# MIROC4によって再現された北極振動に対する、 エルニーニョ及び成層圏突然昇温の関わり(速報)

今田由紀子、木本昌秀 東京大学大気海洋研究所

## 1. はじめに

2009~2010 年の冬に発現した強い負の北極振 動(AO)が北半球中緯度域に大寒波をもたらし、 異常気象として発表されたことは記憶に新しいが、 同時期に発達していた熱帯太平洋のエルニーニョ 及び成層圏で発生した突然昇温がこの現象と相互 に影響し合った可能性が指摘されている。この 3 つの現象の関連性について、Ineson and Scaife (2009)では、ハドレーセンターの高解像度大気モ デルで再現された 24 の El Nino を解析から、エル ニーニョからのテレコネクションに伴って形成さ れた波数1のプラネタリー波が成層圏まで伝播し て成層圏下部に極渦(西風)弱化をもたらし、そ のシグナルが約ひと月掛けて下方伝搬して対流圏 に AO 負のパターンを形成するというプロセスを 明らかにした。更に、エルニーニョ期に成層圏突 然昇温が同時に発生した場合には、極渦の弱化が 持続するようになり、対流圏の応答がより顕著に 現れることを示した。このような、全球規模の対 流圏・成層圏相互作用の存在は、本来、中長期予 報が難しいとされる中高緯度の予測可能性の向上 にも役立つと期待されることから、注目が集まっ ている。

本研究では、実際に中長期予報に用いられてい る高解像度の大気海洋結合モデルにおいてこのよ うな現象が再現可能であるかどうかを検証し、そ の予測可能性を探った。

# 2. モデルと解析手法

用いたモデルは CCSR/NIES/FRCGC CGCM

MIROC4 で、大気解像度 T213L56、海洋解像度 1/4×1/6°の高解像版である。CMIP5 の近未来予測 実験用に計算された 20 世紀再現実験と同化実験 の結果(1950~2007 年)を用いた。同化実験で は、海表面~700m までの海水温と塩分を、観測 された偏差成分に 3DVAR で同化している。

成層圏突然昇温の定義は、WMO の定義に基づ いて、σ=0.0118 面(約 10hPa)において北緯 85 度の帯状平均温度が1週間以内に25度以上上昇し て北緯60度の帯状平均温度と逆転し、かつ東西風 の反転(東風)を伴った年とし、今回はエルニー ニョとの関係を議論するため、12・1・2 月に発 生したものを抽出した。エルニーニョについては NINO3 指標を基に、20世紀再現実験から12例、 同化実験からは観測と同じタイミングで 15 例を 抽出した。そのうち、成層圏突然昇温 (Stratospheric Sudden Warming, SSW)を伴っ たのは、20世紀再現実験では3例であったのに対 し同化実験では9例あり<sup>()</sup>、対象期間が同じであ るにもかかわらず両実験間には大きな差が現れた。 もともと MIROC の標準実験には、SSW が実際に 観測される冬季の昇温現象よりも遅れて2月末か ら 3 月に集中して発生するという特徴があり、今 回解析した 20 世紀再現実験においてもその特徴 が強く、エルニーニョが成長する DJF 期間に発生 する頻度が極端に少なかった。MIROC において SSW のタイミングが遅れる理由はまだ明らかに なっていないが、驚くべきことは、同化実験にお いてこの問題が解消され、観測に近いタイミング で SSW が発生するようになった点である。この

ことは、海洋表層の内部変動が SSW の出現に影響を与え得ることを示唆しており、大変興味深い 結果ではある。本研究の趣旨を外れるためこれ以 上の言及は避けるが、考察の部分で再度触れるこ とにする。以下では主に、同化実験のエルニーニ ョ 15 例について解析した結果を報告する。

( ) 同化実験において発生する SSW は必ずしも観測 されたタイミングとは一致していない。

#### 3. 結果

エルニーニョの発生後およそ1ヶ月以内の北半 球中高緯度の気圧分布がどのようになっているか を調べるため、図1(a)に、同化実験で再現され た地表面気圧偏差(1・2・3 月平均)のエルニー ニョ15例の合成図を示した。また、比較のため図 1(d)に同化実験によって再現された AO 負のパ ターン(海面気圧偏差の EOF 第一モード)を示し ているが、エルニーニョ年すべてで合成した場合 は、極側が中緯度より高気圧になる傾向は見られ るものの、AO に相当するような気圧パターンは 明瞭には現れていない。これを、SSW が発生した エルニーニョ年と SSW が発生しなかったエルニ ーニョ年に分けて合成したものが図1(b)と(c) である。両者の差は歴然で、SSW の発生を伴った エルニーニョ年には AO 負に似た地表面気圧の偏 差パターンが明瞭に現れているのに対し、SSW が 発生しなかったエルニーニョ年にはむじろ極側で 低気圧が発達するようなパターンになっている。 以上の結果は、エルニーニョと SSW が同時に発 生するという条件が整った場合に、冒頭で述べた ような成層圏を介した熱帯太平洋と中高緯度対流 圏の相互作用が存在することを示しており、 Ineson and Scaife (2009)の結果とも一致してい る。

次に、SSW 後に東風偏差が下方伝搬する様子を 示したのが図 2 である。ここでは、同化実験の 2004/5 年の冬の例を示した。1 月末に発生した



図 1 地表面気圧の偏差の合成図[hPa]。(a)エ ルニーニョ 15 例の合成、(b) SSW 発生を伴っ たエルニーニョ 9 例の合成、(c) SSW が発生し なかったエルニーニョ 6 例の合成。(d) は、 MIROC4 同化実験から計算された地表面気圧 偏差の EOF 第一モード。



図 2 (上) 北緯 85°と 60°の 10hPa 付近で帯 状平均した気温の時間変化[K]。(下) 北緯 60° において帯状平均した東西風偏差の高度-時間 断面[m/s]。

SSW 後に成層圏の東風偏差が対流圏下層まで下 方伝搬している様子が明瞭に見られ、成層圏から 対流圏へのシグナルの伝搬が MIROC4 において も再現できていることが確認された。

しかし、図 1(b)と(c)の違いが、単に偶発 的な SSW の有無に起因しているのか、それとも 対流圏からのプラネタリー波の上方伝搬プロセス にそもそも違いがあるのかどうかは、この結果か らだけでは判断できない。そこで、先ほどと同様 にSSWを伴ったエルニーニョ年とSSWが発生し なかったエルニーニョ年で分けて合成した地表面 気圧、500hPa 面及び 50hPa 面 (成層圏下部) のジオポテンシャルハイトの 12・1・2 月平均の 偏差パターンを図3に示した。対流圏の偏差パタ ーンは、いずれの場合もアリューシャン低気圧の 強化と北米の高気圧偏差という、いわゆる PNA パターンの特徴が現れているが、ユーラシア大陸 から北欧にかけての偏差パターンに大きな違いが 見られる。SSW ありのエルニーニョ年にはユーラ シアに低気圧偏差が見られ、波数1のプラネタリ

ー波が形成されている(図 3a, b)が、SSW なし のエルニーニョ年にはユーラシア上に高気圧偏差 が現れ、これにより波数 2 の傾向が強まっている ことが分かる(図 3d, e)。下部成層圏の気圧配置 を比較すると(図 3c,f)、SSW 発生している場合 に極渦が弱化しているのは当然だが、SSW なしの 年の合成図では極渦はむしろ強化されることを示 していた。Taguchi and Hartman(2006)では波数 1 のプラネタリー波は極向きの熱フラックスを伴 うのに対し波数 2 では南向き熱フラックスが生じ ることを示しており、今回の結果もこれに矛盾し ない。

以上の結果は、エルニーニョに伴って形成され る北半球中高緯度のテレコネクションパターンの 違いが SSW の発生そのものに影響を与える可能 性を示唆している。この時の熱帯のエルニーニョ の違いを調べたものが図 4 である。SSW が発生し た年のエルニーニョに比べて、SSW がなかった年 のエルニーニョはピークが西側に位置し、南北に 広い構造を持っている。このようなエルニーニョ の空間パターンの違いがテレコネクションパター ンに影響を与えている可能性があり、今後は GCM を用いた感度実験を通して検証していく予定であ る。

# 4. まとめ

Ineson らが提唱したエルニーニョ、SSW、負の AO の関係が、高解像度 MIROC の同化実験にお いて再現されることが確認され、結合モデルを用 いた中高緯度の季節予報の予測可能性につながる ものと期待される。また、このようなプロセスが 働くか否かは、SSW の有無だけでなく、そもそも 熱帯からのテレコネクションパターンの現れ方に 左右される可能性があることが新たに示唆された。 このことは、同じモデルに海洋の内部変動成分を 同化した場合としない場合とで SSW の出現の仕 方が異なることからも示唆される。

今回解析した事例ではサンプル数が十分とは言

えず、今後は感度実験等を通して仮説の検証を進 めて行きたい。また、ラニーニャ時に SSW が起 こった場合には逆のプロセスが起こり得るのか、 といった疑問にも今後取り組んでいきたい。

### 5. References

Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nature Geosci., 2, 32-36. Taguchi, M and D. Hartman, 2006: Increased occurrence of stratospheric sudden warming during El Niño as simulated by WACCM. J. Clim., 19, 324-332.



図 4 SST 偏差(線) 及び降水量偏差(色)の 合成図。上: SSW ありのエルニーニョ年、下: SSW なしのエルニーニョ年。



図 3 それぞれ (a)(d) SLP 偏差[hPa]、(b)(e) Z500 偏差[m]、(c)(f) Z50 偏差[m]の合成図。(a) (b)(c) SSW ありのエルニーニョ年の合成、(d)(e)(f) SSW なしのエルニーニョ年の合成図。黒 線は 95%有意水準。