NICAM を用いた北半球夏期季節内変動(BSISO)と台風発生の予測

中野満寿男(海洋研究開発機構)

1. はじめに

BSISO と呼ばれる季節内変動(図1)によ り,北西太平洋の対流活動が活発となり, 台風が立て続けに発生しすることがある. このように季節内変動が台風の活動度を変 調することはよく知られており(たとえば Nakazawa 2004; Satoh et al., 2012; Yoshida et al., 2014), 季節内変動の再現性 の高い数値モデルは、季節内変動で変調さ れた大気場での台風発生の予測可能性も高 いことが期待される.実際,全球非静力学 モデル NICAM を用いたこれまでの研究 (Fudeyasu et al., 2008, Taniguchi et al., 2010; Yanase et al., 2010)によって, 季節内 変動に伴う台風発生を 3 週間前から予測で きるケースも示されている(Oouchi et al. 2009). しかしながらこれらの研究では1つ の台風発生事例しか扱っていなかったり,1 つの初期値からの計算結果であったりする ため、台風発生の予測可能性を何が決定し ているのかの理解は十分とはいえない.

2012 年に稼働開始した京コンピュータ では、全球非静力学モデルを用いて、多く の台風発生時例について多くの初期値から の予測実験が可能となり、台風発生の予測 可能性を何が決定しているのかを調べるこ とができるようになった.ここでは 2004 年8月に北西太平洋域で立て続けに起こっ た、8つの台風発生事例について調べる.

2. 実験設定と解析手法

この実験では 2012 年版の全球非静力学 モデル NICAM.12 (Satoh et al. 2014)を用

図1 ひまわり 8 号による 2015 年 6 月 22 日 00UTC の赤外 (Band 13: 10.4µm) 画像.
いた.水平解像度は 14km である. 雲微物 理過程は NSW6(Tomita 2008)で陽に計算 し,対流パラメタリゼーションは用いない.
初期値は ERA-Interim (Dee et al. 2011)か ら作成した. モデルは 2004 年 8 月の各日 00UTC を初期時刻として 30 日間積分する.

ここでは以下の閾値を 36 時間以上満 たしたものをモデルでの台風とした:(1) 10m 風速>17.5ms,(2) 700,500,300hPa における気温偏差の和>2K,(3) 850hPa に おける相対渦度>3.5×10-5s-1,(4) 850hPa の水平風速>200hPa の水平風速. モデルで計算された渦擾乱が,観測された 台風発生日から前後1日の間に,観測され た発生域から10度円内を通過しており,か つ,観測された発生日から前後5日以内に 台風へと発達していれば,それを観測され た台風発生に対応する,モデルでの台風発 生と判定する.より詳しい実験設定や判定 方法については Nakano et al. (2015)を参 考されたい.

3. 結果

NICAM は 6 つの台風発生を再現するこ とができた.特に 8 月後半の 4 つの台風発 生については 2 週間前から再現できた.再 現できなかったのは台風 Malou(11 号)と Malakas(14 号)であり,最低気圧も高く(そ れぞれ 996,990hPa)また,持続時間も短 かった(それぞれ 21 時間,2 日 18 時間). 加えて観測されている 8 月の対流活発域の 北進と,9月の対流不活発(Nakazawa 2006) もよく再現していた(図 2).

最も多くの初期時刻からの実験が行われ

た台風 Songda (18号)の発生予測とBSISO によって変調された大気場との関係を調べ た. 観測では 8 月上旬は対流活発域が 120-140E で 12N に沿って東西に延び, 140-160E では北西-南東に走向を持ってい る. モンスーントラフに伴うシアーライン が対流活発域の北の約20Nに位置しており, 東端は 155E に達している. 8 月中旬には (図3 b)140-160E の対流活発域が東西方 向に延び, 東端は 170E に達している. シ アーラインも同様に170E まで延びている.

8 月下旬も、対流活発域はライン状の構造

図2 東経 120-150 度で平均した OLR のホフメラー図. 横軸は 2004 年 8 月 1 日 からの日数. 各パネル右上の数字は初期日を示しており, OBS は観測である. 各 パネルのコンターは観測の 200W/m²を示す.

図3 観測(左列)とNICAM(中列:8/5-11初期値,右列:8/12-18初期値)による10日 平均OLR(緑線)と850hPaにおける東西風(色).(a)8/1-10,(b,d)8/11-20(c,e,f) 8/21-30をそれぞれ示す.X印は観測された台風発生位置を示す.OLRは200Wm⁻²以下 の値をコンター間隔20Wm⁻²で示す.破線はシアーラインの位置を示している.

を維持しており, 東端は 165E に達し, 約5 度北上している.シアーラインは 175E ま で延びている.

Songda 発生 3 週間前(8 月 5-11 日)を初 期値とする実験では,8 月中旬の対流活動 とモンスーントラフに伴うシアーラインは よく再現した(図 3 d)ものの,8 月下旬の対 流活動とシアーラインは西へ後退してしま っている(図 3 e).Songda 発生 2 週間前(8 月 12-18 日)を初期値とする実験では,8月 下旬の線状の対流活発域と,シアーライン の東方への延伸をよく再現している.2 週 間前から Songda の発生が再現されたこと から,シアーラインの東方への延伸が Songda 発生に深く関係していたことがわ かる.このようにモンスーントラフの東西 方向の時間発展を高い精度で予測できる数 値モデルは、それに伴って起こる台風発生 も高い精度で予測できる可能性があること を示している.

謝辞

ひまわり 8 号データは情報通信研究機 構のサイエンスクラウドより取得した.数 値計算は HPCI 戦略プログラムのもと理化 学研究所計算科学研究機構の京コンピュー タで行った(課題番号: hp120313, hp130010).また講演内容の一部はポスト 「京」重点課題4、JSPS 科研費若手 B「日 本近海における台風発生ポテンシャルの予 測手法の開発」(17K13010),環境省推 進費 2RF-1701「全球非静力学モデルを用 いたアジア域におけるスーパー台風の温暖 化応答に関する研究」の支援を受けた.

- Dee, D. P., et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597
- Fudeyasu, H., et. al., 2008: Global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones, *Geophys. Res. Lett.*, **35**, L22808.
- Nakano, M., et. al., 2015: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model, *Geophys. Res. Lett.*, **42**, 565–571
- Nakazawa, T., 2006: Madden-Julian oscillation activity and typhoon landfall on Japan 2004, SOLA, 2, 136– 139,
- Oouchi, K., et. al., 2009: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian oscillation event in a global cloud-system-resolving model, *SOLA*, **5**, 65–68
- Satoh, M., et al., 2012: The intra-seasonal oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models, *Clim. Dyn.*, 39, 2185–2206
- Satoh, M., et al., 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development, Prog. Earth Planet. Sci.,

1, 18

- Taniguchi, H., W. et al., 2010: Ensemble simulation of cyclone Nargis by a global cloud-system-resolving model—Modulation of cyclogenesis by the Madden-Julian oscillation, J. Meteorol. Soc. Jpn., 88, 571–591,
- Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice, J. Meteorol. Soc. Jpn., 86, 121–142.
- Yanase, W., et al., 2010: The genesis of tropical cyclone Nargis (2008): Environmental modulation and numerical predictability, J. Meteorol. Soc. Jpn., 88, 497–519,
- Yoshida, R., et. al., 2014: Impact of boreal summer intraseasonal oscillation on environment of tropical cyclone genesis over the western North Pacific, *SOLA*, **10**, 15–18