で出やすい傾向がある。

ここで図 4 のTS－SVD の空間パターンは互いに直交していることに着目して，図 3 の SST－1 の 500 hPa 高度ヘテロ回帰図を，TS－SVD の 500 hPa 高度場のパターンで展開して みよう。つまりTS－SVD の各モードが，図3のENSOモードと見なされるSST－1の大気循環場の変動成分をどれだけ説明できるかを調べる。その結果を図 8 に示した。SST－1 の大気側のほとんどの変動が TS－2（PNA）と TS－3（WP）だけで説明されることが分かる。また この図からSST－1 の変動は，TS－SVD の第 10 モードまでの他のモードには隠れていない ことも分かる。回転 EOF と同様に回転SVD が定式化出来るので（Cheng and Dunkerton， 1995），TS－2 とTS－3 の間で最も SST－1 を説明できるようにSVD モードを回転すると，TS－2側から 48 度回転させたときに， 500 hPa 高度場のパターンは，SST－1 のそれと最も空間相関が高くなる。つまり位相空間で直交するTS－2 とTS－3を，そのほぼ中間の角度に合成す ると ENSO モードになることが分かった。再構成した空間パターンを図 9 左列に，元の

図 10 TS－SVD モードの温度場の時系列と月平均帯状平均東西風および定常波による EP フラックス の線形回舞図。左から右に 11，12，1，2月，上段から下段に PEA，PNA，WP に対応。

SST－1 の 500 hPa ヘテロ回归図から回転SVD のそれを引いた差を図 9 右側に示したが， ほとんど完全な一致が見られる。また，図6の展開係数の時系列でも，上から4段目に示 した SST－1 と最下段の回転 SVD の時系列とは，どちらの場の時系列でも相関 0.89 と極め て良い一致を示す。

つまりこれまで ENSO に伴う冬の中緯度の大気循環の変動と考えられてきたパターンは，実は，冬季北太平洋域で最も顕著な PNA と WP 型の二つのテレコネクションの組み合わ せによって説明されることが分かった。そして当然ながら PNA とWP 型の両者による方 が中高緯度大気循環の変動のより大きな部分を説明できる。

4.1 鉛直構造，定常波の伝播，および高周波变動

図 4 には北半球の冬に卓越する代表的な変動についての多くの情報が含まれており，そ れらは地上と 500 hPa 高度での水平方向の空間パターンで示されている。ここまで大気循環場を 500 hPa 高度に限って議論してきたが，変動のメカニズムについて考えるためにそ の鈖直構造についても見てみよう。図 10 は図 4 に示した 3 つのSVD モードの温度場の展開係数時系列（図 6）と，月平均の帯状平均東西風および定常波による EP フラックスの線形回帰図である。左から右に 11，12，1，2月，上段から下段に PEA，PNA，WP の順 に並べた。これを見ると上段 PEA の鉛直方向の特徴は成層圏から対流圏にかけて非常に背の高いものであることが分かる。PEAの強い年は冬の初めに成層圏極夜ジェットが強く，定常波のエネルギーが上向きに伝わりにくいために，強い極夜ジェットが維持されてさら に波の伝播を弱くする正のフィードバックが働き，そうしているうちに次第に強い西風の部分が対流圈にまで降りてくる。圈界面付近の渦位の勾配が強いところではプラネタリー波の屈折率が大きくなり，波のエネルギーが水平方向に北極域に伝わりにくくなって，対流圏でも西風が強くなる。この様子は，図 10 で東西風と EP フラックスのよく整合した偏差によってとらえられている。このように成層圏と対流螣がカップルした PEA では，平均東西流とプラネタリ一波の相互作用がその中核のメカニズムとなっていることがわか

図11月平均 500 hPa 高度と月別のストームトラックの冬3ヶ月並列 SVD 解析の第1（上），第2（下） モード。20度以北，東経 130 度から西経 100 度までの太平洋セクターの格子点値から共分散行列を計算。等値綄は 500 hPa 高度のヘテロ回帰，ストームトラックのヘテロ相関の絶対値 0.4 以上に陣影。E－vector の 500 hPa 時系列との線形回帰も重ねて表示。相関，線形回帰 は時系列から北半球全域で計算した。

る（Kodera et al．，1996）。対流圏ではこれに付随して北大西洋やヨーロッパのストームトラ ックの活動度や水平熱輪送に変化が起こり，これらは副次的な効果をもたらすと考えられ る。

これに対して，PNA や WP では東西風偏差の主要部分は対流圈にあって，あまり上へ は伸びていないのが特徴である。WP の方が早く現れて PNA は晚冬に発達する傾向があ るが，共にはじめに対流圏に東西風偏差が現れる点で共通していて，EP フラックスの偏差との整合はほとんど見られない。これらの特徵からPNA とWP についてはプラネタリ一波の果たす役割は少なく，高周波のトランジェントエディや傾圧波と平均場の相互作用 が関係していると見られる。
なぜエルニーニョの冬に PNA と WP の上述した違いが現れるのかを考えてみよう。熱帯からの非断熱加熱による強制に対する線形定常応答は，例えば Karoly ら（1989）などで
（a）North Japan
（b）East Japan
（c）West Japan

（d） SW Islands

図12日本の予報区（大区分）の冬平均気温偏差時系列，継軸は K，上か ら北日本，東日本，西日本，南西諸島。区分については例えば気候系監視報告1998年3月号（気象庁）を参照。

示されている。北太平洋から北アメリカの波列状の特徴が目を引く が，よく見ると北太平洋上だけでなくユーラ シア北部でも西風が強化される傾向が見られ る。西風が強くなれば そこでは平均流と傾圧波のような高周波変動 との相互作用が起こり やすくなる。このよう な基本場のもとで，も し冬の初めにユーラシ ア側で相互作用が強け れば，それによってジ エットは強められ高緯度に維持されて（WP強化），下流の北太平洋上でのジェットの南下と強化を抑制するで あろう（PNA 弱化）。逆 にユーラシア側で相互作用が弱ければ，それ は PNA の発達に有利

に㗢くことが期待される（Kodera，1998）。
このような観点から高周波変動の活動度と月平均 500 hPa 高度の関係についてさらに調 べてみる。NCEP 再解析の日別の 300 hPa 高度場に， 10 日ハイパスのランチョスフィル ター（Duchon，1979）をかけてから求めた月平均の標準偏差を，ストームトラックの活動の指標として用いる。月平均の 500 hPa 高度と 300 hPa 高度高周波変動の振幅を，それぞれ 12，1，2月の3ヶ月分並べてSVD解析を行った。北太平洋上のストームトラックに着目 して，東経 130 度から西経 100 度までの太平洋セクターのみの格子点値から計算した共分散行列を使ったが，ヘテロ相関，回帰図は時系列から北半球 20° 以北全域で計算した。図 11 にその第1，第 2 モードを示す。図中の等値線は 500 hPa 高度の線形回帰，陰影は高周波変動の振幅のヘテロ相関の絶対値 0.4 以上の領域で， 500 hPa 高度の時系列から求めた E－vector（Hoskins 5，1983）の線形回帰も図示した。月別に示しているが第1モードはPNA タイプ，第 2 モードはWPタイプの高度偏差を示していることが分かる。E－vector の発散 は高周波の寄与によるジェットの加速，収束は減速を示す（例えば James，1994）。PNA は 1月から2月にかけて発達する傾向があり，ジェット軸の強化と南へのシフトに関係して， ストームトラックは北で減衰，南で発達のダイポール構造を見せている。これに対してWP はそれより早く 12 月から 1 月にかけて発達する傾向が見られ，1月には日本上空から北ア メリカ西海岸にかけて，東西に長く伸びたストームトラックの偏差が E－vector の発散とき れいに対応していて，高周波の寄与によるジェット軸の東への伸長がとらえられている。 またこれに先立つ 12 月にもユーラシア上で高周波変動の相関が見られるのが特徴的であ る。WP の方が約 1 ヶ月先行して発達すること，ユーラシア東部で先行する偏差が見られ ることは，上述のエルニーニョ時の PNA と WP の違いについての作業仮説と一致する結果となっている。ただし，こちらはエルニーニョの冬を含む 1958／59～97／98年の全 40 冬 のデータを用いた。
一方，エルニーニョ時のSSTにはほとんど有意な差は見られないのだが，熱帯の非断熱加熱の違いに着目すると，WP 型は中東部熱帯太平洋で対流活発かつ西部で対流抑制時に， PNA は西部でも対流が平年並みか強い場合に起こりやすいとの指摘がある（尾瀬，1998；安富と木本，グロースペッター本号も参照）。つまりPNA は西部，中東部熱帯太平洋に共に熱源を置いた場合，WP は西に冷源，中東部に熱源を置いた場合の線形定常応答として説明でき るという主張である。少なくとも亜熱帯域まではこのような熱帯からの直接的な影響が及 ぶ可能性があると考えられる。また西太平洋域ではWP の符号はそのまま大陸からの寒気吹き出しの強弱として現れるので，冬の季節進行につれて大陸からの寒気の吹き出しがフ ィリピン付近まで達して西部熱帯太平洋付近の対流活動を刺激するというつながりもある のかも知れない。

4.2 エルニーニョごとの冬の北半球の違いについて

このようにエルニーニョ時の中緯度での PNA とWP の分離は，単に数学的に別のモー

ドに分かれたというものではなく，物理的な意味があると考えられる。ここでの結果によ れば，エルニーニョの冬ごとの北半球の大気循環はなぜ大きく異なるのかという問題の答 は，一つには熱帯太平洋域からの熱的強制と中緯度の高周波変動の効果によって励起しや すい PNA 型と WP 型の 2 種類のテレコネクションパターンがあり，どちらがより強く現才るかという違いがあるため，そしてもう一つには，熱帯 SST と直接には無関係の PEA のような中緯度大気の内部変動性による違いがあるため，ということになる。極端な例だ が図 5 の 2 つのエルニーニョの冬はこの解釈とよく整合した特徴を示しているように思わ れる。

4.3 日本の冬の天候

これまで述べてきた北半球の変動と日本の冬季天候との関係については，図4の温度場 の空間パターンを見ると容易に想像がつくように，日本域に最も大きな影響を及ぼすのは WP である。 500 hPa 高度偏差を見ると日本付近北緯 50 度あたりを節にして，南北に帯状 の偏差が並び，極東域の西風ジェット軸の南北変動を示している。温度場の北西太平洋域 の強い正偏差は，大陸からの寒気吹出しの弱化に対応している。東日本以西の日本の冬季平均気温は WP の時系列と最も相関が高い。時系列は 1986／87 年以降に符号が逆転してい るが，図 12 の日本の気温偏差でも特に南西諸島や西日本は $1986 / 87$ 年以降に暖冬が続い ており，よい対応が見られる。最近の日本付近の WP が関係する変動については松村と謝 （1998）による詳しい解析がある。より極域に近い北日本だけは 2 年遅れて 1988／89 年から暖冬が始まっているが，これについてはPEA の影響が強いためと考えられる。実際 PEA時系列（図6）は北日本の気温偏差と最も相関が高く，領域を北海道に限ればさらに相関は高 くなる。

4．4 TNH パターンとの関係

さて Livezey と Mo（1987）は熱帯太平洋 SST と相関の高い北半球のテレコネクション パターンとして 1 月の北半球 700 hPa 高度の回転 EOF 解析からPNA とWPに加えてTNH （Tropical／Northern Hemisphere：熱帯／北半球）パターン（図14上）を挙げている。このTNH という名称自体はあまり適切ではないと思われるが，それはともかく，今回の解析でTNH は独立した変動として抽出されなかった。第 3 モードの WP（図 4 左上）の北アメリカ周辺 がやや TNH 的に見えるが，その信号は非常に弱い。

Livezey と $\mathrm{Mo}(1987)$ とは月と季節の平均期間の違い，解析手法の違い，データの違いが ある点に留意すべきであるが，今回解析した期間内の強いエルニーニョの冬の 500 hPa 偏差を，TS－SVD モードで展開し，上位 3 つ（PEA，PNA，WP）の成分を取り除いたときに残差に何が見えるかを調べた。但し 1997／98年を含めるために，1963／64～97／98年の35冬 の NCEP 再解析による 500 hPa 高度と地上 2 m 気温を用いて，図 4 と全く同じ解析を行っ た結果を使っている。NCEP 再解析 500 hPa 高度は緯経度 2.5 度格子では北緯 20 以北，

地上 2 m 気温は 192×94 のガウス格子の南緯 30 度から北緯 76 度の間を緯度と面積の重み付きで使用した。データソースも解像度も異なるが，空間的な特徴は図4とほとんど変わ らない。このため空間パターンは省略し，時系列のみを図13に示す。図14にLivezey と $\mathrm{Mo}(1987)$ による 1 月の 700 hPa 高度の TNH と，特定のエルニーニョの冬の 500 hPa 偏差， およびTS．SVD の上位モードを差し引いた残差を示す。1997／98年は史上最大規模と言わ れるエルニーニョの発生年であり，WP と PNA の指数は共に高かった。それらを取り去 ると TNH とよく似たパターンが見える。他のエルニーニョ年についても残差を見たとこ ろ，1968／69 年と 1982／83 年もよく似た特徴を備えていることが分かった。PNA（図 4）で は北アメリカ西海岸が正負の境になっているのに対して，偏差の位相の違いから図 14 上 の TNH ではちょうどロッキー山脈の東西に逆符号の偏差が位置することが特徵である。取り上げた 3 つの冬はロッキーの東の正偏差が大西洋上に見える東西帯状の構造につなが っている点でも一致している。これらのエルニーニョ年の偏差（左側）はもともと大きく異 なっているが，残差（右側）には共通する特徴が得られた。一方，熱帯太平洋 SST が平年並 の年やラニーニャ年では残差に このような特徴が見られる年は なかった。調べてみたが，エル ニーニョとラニーニャの単に逆符号ではない応答を，線形の手法で解析しているために見える人工的なものではなさそうであ る。特定のエルニーニョの冬（う ち 2 つは特に強いエルニーニョ） の，TS－SVD で線形的に説明で きない部分に TNH 的なパター ンが見えることは興味深い。そ のメカニズムについては今後の課題である。

4.5 モテルでの再現性

TS－SVD の変動モードの鈶直構造の明らかな違い（図 10）は， それらをもたらすメカニズムの違いを示唆している。大気大循嘸モデルによるこれらの主要な変動の再見性はどの程度のもの だろうか。エルニーニョ時の

図 14 上は Livezeyと Mo （1987）による 1 月の 700 hPa 高度の回転 EOF のTNH バターン相関図，等値線間隔は 0.15 ，数値は相関係数 $\times 100$ 。 2 段目以降はエルニーニョの冬の 500 hPa 偏差（左）と TS－SVD の上位 3 モードを差し引いた残差（右），上から $1997 / 98$ 年，1982／83年，1968／69 年。等値線間隔 は 20 m ，絶対値 40 m 以上に陰影

PNA と WP の発現は微妙なバランスの上に立っており，モデルの基本場や総観規模擾乱 のバイアスに大きく依存することが推測される。大気モデルにSST を与えたときのこれら のテレコネクションパターンの再現性については，モデルごとにばらばらの結果になって おり，例えばRenshaw ら（1998）のSST 実験では，エルニーニョ時のSST偏差に対してPNA の出現特性には応答があるが WP の再現性は見られない。一方，Kobayashi ら（1999）は，気象庁の全球スペクトルモデルによる SMIP 季節予報実験で極東域の予報精度が比較的良 いことを示しており，これは WP の成績にも依存しているのではないかと思われる。また Tsuyuki（1994）は旧全球スペクトルモデルの大気上端を 10 hPa から 1 hPa に変えて成層圏 で鈶直解像度を上げた時の，テレコネクションパターンごとの1ヶ月予報成績を評価して，予報後半のWP に大きな向上が見られることを報告しているが，このことは WP のメカニ ズムを考える上で大変興味深い。

一方，PEA については，自然とよく似た水平•鈆直構造を持つ変動が，大気海洋結合モ デルや大気大循環モデルにも存在することが報告されている（Kitoh et al．，1996；Kodera et al．，1998）。観測の PEA では最近数十年に突然十年規模変動が強まっているが（図 6，13上段），大気の内部変動が大きな役割を果たすこのような十年規模変動の再現は，境界条件だ けを与えた大気モデル実験では難しいと思われる。

5．おわりに

本稿は平成 10 年 11 月に気象庁で行われた気象学会月例会での発表に若干内容を追加し たものである。内容の多くは既に気象集誌に掲載済み（Koide と Kodera，1999）だが，帯状平均東西風や EP フラックス，高周波変動との関係を新たに記述し，より高解像度のNCEP再解析データを用いて期間を 1997／98 年の冬まで延長した結果を追加した。

謝辞

データを提供して下さった各機関および関係者に厚く感謝致します。解析には気象研究所の黒田友二博士作成の高速 SVD コードを使用させて頂きました。また，ほとんどの図 の作成と解析の一部に GrADS を用いました。

参考文献

Bjerknes，J．，1969：Atmospheric teleconnections from the equatorial Pacific，Mon．Wea．Rev．，110， 1393－1404．
Cheng，X，and T．J．Dunkerton，1995：Orthogonal rotation of spatial patterns derived from singular value decomposition analysis，J．Climate，8，2631－2643．
Duchon，C．E．，1979：Lanczon filtering in one and two dimensions，J．Applied Meteor．，18，1016－1022．
Graham and Barnet，1994：ENSO and ENSO－related predictability．Part II：Northern hemisphere $700-\mathrm{mb}$ height predictions based on a hybrid coupled ENSO model，J．Climate，8，544－549
Horel and Wallace，1981：Planetary－scale atmospheric phenomena associated with the southern oscillation，Mon．Wea．Rev．，10，813－829．
Hoskins，B．J．，I．N．James，and G．H．White，1983：The shape，propagation and mean－flow interaction of large－scale weather systems，J．Atmos．Sci．，40，1595－1612．

James，I．N．，1994：Introduction to circulating atmospheres，Cambridge Univ．Press，230－243 pp．
Kitoh，A．，H．Koide，K．Kodera，S．Yukimoto，and A．Noda，1996：Interannual variability in the stratospheric－tropospheric circulation in a coupled ocean－atmosphere GCM，23，543－546．
Kobayashi，C，K．Takano，S．Kusunoki，M．Sugi，and A．Kitoh，1999：Seasonal prediction skill over the eastern Asia using the JMA global model，Q．J．R．Meteor．Soc，submitted．
Kodera，K．，H．Koide，and H．Yoshimura，1999：Northern hemisphere winter circulation associated with the North Atlantic Oscillation and stratospheric polar－night jet，Geophys．Res．Lett．，26， 443－446．
Kodera，K．，M．Sugi，R．Kawamura，and H．Koide，1998：Gharacteristic features of recent abrupt changes in winter circulation revealed by a general circulation model，J．Meteor．Soc．Japan，76， 139－144．
Kodera，K．，M．Chiba，H．Koide，A．Kitoh，and Y．Nikaidou，1996：Interannual variability of the winter stratosphere and troposphere in the Northern Hemisphere，J．Meteor．Soc．Japan，74，365－382．
Koide，H，and K．Kodera，1999：A SVD analysis betweeen the winter NH $500-\mathrm{hPa}$ height and surface temperature fields，J．Meteor．Soc．Japan，77，47－61．
Livezey，R．E．，and K．C．Mo，1987：Tropical－Extratropical Teleconnections during the Northern Hemisphere Winter．Part II：Relationships between Monthly Mean Northern Hemisphere Circulation Patterns and Proxies for Tropical Convections，Mon．Wea．Rev．，115，3115－3132．
松村伸治•謝 尚平：日本列島および日本海上の経年気候変動に及ぼす冬季季節風の影響，天気，45，781－791．
尾瀬智昭，1998：太平洋北アメリカパターン（PNA）／西太平洋パターン（WP）が強く見られるエルニーニョ年 の熱帯西太平洋における特徴，日本気象学会，1998年秋季大会予稿集，A208．
Renshaw，A．C．，D．P．Rowell，and C．K．Folland，1998：Wintertime low－frequency weather variatbility in the North Pacific－American sector 1949－93，J．Climate，11，1073－1093．
Rodwell，J．M．，D．P．Rowell，and C．K．Folland，1999：Predictability and variability of North Atlantic and European climate，extended abstract of $10^{\text {th }}$ Symposium on Global Change Studies， $79^{\text {th }}$ AMS Annual Meeting，Dallas，Texas，．10－15，Jan，1999，395－398．
Thompson and Wallace，1998：The arctic oscillation signature in the wintertime geopotential height and temperature fields，Geophys．Res．Lett．，25，1297－1300．
Tsuyuki，T，1994：Impacts of increased vertical resolution in the stratosphere on dynamical extended－ range forecasts，J．Meteor．Soc．Japan，72，795－810．

高層気象観測月統計値と ENS Oの関係

気象庁観測部観測課統計室
小柴 厚

要旨

日本付近の可降水量とエルニーニョ監視海域の海面水温との関連を，月統計値を使用し て調べた。1979年から1998年の20年間について，日本の高層気象観測 18 地点毎の可降水量の偏差と，エルニーニョ監視海域の海面水温アノマリーとのケンドールの順位相関に よる検定では関連性はみられなかったが，稚内と南鳥島を除く 16 地点では，1997年後半 から1988年にかけて顕著なプラス変化がみられた。

1．日本付近の可降水量データ

高層気象観測処理は，1988 年から順次パソコンが導入され，これに伴って観測毎の資料がディジタル化された。この資料を使って，1988年から1998年の高層気象観測 18 地点の可降水量を，日本時刻 21 時の温度特異点ファイルを使用して計算し，月平均値を求 めた。 09 時の観測では，日射補正方法に若干の相違があり，今回の調査からは除外した。

1979年から1993年については，ECMWF15年再解析データセットから編集された月平均全気柱水蒸気量ファイルから，各観測点に最も近い格子点の値を利用した。

対象とした期問内に，日本の高層気像観測ではセンサーが2回変更された。1981年3月にはRS2－80 型，1992年10月からは順次 RS2－91型レーウィンゾンデが導入された。こ の変更に伴うデータの均質性を，指定気圧面の月平均相対湿度を予察的に評価したところ， RS2－80 型では不連続，RS2－91 型では連続とされた（統計室：私信）。RS2－80 型への変更 では，温度センサーがバイメタルからサーミスター，湿度センサーが毛髪からカーボンに なり，追随の時定数が短くなった。

同時比較観測によると変更後には，全層で湿度の低下がみられ，これは上層ほど頻著で ある（高層課 1983）。一方，RS2－91型では，気温はサーミスター，湿度は高分子静電容量変化式が採用され，同時比較観測の速報（高層課 1995）をみると，その差は RS2－80 型導入時ほどは大きくない。

可降水量の均質性について，観測点毎，月毎に t 一検定で評価した。月毎に評価したた めサンプル数が少なく，確定的な評価はできないが，館野以北の観測点では1994年を中心に有意確率 5% で差が検出された。しかし，差があると評価された月数は 2 から 4 か月 で，5月や7月が多かったが系統的な特徴はみられず，これが RS2－91型導入に伴うもの かどうかの判断はできなかった。
鹿児島は，1994年2月にセンサーが変更されるとともに，観測場所も移転し，標高が 250 m程度低くなった。高層気象観測では指定気圧面について統計がとられるので，一般には移転によって均質性が損なわれることはないが，低層の水蒸気量は相対的に多いこともあり均質性を評価した。福岡と名瀬の平均と鹿児島との差を， t －検定で評価したところ，移

転前と後に約 2 mm 程度の明暸なジャンプが検出された。
また，可降水量と E C MWF再解析値の全気柱水蒸気量の両者のデータが得られる 1988年から1993年の期間について，ケンドールの順位相関，および月毎に t－検定で評価し た。ケンドールの順位相関でみると，両者は極めて良好な関連が認められたが，月毎には特に寒候期には差が認められた。

以上の均質性についての評価から，高層気象観測から得られた月平均可降水量は，鹿児島を除いては，1988年から1998年については均質なデータとみなすことができる。また，重複する期間についての評価から，両者は値には若干の差があるが，変化パターンはほぼ相同とみなすことができる。

2．エルニーニョ監視海域の海面水温との関係

各地点毎に可降水量および全気柱水蒸気量とエルニーニョ監視海域の海面水温との関係 をケンドールの順位相関で評価した。統計値および偏差（海面水温は 1961－1990年の平年値からの差，可降水量と全気柱水蒸気量はそれぞれの期間平均からの差）についてみる と，両者とも統計値同士ではよい関連がみられたが，偏差について無相関であった。統計値同士は，季節変化を反映したものであり，物理的な関連を示唆するものではない。

下に，稚内，館野，鹿児島，父島の可降水量偏差のシーケンスを示す。

図 可降水量（全気柱水蒸気量）と海面水温
実綜は可降水量（1988－1998 年）と全気柱水蒸気量（1979－1993 年）
細線はエルニーニョ監視海域の海面水温
それぞれ累年平均値との差の5年移動平均
䌦䩜：可降水量（mm）横朝：西䄷年の下 2 桁

3．考察

可降水量と E C MW F 再解析値から作成された全気柱水蒸気量の均質性を評価して，工 ルニーニョ監視海域の海面水温との関係を調べた。
高層気象観測から得られた可降水量と，ECMWF 再解析値の全気柱水蒸気量の変化パ ターンは，統計的には相同とみなすことができる。

日本付近では，エルニーニョ監視海域の海面水温との関連はみられなかったが，図に示 したように，稚内を除いて1997年から1998年の海面水温のプラス偏差に対応して，1998年に可降水量の顕著な増加がみられる。この傾向は，図に示した稚内と南鳥島ではみられ ないが，その他の 16 地点でみられ，1998年の日本付近の多雨との関連が示唆される。

第1節で紹介したように，1982年に高層気象観測のセンサーが変更され，相対湿度の観測値は均質性が保証されていないようである。図に示した館野には，ECMWFの全気柱水蒸気量に1982年前後に不連続がみられる。日本の高層気象観測データは，観測毎の データが磁気媒体として利用できるのは1988年以降であり，1982年頃は月統計値しか利用できないうえに，統計要素が相対湿度の平均値であり，直接E CMWF再解析値と比較 することができなかった。水蒸気量の月統計値は，目的に応じて，相対湿度や蒸気圧（C LIMAT），湿数（温度と露点温度の差：CLIMAT TEMP），比湿などがある。 これらのデータ間の換算は，過去資料のアーカイブも含めて議論（例えば，Elliot とGaffen （1991），草野（1962））されているが，ケーススタディにとどまっている。

謝辞

この調査にはヨーロッパ中期予報センター（E CMWF）の15年再解析値を使用しま した。E CMWFと利用の便を図っていただいた気候情報課に感謝します。

参考文献

高周課，1983：RS2－80 型と RS II－56 型レーウィンソンデの比較観測について，測候時報，50，373－384．
高層課，1995：高層気象観測の変遷と観測実施官署の履歴—観測資料の有効利用のために一， 97 頁．
Elliot，F．P．\＆D．J．Gaffen，1991：On the Utility of Radiosonde Humidity Archives for Climate Studies，Bull．Amer．Me t．Soc．，72，1507－1520．
草野和夫，1962：相対湿度の月平均値について（気候電報改正に関連して），測候時報，29，77－83．

黄砂䚀測データと大気の流れの経年変化について

鳥取地方気象台
谷口 典史
1．はじめに
黄砂現象は，中国大陸の黄土地帯やゴビ砂漠，或いはタクラマカン砂漠で，砂塵嵐によ つて舞い上げられた砂粒が，偏西風に輸送されて舞い降りてくる現象である。気象官署で は大気現象観測要素の一つとして黄砂の観測を行つており，このデータは長い期間蓄積さ れてきた。黄砂の観測結果は極東周辺の大気の流れ，さらには全球的な気候変動とも何ら かの関係があるのではないか，との考えから，黄砂と大気の循環や気候の関係について調査したので報告する。 図1には黄砂現象の概念図を示す。

2．解析に使用したデータ
使用したデータは，鳥取地方気象台及び鳥取測候所（以下鳥取と略す）の1950年以降の地上気象観測月原簿及び気像月報原簿，気象庁作成の気候系監視報告，季節予報資料，西 シベリア積雪被覆率である。

図1 黄砂現象の概念図

3．調査結果

3． 1 黄砂観測回数

鳥取での1950年から1998年までの黄砂の平均観測回数は 4.2 回／年である。図 2 は上記期間中の黄砂観測回数とその経年変化を示した図で，太い実線は5年移動平均値である。図 2 によると，約 10 年を周期とする変動が顕著に現れている。また，1977年に15回観測したのをきっかけとして 1990 年代初め頃にかけて増加している。或いは，年平均であ る 4.2 回を基準としてみると， 1970 年代後半から現在まで観測回数は増加している。こ のことは， 1970 年代後半に大陸から日本付近にかけての大気の流れに何らかの変化が生 じている事を示唆しているものと思われる。

図 2 鳥取における黄砂の年別観測回数とその 5 年移動平均

3． 2 初日，終日との関係

その年に黄砂が初めて観測された日（初日），最後に観測された日（終日）と観測回数 の関係を調べた。初日，終日が1月1日から数えて何日目であるかを数値化し，その経年変化を図 3 と図 4 に示す。図柱太線の折れ線は 5 年移動平均値である。これによると，初日と終日の時期は約 10 年を一周期とする変動があり，さらに両者の間には高い同時相関 がある。また，観測回数と初日，終日の関係は，1970年頃までは高い逆相関の関係（r $=-0.7)$ があったが， 1970 年代後半以降は相関係数が低くなってきている。この事は， 3.1 節でも述べたように，1970年代後半における大気の流れの変化を示唆しているものと言えよう。

図3 鳥取における黄砂観測の初日とその 5 年移動平均

図4 鳥取における黄砂観測の終日とその5年移動平均

3． 3 事例解析

調查期間中，黄砂の観測回数が著しく異なった年として1977年と1978年をとりあげ事例解析を行い，特徴的なパターンを調べた。1977年は観測回数が 15 回ととりわけ多く， 1978年は0回であった。

1977年は年間で 15 回，このうち 2 月下旬から 3 月にかけて 12 回の黄砂が観測された。 この時期の 500 hPa の天気図をみても（図5，図6）Jet はゴビ砂漠および黄河上流（い わゆる黄土地帯）北辺をかすめ日本付近を指向している。4月には北に移ったが，5月に は同様の位置に戻っている。これを模式図にすると図7になる。尚，Jet の位置について は 10° グリッド 500 hPa 格子点値の差が極大となるポイントを結んで得た。

次に，北緯 50° の ZI（Zonal Index）との関係を調べた。ZIは1月には大きくマイナ ス側にシフトしていた（寒気場）が， 2 月， 3 月には逆にプラスに転じ（暖域場），4月以降はゼロ近くに下がっている（図8）。尚，一般には ZI がプラスであるときは東西流型， マイナスであるときは南北流型という解釈をする。

一方，黄砂が一回も観測されなかった 1978 年の場合は， 500 hPa の天気図を見ても（図 9，図 10）Jet は2月には黄土地帯の北にあったが，3月以降ゴビ砂漠，黄土地帯北辺か ら日本を指向する位置にあり，5月になって日本の北へ向きが変わった（図 11）。尚，2I は1977年とは反対に 2 月， 3 月がマイナスで， 4 月以降大きくなっていっている（図 12）。

図5 1977年2月の 500 hPa 天気図

図6 1977年3月の 500 hPa 天気図

図7 500 hPa 高度差から求めた 1977 年の月別のジェットの位置

図8 1977年における東半球上のZ1 の推移

図9 1978年2月の 500 hPa 天気図

図10 1978年3月の 500 hPa 天気图

図 11500 hPa 高度差から求めた 1978 年の月別のジェットの位置

1月 2月 3月 4月 5月 6月 7月 8月 9月 10月11月12月東経 $0^{\circ} \sim 180^{\circ}-\cdots-$ 東経 $0^{\circ} \sim 90^{\circ}$ ———東経 $90^{\circ} \sim-180^{\circ}$

図12 1978年における東半球上の 21 の推移

3． 4 穔雪被覆率との関係

西シベリアの冬季の積雪被覆率（気象庁）はそれに続くアジアモンスーンの強弱と関係 している事が知られており，データも作成されている。ここでは，大陸の陸面状態を示す指標として西シベリア積雪被嗄率を用い，黄砂観測回数との関係を調べた。図 13 は西シ ベリア積雪被覆率 5 年移動平均値と黄砂観測回数 5 年移動平均値との相関係数を，年をず らして調べたものである。これを見ると，積雪被覆率に対しては， 3 年後の黄砂観測回数 と相関が高い（ $\mathrm{r}=0.54$ ）ことがわかる。

图13 東シペリアの稆弯被庫率 5 年移動平均と黄砂観測回数 5 年移動平均の相関

4．考察

図 2 の黄砂観測の経年変化は，これまで様々な立場からいわれている1970年代後半の気候のジャンプ（花輪公雄，1993，好本誠，1993他）ともよく対応している。

さらに，黄砂の観測回数が極端に異なった 2 年の事例解析より，春先にあたる 2 月， 3月の，大陸の土壌を含む地表面の状態と 500 hPa の Jet との位置関係が，黄砂の観測の日時等に影響していると考えられる。具体的には，ZI より，1977年の2月，3月頃は，好気候に恵まれたため雪解けが早く，ゴビ砂漠，黄土地帯では乾燥していたと推定できる。 このため黄砂の原因となる砂粒が空気中に巻き上げられやすかった。さらに， 500 hPa のJet がこの期間ゴビ砂漠，黄土地帯上空を通って日本へ向かっていたことが重なり，黄砂がし ばしば観測された。
逆に全く黄砂が観測されなかった1978年は，Z1 より，2月，3月の悪天により春の訪 れが遅く， 5 月以降には 500 hPa の Jet が日本の北に向かっていったために黄砂が日本に は届きにくかったものと推定できる。
さらに，西シベリアの積雪被覆率と黄砂の観測回数には 3 年後に高い相関がある。これ が何を意味するか，今後検討したい。

5．おわりに

本調査は，平成 10 年度鳥取県気象研究会で発表した論文を一部加筆したものである。 これまでに述べてきたように，黄砂の観測データは大気の循環場の変動と何らかの関係が ありそうで，大陸上の大気大循環の一つの指標（トレーサー）としての黄砂観測の意義は高いと思われる。最後に，図 14 には，黄砂観測回数変動の流れ図を示す。今後は九州を含む黄砂の観測回数や新たなインデックスを用いて，引き続き調査していきたいと考えて いますので，ご指導をお願いします。

図 14 黄砂歓測回数変動の流れ図

謝辞

本調査に際し，酒井鳥取地方気象台長，牧田予報官には有益なコメントいただいきまし た。また，大阪管区気象台の梅木氏，気象庁の河島氏には資料の提供でお世話になりまし た。紙面を借りて各氏に感謝します。

参考文献

市沢成介，1979：昭和54年4月中旬の黄砂の流れ，気象，23， 5668 ．
石坂重次，1979：1979年4月中旬の黄砂，天気，26，725－729．
岩坂泰信•筫浦宏明•長屋勝博•小野晃，1982：黄砂粒子の輪送とその空間的ひろがり一1974年4月 にみられた黄砂現象のレーザーレーダ観測—，天気，29，231－235．
岩坂泰信，1987：黄砂粒子の輸送と輸送途中で見られる物理•化学的変化，天気，34，179－182．
長谷川隆司，1980：「ひまわり」から見た黄砂，気象，24，5982－5983．
花輪公雄，1993：海洋の長期変動と大気大循環，空と海，68，167－180．
村山信彦，1987：黄砂の発生と輸送，天気，34，176－179．
好本 誠，1993：1970年半ばの北半球 500 hPa 高度場の変化，空と海，68，221－230．

特異な長期予報手法について

鳥取地方気象台
牧田 広道

1．はじめに

普段あまり聞き慣れない言葉に＂樹林気候学＂という学問があります（注：森林微気候学とは異なります）。この学問によって，干ばつの発生を予測しているといっ た記事がロシアの新聞に掲載されていましたので，以下に簡単にその概要を紹介しま す。
新聞は＂Selskaya Zhizn：農民新聞＂というロシアの新聞で，1999年1月14日付 けの 7 面がその記事で占められていました。筆者は，ミハイル・ロザノフという樹林気候学者です。

なお，この記事に対して次のような編集者のコメントが掲載されていました。【1998年 6 月，リトアニア共和国のカウナス市で樹林気候学者の国際科学者会議が開催され， ヨーロッパ各国，アジア，アメリカの多数の国から専門家が参加した。ヨーロッパ地域では，ロシアの専門家の研究業績に優先権が認められた（注：研究成果が評価され た）。これらの一連の研究は，気候に関する全地球的な行動計画を含むものであった。 なお，この種の研究に関して，海外ではスポンサーが付いているが，ロシアでは政府援助が行われていないのが残念だ。】という内容です。

ちなみに，本会議の様子を手元にある各種の資料や文献で確認してみましたが，そ の詳細は不明でした。

2．本文

本文の見出しは「そして再び干ばつか？専門家の予測は警告する」（図1）「天候予測から計画は策定すべきだ」という 2 つの大きな見出しがありました。

図1 干ばつ時の年輪（左）と代表的な年输（右）の写真。ロシア語て「そして再び干ばつか？」「専門家の予測は警告する」と記載されている。

2． 1 概要

『1998 年のロシア共和国の春季と夏季の天候状態の予測の中で，ヨーロッパ地域 での干ばつと西シベリアでの平年並な降水量を予想した。』この予想は，半年前の調査をもとに発表されたものであるが，その予測には気象学的な手法ではなく，樹林気候学的な手法が用いられた。図2には，ロシア水文気象センター作成の毎月の水文気象概況より，同時期のロシア共和国における月平均気温偏差と同降水量偏差の階級を それぞれ示す。

ここで，樹林気候学とは，ある期間の気候状態の歴史を復元することを目的に，森林にある年輪をパラメータとして研究する科学である注1）。このとき，一般的には予報作成において，気象観測資料は用いられていない。このことは，年輪を用いた資料 により，将来における気候状態を予測することが可能である，という考え方による。

2． 2 予測手法等

一般的には，森林の年輪には干ばつの年には狭い間隔の年輪が重なり，農業生産に とって気候的に良好な年には平均的な間隔の年輪が，降水量の多い年には広い間隔の年輪が重なるようになる注2）。

例えば，国内において（注：大陸やあるいは北半球のどこでもよい），250～300km の一定の格子間隔で研究用の面積を確保することができれば，それぞれの場所におい て，ある暦年に形成された年輪の幅が明らかとなる。さらに，＂樹林等時性＂と呼ば れる年輪の幅の等値線を一義的に組み合わせることによって，森林の成長特性以外に も，ある特別な外部条件が明らかとなる。ここに，年輪解析の重要性がある。

狭い間隔の年輪は森林の成長が低い地域で，その地域を＂樹林等時性＂の領域と矛盾のない線で取り囲むと，この地域は干ばつの分布圏の中にあり，降水量が不足し，停滞した高気圧が位置する場所でもある。また，先に述べた＂ある特別な外部条件＂ として，8．8年と18．6年周期の月の潮汐力（重力）が投影される地域でもある注 ${ }^{3}$ ）。

平均的な森林の成長の場合，取り囲まれた＂樹林等時性＂の領域内では，農業生産 にとって気候的に好条件な地域と対応し，潮汐の摂動は東側に投影される。反対に，森林の成長が高い場合，取り囲まれた＂樹林等時性＂の領域内では，潮汐の摂動は西側に投影される注4）。

大陸の代表的な地域において，例えば東シベリアや極東において，降水量や好条件 な天候状態は場所によって違いがある。また，潮汐の摂動に関連した地表面における年輪の年々変動には顕著な周期性があるが，それは月の軌道周期とは一致しない。予測のためには，潮汐の摂動の投影場所と対応した年々の年輪解析で得られた情報が利用されている。

当該の手法による予測は1971年から行われている。事前の調査期間としては，1年から5年が予め必要である。過去 28 年間において予測は的中している。その成果 は，広くソ連民間防衛隊やソ連国立森林ソフォーズ（林野庁），ロシア共和国森林ソ

図21998年5月から8月における，ロシア共和国における気温偏差（左側）と降水量偏差図（右側）（ロシア水文気象センター作成）。気温榐差については，1 の実線は $\triangle T>0{ }^{\circ} \mathrm{C}$ ， 2 の破線は $\triangle T<0^{\circ} \mathrm{C}$ 。
降水量の平年偏差率については， 1 は平年並（ $80 \sim 120 \%$ ）， 2 は平年より多い（ $>120 \%$ ）， 3 は平年より少ない（ $<80 \%$ ）をそれそれ示している。8月の数字と䟕号には注意である。

フォーズ（林野省）において，機動力（人員）の配置，消化資材と対応する予防施設 の提供を通して森林の火災防止に利用されている。農業においては，この種の予測は それほど広くは浸透していなかったが，1989年12月，全ソ農業アカデミー農業常任委員会でこの予測手法が検討された結果，予測利用のための提言が行われた。

樹林気候学の予測により，事前に 1 年あるいは 20 年～25年先についての具体的な場所での基本となる気候状態について，信頼度の高い情報を提供することができる。樹林気候学以外の手法では，例えば，気象的な予測を含めて，このような情報を得る ことはできない。

森林の年輪解析をもとにした予測は，ロシア以外ではスカンディナビア半島諸国と リトアニア，アメリカ等で行われており，そこでは樹林気候学が発達している。

2． 3 農業生産への影響

現在，農業生産の計画策定にはこの種の予想（＂糐林気候学的予測＂）は提供されて いない。農業にとっては，まず最初に暖かいか，降水量は多いか，豊作か，農作物が突然の病気になるか，農作物の害虫が障害となるか，ということが必要であるためで ある。

今日のロシア農業における問題点は，＂平年並な年＂における実際の計画策定が適切に行われていないことにある。例えば，農作物の生産予測と品種の配置，農業用地 の確保，土壌処理システム，開㗽された播種に対する農業科学，播種の時期などであ る。これらの要因により，豊作の年でさえも全てが自然とうまく付き合うことができ ないでいる。さらに，不順な年では強い凶作のため著しい損害が生じ，極端な状態へ の準備が整っていない農業に被害が増大することになる。2．4節の予想からも，すで に農業は戦略的な生産を考える時期に来ている。

2． 4 1999年度の予測

樹林気候学的手法によって得られた1999年の天候予想は，以下のようになってい る。

ヨーロッパ地域，ボルカ川治岸，中央部，中央黒土地帯，北カフカス地方では春季 から夏季にかけて強い干ばつが予測される。シベリアでは平年並みの降水量となる。沿海州とハバロフスク州では夏季に干ばつが（気候状態によっては最大規模の森林の出火を伴う），サハリンとカムチャッカでは再び昨年と同程度の干ばつがそれぞれ予測される。

3．おわりに

年輪の幅は，植物の種類，樹齢，土壌，気温，湿度，日照などのような種々な生育条件，または同一樹木でも部分によって左右される。年輪の幅の変化は，樹木の一生涯の記録であり，年輪分析によって地球の過去における寒暖や乾湿の変化を推測する ことができる。それは，ちょうど南極の水床から過去の気侯状態を復元する作業に類

似している。
しかしながら，年輪解析の場合，温度や湿度のみならず様々な要因，例えば樹木の肥大成長期に洪水や乾燥に見舞われたり，葉を著しく食害されるなど，樹木の生育を阻害するようなことが起これば，形成層の活動にも影響し年輪が形成されなくなるな ど，その解析は複雑となる。

天候状態が両極端ではない場合（干ばつと寡少），一般的には天候が良好であると日射量が増え，その部分には多くの葉が形成されて，年輪の幅は広くなる。本文中の ＂森林の成長が高い場合＂であるが，このとき，潮汐の摂動が西側に投影されるメカ ニズムについてはよくわからない。ただ，太陽と月と地球の関係において，太陽の日射量（活動度）の周期的な変化と地球の自転軸の傾きの周期的な変化及び月が持つ 2 つの周期とが関係しているように思える。

本文中に述べられていた潮汐の椇動と年輸の周期性については，太陽活動と気候変化との間の関係と同様な考え方によるものと思われる。真偽のほどは別にして，この ような手法で長期的な予想を行っているという意味で本誌で紹介しました。

謝辞

鳥取森林管理署の山本次長，鳥取県中部森林組合の松井氏には，年輪に関する有益 な情報を提供していただきました。紙面を借りて感謝致します。

注1）－澍木の成長速度は気温などに依存するため，年輪の幅を測定することで年ごと の気温が推定できる。
樹木の年輪から過去の気候などを割り出す学問は＂年輪気候学＂と呼ばれており，本文中の＂樹林気候学＂と同義語であると思われる。
注2）ここで述べられている年輪の幅の関係は，気候状態が両極端な場合（干ばつと萁少）の状熊であることに注意が必要である。
注3）ここで述べられている2つの周期とは，月の対恒星近点順行周期（8．85年）と対恒星交点逆行周期（18．6年）のことであると思われる。
注4）潮洺の摂動が左右に投影されるのは，月の楕円軌道の変化，あるいは月の軌道面と地球の赤道との間の角度が変わるため，地球に入る日射量が変わり，このよう な変化が生じるものと思われるが，その詳細は不明である。

