夜空の明るさ調査

~デジタルー眼レフカメラを用いて夜空の明るさの変化を探る~

東京都立立川高等学校 大磯佳苗(高3) 鈴木遥夏(高3)

はじめに

夜空の明るさは時刻によって変 わるほか、街明かりや天候なども原 因となり変化する。

本研究では、夜空の明るさの変化 の要因を探るため、目視と SQM を用 いて観測したが、定時観測や比較の

富士山方向の観測装置

面で難しさがあった。そこで、デジタルカメラで撮影し た画像から夜空の明るさを調べる方法を思い付いた。撮 影機材として、本校の天文気象部の先輩が視程観測のた めに開発した自動撮影装置を活用した。

研究方法

都心方面は2021年1月30日か ら、富士山方面は2020年12月6 日から、撮影を開始した。

立川高校から見て南東の都心方 面と南西の富士山方面の夜空を毎 日1時間おきに撮影する。撮影画 像(jpeg)をグレースケール化し、 Python プログラムで高度と明るさ の値の関係を表すグラフを作成し て、明るさの変化の特徴とその要 因を分析する。

2) ピクセル値の平均を求める

装置:一眼レフカメラ NikonD3400 と Raspberry Pi を固 定し、定時撮影のプログラムを組む(*)。

撮影: 2020/12/26 から毎日 18 時~翌6 時に1 時間毎に 撮影(※1)

※1: iso800、f5.6、露出時間1秒、焦点距離55 mm 分析:

①画像をグレースケール化(※2) し、縦 100px ごとに横 長の短冊状に区切る(※3)

※2: OpenCV より RGB[A] to Gray: Y←0.299·R+0.587· $G+0.114 \cdot B$

※3:このとき、撮影した画像の縦 4000px のうち、地表 付近の1000px は建物が写っているため除く

②区切った領域(高度)ごとにピクセル値の平均を求め、 これを明るさの値とみなす

③各時刻の高度ごとの明るさの値をグラフにし、1日分 を1つのグラフにまとめる(※4)

※4:作成したグラフについて、縦軸は画像と対応した高 度(地表から13度まで)、横軸は明るさの値を示し、明る さの値が大きいほど明るいことを示す

④ 高度による明るさの違いや時刻による明るさの変化 と、天候・月齢などとの関連を分析する。

結果・考察

全体的に、地表に近づくほど夜空が明るくなる。また、 晴れの日については、夕方から時間が経つにつれて暗く

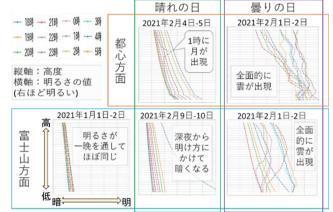


図3 明るさの変化を表したグラフ

なり、0~5時が最も暗くなる。曇りの目については、雲 が出現している範囲は雲が出現していない範囲と比べて 明るさの値が大きくなっている。

都心方面の 2021 年 2 月 4 日~5 日の 1 時には、月齢 22 の月が画角に出現しており、月が位置する高度のグラフ が部分的に飛び出ている。しかし、月が画角に出現して いない2時以降には変化が見られず、月による明るさの 影響は分からなかった。

2021年1月1日は一晩を通して極端に暗くなってい る。これは元日の夜で営業施設があまり活動をしなかっ たことが影響していると考えられる。

まとめと今後の展望

夜空の定時撮影を継続し、画像から明るさの時系列 の変化や高度による違い、雲や月の影響との関連を分 析した。天頂方面についても調査し、天候や月齢、季節、 街明かり等による明るさの影響を探りたい。

本研究を行うにあたり、本校卒業生の樋口陽光氏(大学 4年)にはプログラムの製作でご指導いただきました。ま た、本校の浜島悠哉氏(大学1年)にはプログラムの製作・ 観測機器においてご協力いただきました。本校の天文気 象部員には目視観測でご協力いただきました。御礼申し 上げます。

参考文献

(*) 立川高校天文気象部 田中陽登、馬場光希、浜島悠哉、 安原拓未『視程の新たな観測方法の開発とその分析~観 測装置を自作・改良し、50年間続いた視程観測を再開し てその傾向を探る~』第9回高校高専気象観測機器コン テスト、2020年