2012 年冬の循環場の特徴 大野浩史・田中昌太郎・竹村和人(気象庁気候情報課)

1. はじめに

2011/2012 年冬(2011 年 12 月~2012 年 2 月)は、ユーラシア大陸の中緯度域の広い範 囲で低温となった。気象庁の異常気象分析検 討会ではこの低温をもたらした大気循環に ついて分析を行い、その要因に関する見解を 発表した。本稿では分析検討会の分析結果を

中心に、この事例の詳細について述べる。

2. 天候の特徴

2011/2012年冬は北アフリカやユーラシア 大陸中緯度域の広い範囲(ヨーロッパ東部、 中央・東アジア)で平年と比べて低温となっ た(図1)。一方、ユーラシア大陸の高緯度

因3 地域中均或温平平差030日移動中均時票9 (2011年12月~2012年2月)

域は東シベリア東部を除いて概ね高温となった。

東アジア北部~中央アジアでは1月半ば 以降、ヨーロッパ東部では1月下旬以降、異 常低温となった(図2)。この低温は2月に なってヨーロッパ西部からアフリカ北部に も広がった。

日本では、北・東・西日本の冬平均気温が 低温となり、期間を通して低温が持続したた め、12~2月の各月の平均気温も低温となっ た(3地域そろって冬平均気温が低温となっ たのは2005/2006年冬以来、3か月連続で低 温となったのは1985/1986年冬以来)(図3)。 また、日本海側の地域を中心に積雪が多く、 多くのアメダス地点で冬の最深積雪の記録 を更新するなど、1990年代以降では「平成 18年豪雪」の2005/2006年冬に次ぐ水準の 積雪となった。 3. 低温をもたらした大気循環場の特徴

2011/2012 年冬平均 500hPa 高度場を見る と(図4(a))、北大西洋からユーラシア大陸 にかけての波列パターンが明瞭で、西シベリ アで正偏差、アジア北東部で負偏差となって おり、寒帯前線ジェット気流が大きく蛇行し たことを示している。このパターンは冬の期 間を通して持続した。波の活動度フラックス (Takaya and Nakamura 2001)の分布を見ると、 北大西洋から寒帯前線ジェット気流に沿っ た東向きの準定常ロスビー波束の伝播が明 瞭だった(図5)。

海面気圧(図4(b))はユーラシア大陸北 部で広く正偏差となり、西シベリアで顕著だ った。シベリア高気圧は広く発達し、 1979/1980年冬以降では最も強い水準となっ た。このシベリア高気圧の強化には、西シベ リア上層のリッジが関係したと考えられる

(Takaya and Nakamura 2005a; 2005b)。シ ベリア高気圧の勢力が平年より強かったた め、東アジアでは冬のモンスーンによる寒気 移流が強かった。

850hPa 気温(図4(c))はユーラシア大陸 の中緯度帯で低温偏差となり、特に中央・東 アジアで顕著だった。西シベリアに中心を持 つ下層の高気圧性循環偏差により、中央アジ アやモンゴルではシベリアの寒気が流入し、 これらの地域では異常低温となった。また、 強い寒気移流はシベリア高気圧の強化にも 寄与したと考えられる。

図4 2011/2012 年冬 平均(a)500hPa 高度、 (b)海面気圧、及び (c)850hPa気温 陰影は平年偏差。等値 線間隔は、(a)60m、 (b)4hPa、(c)4℃。(c) の波状の陰影域は標高 が1,600m以上の領域を 示す。

図 5 2011/2012 年冬平均 200hPa 流線関数平年偏差(等値 線)、外向き長波放射(0LR)平年 偏差(陰影)、及び200hPa波の活 動度フラックス(矢印) 等値線間隔は3×10⁶m²/s。

対流圏上層では、中国南部(高気圧性循環 偏差)から日本の東(低気圧性循環偏差)に かけてロスビー波束伝播が見られ、日本付近 では、亜熱帯ジェット気流が南に蛇行し、北 風偏差の場となった(図5)。これに対応し て、上空の寒気が日本にしばしば流入し、低 温をもたらしたほか、日本海側では大雪とな った。2011/2012年冬の太平洋における海面 水温の偏差パターンはラニーニャ現象の傾 向¹を示した(図6)。これに関連して、対流 活動が季節を通して海洋大陸(インドネシア 多島海)付近で活発となり(図5)、亜熱帯 ジェット気流の蛇行に影響したと考えられ る。

ここまでは冬平均場の特徴について述べた。前章で述べたとおり、東アジア北部では 1月半ば以降、ヨーロッパ東部では1月下旬 以降、特に顕著な低温となったことから、次 にこの期間に注目した解析結果を述べる。

1月後半から2月前半にかけては、シベリ ア高気圧の勢力が特に強まり、西への拡大も 明瞭だった(図7(a))。上層では、西シベリ アで明瞭なブロッキング高気圧が発達し、そ こから大西洋にかけては東西に幅の広い高 気圧性循環偏差が分布した(同図(b))。

西シベリアのブロッキング高気圧が下層 に与えた影響を評価するため、シベリア高気

図 7 2012 年 1 月 16 日~2 月 14 日平均 (a) 海面気圧、 (b) 300hPa 流線関数

陰影は平年偏差。等値線は(a)1020hPa 以上を 5hPa 間 隔で、(b)-40×10⁶m²/s 以下を 10×10⁶m²/s 間隔で表示。

¹ 気象庁では、エルニーニョ監視海域(5°S~5°N、150°W ~90°W)の海面水温の基準値(前年までの30年間の各 月の平均値)との差の5か月移動平均値が6か月以上 続けて-0.5℃以下となった場合をラニーニャ現象と定 義している。今回の現象は継続期間が5か月(2011年 9月~2012年1月)だったことから、定義上はラニー ニャ現象としては記録に残らない。

図8 PV インバージョン解析の結果 2012 年 1 月 29 日の 300hPa 面における準地衡流渦位 (PV) 偏差を与えたときに強制される 1000hPa 高度偏差 (陰影)。陰影の間隔は 100m。等値線は 1000hPa 気温 の平年値で、250~275K の範囲を 5K 間隔で表示。

圧が最も強まった数日前にあたる1月29日
の 300hPa 面における準地衡流渦位
(Potential Vorticity: PV) 偏差を与えた
PV インバージョン解析 (Hoskins et al.
1985) を行ったところ、やや位置がずれるものの、下層で高気圧が形成されることを確認
できた (図8)。

次に、PV 分布(6時間ごとのスナップショット)の推移から西シベリアのブロッキン グ高気圧の発達の様子を調べたところ(図 9)、北大西洋中緯度帯で切離した負のPV 偏 差域が、ヨーロッパ北部・西シベリアの沿岸 域(図7(b)の東西に伸びた高気圧性循環偏

310K 等温位面渦位分布の推移

図 9

差域に対応)を経由して西シベリアに流入す るのが度々見られた。

したがって、顕著な低温となった1月後半 から2月前半にかけての優勢なシベリア高 気圧の発達や維持には、大西洋からの負の PV 偏差の断続的な供給が大きく寄与してい たと考えられる。

4. ユーラシア大陸における寒帯前線ジェッ ト気流の顕著な蛇行

本章では、シベリア高気圧の強化と北西へ の伸張に寄与した、ユーラシア大陸上の寒帯 前線ジェット気流の蛇行の要因について詳 細に述べる。

寒帯前線ジェット気流に沿った波列パタ ーンは、主に北大西洋に起源をたどることが できる。北大西洋の上層では、亜熱帯域に低 気圧性循環偏差、中緯度域に高気圧性循環偏 差が分布した(図5)。

この冬、北大西洋では寒帯前線ジェット気 流の平年の位置に対する北偏傾向が顕著で

(図 10(a))、対応してストームトラックの 位置も平年と比べて北側に位置した(図 10(b))。高周波擾乱による渦度フラックスの 収束に伴う 300hPa 高度の変化率の平年偏差 を見ると(図 10(c))、中緯度域の高気圧偏 差が位置する領域で高周波擾乱が高度を上 げる傾向を示しており、平年より北偏したス トームトラックの活動が高気圧性循環偏差

-3 -2 -1 0 1 2 3 PVL

(a) 2012 年1月 29 日 00Z、(b) 2月2日 00Z、(c) 2月5日 12Z、及び(d) 2月11日 00Z。等値線は実況値で等 値線間隔は 1PVU。陰影は平年偏差で、赤が正偏差、青が負偏差を示す。A は太平洋、B~F は大西洋から西シ ベリア付近に流入した負の渦位偏差域。平年偏差が算出されない領域は灰色で覆った。

図 10 2011/2012 年冬平均(a) 300hPa 東西風速平年偏差、(b) 300hPa 高周波擾乱の運動エネルギー平年偏差、及び (c) 高周波擾乱による渦度フラックスの収束に伴う 300hPa 高度変化率(m/day) 平年偏差 等値線は、(a) 平年値を示し西風 20m/s 以上を 10m/s 間隔で表示、(b) 平年値を示し 40m²/s² 間隔で表示、(c) 300hPa 高度偏差を示し間隔は 30m。高周波擾乱成分は 2 ~ 8 日のバンドパスフィルターをかけて求めた。

図 11 冬平均 200hPa 流線関数平年偏差のラニーニー 年の合成図

合成図は、1984/1985、1988/1989、1995/1996、1998/1999、 1999/2000、2005/2006、及び2007/2008年の各年の12 ~2月平均値を平均することで求めた。等値線は3× 10⁶m²/s間隔で表示。灰色の領域はt検定により有意水 準5%で有意であることを示す。

の形成・維持に寄与したことが推測される。 過去のラニーニャ現象時は、北太平洋東部 から北大西洋にかけての中緯度帯は帯状に 高気圧性循環偏差が分布し、また、米国の西 海上、米国南東部、及びヨーロッパの西海上 の3つに偏差の中心が位置する傾向がある (図11)。この冬の循環偏差は過去のラニー ニャ現象時の典型的なパターンを示してお り(図5)、北大西洋中緯度帯の高気圧性循 環偏差には、ラニーニャ現象の傾向が影響し た可能性がある。

南米北部から北大西洋熱帯域では、活発な 対流活動に対応して、対流圏上部に顕著な発 散偏差が見られた(図 12(a))。この領域の 北側では北向きの発散風偏差がカリブ海の 東で収束した。ロスビー波ソース (Sardeshmukh and Hoskins 1988)を計算す ると、この収束域は正の値(正の渦度ソース) となった(図12(b))。このことから、南米 北部から北大西洋熱帯域における活発な対 流活動が、北大西洋亜熱帯域上層の低気圧性 循環偏差の生成に寄与したと考えられる。

南米北部から北大西洋熱帯域周辺の活発 な対流活動は、過去のラニーニャ現象時にも 見ることができる(図略)。一方、2011/2012 年冬の海面水温は北大西洋熱帯域の北西部 で平年より高く、南大西洋熱帯域で顕著に低 かった(図6)。統計的には、南大西洋熱帯 域の海面水温が低いとき(図13)、あるいは 北・南大西洋熱帯域でそれぞれ正・負の双極 子的な偏差パターンを示すとき(図略)、南 米北部や大西洋熱帯域の対流活動が活発と なる傾向がある。

以上のことから、ラニーニャ現象の傾向や 大西洋熱帯域の SST 偏差が北大西洋におけ る循環偏差に影響を及ぼし、結果としてユー ラシア大陸上の波列パターンの起源になっ たと考えられる。

図 12 2011/2012 年冬平均 (a) 200hPa 速度ポテンシャル平 年偏差(等値線)、200hPa 発散 風平年偏差(矢印)、及び外向き 長波放射(0LR)平年偏差(陰影)、 (b) 200hPa ロスビー波ソース(陰 影)及び 200hPa 流線関数平年偏 差(等値線)

.等値線間隔は(a)0.5×10⁶m²/s、 (b)3×10⁶m²/s。

図 13 南大西洋熱帯域 (20°S~赤道、40°W~10°E) で 領域平均した冬平均海面水温に対する冬平均外向き長 波放射 (0LR)の回帰係数

統計期間は 1979/1980~2010/2011 年。等値線間隔は 1W/m²で、青実線が正の値、赤点線が負の値を示す。灰 色の領域は t 検定により有意水準 5%で有意であるこ とを示す。

5. まとめ

2011/2012 年冬は、中央・東アジアを中心 にユーラシア大陸の中緯度帯では勢力の強 いシベリア高気圧や頻繁な寒気の流入によ り低温となった。このような状況をもたらし たと考えられる主な要因を図 14 に示す。本 稿では述べなかったが、極めて少ない状態で 推移したバレンツ海での海氷分布も、ユーラ シア大陸での低温に寄与した可能性がある (Honda et al. 2009; Inoue et al. 2012 等)。 これらのメカニズムの詳細はまだ不明な ところがあり、さらなる調査・研究が必要で ある。

参考文献

- Honda et al., 2009, Geophys. Res. Lett., 36, L08707. Hoskins et al., 1985, Quart. J.
- Roy. Meteor. Soc., 111, 877-946.
- Inoue et al., 2012, J. Climate, 25, 2561-2568.
- Sardeshmukh and Hoskins, 1988, *J. Atmos. Sci.*, **45**, 1228-1251.
- Takaya and Nakamura, 2001, *J. Atmos. Sci.*, **58**, 608-627.
- , and —, 2005a, J. Atmos.
 Sci., 62, 4423-4440.
 , and —, 2005b, J. Atmos.
- Sci., **62**, 4441–4449.

図 14 2011/2012 年冬のユーラシア大陸の低温をもたらした主な要因の模式図