冬季北太平洋十年規模変動の長期変調

*宮坂 貴文、中村 尚 (東大先端研)、田口 文明、野中 正見 (海洋研究開発機構)

背景

北太平洋に十年~数十年規模の変動が 存在していることが多くの先行研究によ り指摘されており、太平洋十年規模振動

(PDO)と北太平洋ジャイア振動(NPGO) に関する研究が盛んである。PDO は太平 洋の北緯 20 度以北の海面水温(SST)偏 差に対する経験直交関数(EOF)解析に おいて最も卓越する変動モード(EOF1) として抽出される変動で、中緯度と熱帯 のSST 偏差の間に負相関が見られること と、アリューシャン低気圧変動を伴うこ とがその特徴である (Mantua et al. **1997**)。NPGO は北東太平洋域の海面高 度に対する EOF 解析において2番目に卓 越する変動モード(EOF2)として抽出さ れる変動で、亜熱帯と熱帯の SST に相関 があり、亜熱帯高気圧を含む南北ダイポ ール的な大気循環偏差を伴う特徴を有す る (Di Lorenzo 2008)。

なお、EOF 解析はその数学的制約によ り、空間構造の大きな変動を卓越変動と して抽出しやすい傾向にある。そのため、 海洋フロントのような狭い領域の変動は 適切に抽出できない恐れがある。 Nakamura et al. (1997)では EOF 解析 を海洋前線帯域に限定して行うことで、 PDOでは分離されていない亜寒帯フロン ト (SAFZ) と亜熱帯フロント (STFZ) の変動を独立したものとして抽出してい る。その結果、SAFZ 変動はアリューシ ャン低気圧変動を伴うものの、熱帯 SST との相関を示さないこと、STFZ 変動が熱 帯 SST との負相関を示すことを指摘した。 なお、STFZ 変動は亜熱帯高気圧変動を伴 う点も含め、NPGO に相当する変動と考 えられる。

SST に対する 60 年間の EOF 解析に基 づく EOF1 と EOF2 が変調を見せること を Yeh et al. (2011) は指摘しており、 NPGO に相当する EOF2 が近年その振幅 を強めていると論じた。

本研究では、冬季北太平洋の SAFZ と STFZ に見られる十年規模 SST 変動の長 期変調について、再解析データに基づい て年代毎に EOF 解析を行うことで卓越 変動の振幅だけでなく、変動の空間構造 に見られる変調まで含めて調べるのが目 的である。さらに、同様の変調が大気海 洋結合モデル CFES (CGCM for the Earth Simulator) に基づく外部強制固 定実験で再現されうることを示す。さら に、第5期結合モデル相互比較計画 (CMIP5) モデルにおける歴史再現実験 と産業革命前基準実験における十年規模 変動およびその変調を調べることで、変 調が大気海洋結合系の内部変調として生 じるのか、あるいは地球温暖化等に伴う 外的強制によってもたらされ得るのかを 考察する。

手法

NCEP/NCAR 再解析データ 1948/49~ 2012/13 の 12~1 月冬季平均場を解析し た。十年規模変動成分を抽出するため、 あらかじめ3年移動平均を施したSST(水 平解像度約 1.8 度)および 1000 hPa と 250 hPa における流線関数及び SLP(水 平解像度 2.5 度)を解析した。

CFES の外部強制固定の 150 年積分の 結果を解析した。大気モデルの水平解像 度は約 100km で、鉛直には 48 層である。 海洋モデルの水平解像度は約 50 km で、 鉛直には 54 層である。長期トレンドは除 去したうえで解析を行った。

CMIP5 の歴史再現実験(1963~2004 年)45 モデルと産業革命前基準実験 36 モ デルのデータを用いた。産業革命前基準 実験については3年移動平均と11年移動 平均の差を十年規模変動成分として解析 した。SST は NCEP/NCAR 再解析デー タと同じ水平解像度に内挿後、解析した。

卓越変動を抽出するため、Nakamura et al. (1997) にならって亜寒帯海洋前線 と亜熱帯海洋前線を含む 150°E~140°W、 20°~50°Nの領域のSSTに対してEOF解 析を行った。その主成分時系列に対する 線形回帰を評価した。

図 1: (左上段) 150°~170°E で平均した3年移動平 均 SST 偏差 (±0.1, 0.3, 0.5, ... °C)。(左下 段) 170°E~170°W で平均した3年移動平均 SST 偏差 (±0.1, 0.3, 0.5, ... °C)。(右上段)気候平均 SST 南北勾配。NCEP/NCAR 再解析データに基づく。

再解析データに見られる冬季十年規 模変動の長期変調

SAFZ と STFZ の十年規模変動の長期 変調は、経度平均した SST 偏差から確認 できる(図 1)。橙色の破線枠で示した STFZ 域の変動は 1990 年頃から顕著で、 熱帯との負相関も確認できる。一方、青 色の破線枠で示した SAFZ 域の変動は 1980 年代に特に顕著であり、1990 年~ 2005 年頃はやや不活発であった。

STFZ 変動の最近の活発化は標準偏差

図 2: 冬季 3 年移動平均偏差の 1970~1989 年の 20 年標準偏差 (a) SST、(b) 1000 hPa 流線関数 (×10⁵ m² s⁻²) (c) 250 hPa 流線関数 (×10⁵ m² s⁻²)。中緯度 SST に対する EOF1 と EOF2 に付随する線形回帰(d, g) SST、 g) SST、(e, h) 1000 hPa 流線関数 (5x10⁵ m² s⁻² 毎)、 (f, i) 250 hPa 流線関数 (5x10⁵ m² s⁻² 毎)。(d-i) の色 は 90, 99%有意な領域を示す。NCEP/NCAR 再解析デー タに基づく。

図 3: 図 2 と同様。但し、解析期間は 1985~2004 年。

の水平分布からも確認でき(図 2a, 3a)、 1970~1989年に較べて 1985~2004年は STFZ の西部で変動が顕著になったこと が判った。これらの期間における 20年の EOF 解析を行うと、STFZ 変動は 1970~1989年ではEOF2であったのに対 し、1985~2004年にはEOF1になって おり(図 2g, 3d)、変動の卓越性が逆転し ていることが判った。なお、STFZ の卓越 変動はその水平分布にも変化が見られ、 近年はより西部での変動が強まっている。 付随する亜熱帯高気圧変動にも変化が見 られるが、亜熱帯高気圧変動、およびそ の上空で南北ダイポールを伴う点は共通 である(図 2h-i, 3e-f)。

なお、SAFZ はアリューシャン低気圧 変動と上空に太平洋/北米 (PNA) パター ン的な循環変動を伴っている様子が両期 間とも見られるが、以前に比べ最近は変 動がやや弱化しているようである(図 2e-f, 3h-i)。

なお、再解析データのSSTに見られる こうした変調は、衛星観測や船舶観測の SST データなどにおいても見られること が確認できる(図示せず)。

大気海洋結合モデルに見られる冬季 十年規模変動の長期変調

大気海洋結合モデル CFES は海洋フロ ントの再現性が良く、SAFZ の十年規模 SST 変動とそれに付随する大気循環偏差 もよく再現されていることが Taguchi et al. (2012)により確認されている。そこで、 前節における NCEP/NCAR 再解析デー タに対してと同様の解析を行うことで、 CFES 内の十年規模変動の長期変調の様 子を調べた(図 4)。

SAFZ 変動がアリューシャン低気圧お よび PNA パターン的循環偏差を伴うこ とに加え、STFZ 変動が熱帯 SST と負相 関を示すことや亜熱帯高気圧変動を伴う ことが確認できることから、現実と整合 的な十年規模の卓越変動が CFES 内で再 現されていることが確かめられる(図4)。 そして、その振幅は長期変調を示してお り(図 4j)、積分 55~74 年頃では SAFZ 変動が卓越しているのに対し、75~94年 頃では STFZ 変動が卓越している様子が 主成分時系列の 21 年移動分散から示唆 される。実際、それぞれの期間で EOF 解 析を行うと、SAFZ と STFZ がそれぞれ の期間で EOF1 として抽出されることが 出来る (図示せず)。

なお、この CFES を用いた実験におい ては外部強制を固定していることから、 長期変調が大気海洋結合系の内的要因に

図 4: (a-i) 図 2 と同じ。但し、CFES 外部強制固 定実験の積分 5~144 年目の結果に基づく。(j)は EOF1(黒)とEOF2(赤)の主成分時系列の21年移動分 散。

より生じる可能性が示唆される。しかし、 この実験では昇温ドリフトが見られるこ とから、温暖化的な基本場の変化の影響 も含まれている可能性がある。そこで、 CMIP5 の歴史再現実験と産業革命前基 準実験を調べることで、変調が内的要因 によるものか、地球温暖化等による外的 要因によってもたらされるのかを考察す る。

歴史再現実験において 1963~2004 年の 中緯度 SST に対する EOF とそれに付随 する SLP 偏差を調べた結果、観測(図 5) と同様に SAFZ と STFZ における変動が 独立な変動として EOF1 あるいは EOF2 として抽出され、SAFZ と STFZ 変動が それぞれアリューシャン低気圧と亜熱帯

図 5: NCEP/NCAR 再解析に基づく 1963~2004 年の中 緯度 SST の EOF2 (SAFZ 変動) と EOF1 (STFZ 変動) に付 随する (a-b) SST (0. 2K 毎) と (c-d) SLP (0. 5hPa 毎) の 線形回帰。色は 90, 99%有意な領域。(e) EOF 解析の 主成分時系列の 21 年移動分散(寄与率で重み付け した)。黒線は PC2 (SAFZ 変動)、赤線は PC1 (STFZ 変動)。 高気圧の変動を伴うモデルは、解析した 45 モデル中7 モデルであった。なお、 EOF1 と EOF2 の逆転は許すものとし、 熱帯 SST との負相関についても不問とし た。そうしたモデルのうち1つについて の結果を図 6 に示した。SAFZ と STFZ における SST 変動の振幅変調を主成分時 系列の21年移動分散で評価すると、振幅 変調や卓越変動モードの逆転が示唆され るものの、観測で見られるような1980年 頃までの SAFZ 変動の緩やかな強化や 1990 年頃の STFZ 変動の急激な強化(図 5e)といった変化傾向を再現できたモデ ルは1つもなかった。このことは、地球 温暖化等の外的要因が変調を支配するも のではないことを示唆する。

図 6: 図 5 と同じ。但し、CMIP5 の歴史再現実験 のある 1 つのモデル (CESM1-CAM5) に基づく。EOF1 が SAFZ 変動、EOF2 が STFZ 変動に相当。(e)の黒 線は SAFZ、赤線が STFZ 変動の 21 年移動分散を 表す。

産業革命前基準実験について、各モデ ルの全期間に対して EOF 解析を行った ところ、歴史再現実験の場合と同様に観 測と整合するような SAFZ と STFZ 変動 は、解析した 36 モデル中 12 モデルであ った。そのうちの1つのモデルの結果を 図7に示した。このモデルにおける振幅 変調(図 7e)を見ると、EOF1 として抽 出される SAFZ 変動が EOF2 である STFZ 変動より卓越している期間が多い ものの、EOF2 の振幅の方が卓越してい る期間が稀であるが見られる。モデル内 の2430年頃と2820年頃がそうした期間 にあたり、この付近の 20 年間で EOF 解 析を行うと、STFZ変動が EOF1 として、 SAFZ 変動が EOF2 として抽出されるこ とが確認できる(図示せず)。

図 7: 図 5 と同じ。但し、CMIP5の産業革命前基準 実験のある 1 つのモデル (MPI-ESM-MR)に基づく。 EOF1 が SAFZ 変動、EOF2 が STFZ 変動に相当。(e) の黒線は SAFZ、赤線が STFZ 変動の 21 年移動分散 を表す。

こうした結果は、十年規模 SST 変動の 変調が外的要因ではなく内的要因によっ て起こりえることを示唆していると考え られる。但し、熱帯 SST との共変動の様 子は、産業革命前基準実験でも歴史再現 実験でも、観測と整合するモデルと不整 合なモデルの両方があるため、熱帯と中 緯度の十年規模変動のつながりも含めて、 より詳しい解析が必要である。

まとめ

冬季北太平洋十年規模変動に見られる 長期変調について、NCEP/NCAR 再解析 データ、大気海洋結合モデル CFES を用 いた外部強制固定実験、CMIP5 歴史再現 実験および産業革命前基準実験の結果に 基づき、中緯度 SST に見られる卓越変動 モードの変化に着目して調べた。

再解析の中緯度 SST 変動に対する EOF 解析の結果、SAFZ 変動が 1980 年 代まで卓越していたのに対し、1990 年代 以降は STFZ 変動が卓越するようになっ たことが判り、こうした変調は EOF1 と EOF2 の逆転として認識できるほどであ ることが判った。なお、STFZ 変動は 1970~1989 年と 1985~2004 年では空間 構造の変化も示し、近年は STFZ 西部に 変動中心が移動する傾向であることも判 った。

SAFZ の十年規模変動が現実と同様に アリューシャン低気圧変動を伴うことが 確認されている大気海洋結合モデル CFES の外部強制固定実験においても観 測と類似の変動が見られ、EOF1 と EOF2 が逆転する変調が見られた。CMIP5 の大 気海洋結合モデルの歴史再現実験におい て、観測と類似の変動を再現するモデル は45モデル中7モデルあったが、その振 幅変調の傾向まで観測を再現するものは なかった。一方、産業革命前基準実験に おいて、観測と類似の変動が抽出される モデルが36モデル中12モデルあること から、観測に見られる十年規模変動変調 は、外的要因ではなく内的要因によって 生じ得ることが示唆される。

参考文献

- Di Lorenzo, E., et al. (2008), North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.Yeh et al 2011
- Mantua, N. J., S. R. Hare, Y. Zhang, J.
 M. Wallace, and R. C. Francis (1997),
 A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78, 1069-1079.
- Nakamura, H., G. Lin, and T. Yamagata (1997), Decadal climate variability in the North Pacific during the recent decades, Bull. Am. Meteorol. Soc., 78, 2215-2225.
- Taguchi, B., H. Nakamura, M. Nonaka,
 N. Komori, A. Kuwano-Yoshida, K.
 Takaya, and A. Goto (2012),
 Seasonal evolution of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation, J. Clim., 25,

111-139.

Yeh, S.-W., Y.-J. Kang, Y. Noh, and A. J. Miller (2011), The North Pacific climate transitions of the winter of 1976/77 and 1988/89, J. Clim., 24, 1170-1183.