JMA/MRI-CPS2 における夏季日本付近での アジアジェット減速場の季節予測可能性

*竹村 和人^{1,4}, 向川 均², 高谷 祐平³, 前田 修平⁴ (¹大阪管区気象台,²京都大学大学院理学研究科,³気象庁気象研究所,⁴気象庁気候情報課)

1. はじめに

夏季アジアジェットに沿って伝播するロスビー 波は、ジェット出口付近に位置する日本付近におい て高い頻度で砕波し(例えば Postel and Hitchman 1999)、その頻度は夏季日本の気温偏差と関連する

(Takemura et al. 2020). Takemura et al. (2020) は, エルニーニョ・南方振動 (ENSO) が、日本付近にお ける砕波頻度の年々変動に及ぼす影響とそのメカ ニズムを示した. ENSO に伴う熱帯域の降水偏差が アジアジェットの変動に及ぼす影響については、Lu etal. (2006) や Ding et al. (2011) でも指摘されてい る. これら先行研究の結果より、ENSO に関連する 大気海洋の予測誤差もまた, アジアジェットの季節 予測に影響を及ぼす可能性が考えられる. 日本付近 での砕波頻度は、アジアジェット減速場(以下、ジ エット減速場)と密接に関連することが指摘されて おり (Takemura et al. 2021), 季節スケールでジェッ ト減速場を精度良く予測することは, 夏季日本付近 における気温偏差の季節予測の改善に資すること が期待される.本研究では、ジェット減速場の季節 予測可能性を,気象庁の季節予報ハインドキャスト データを用いて評価した.

2. 使用データと解析手法

大気循環場データとして気象庁 55 年長期再解析 データ(JRA-55, Kobayashi et al. 2015),海面水温(SST) のデータとして COBE-SST (Ishii et al. 2005)の月平 均値を用いた.これらのデータの対象期間は,1958 ~2018年の7~8月である.気候値は1981~2010年 の30年平均値で定義した.

7~8 月平均のジェット減速場の予測可能性,及び 予測誤差と関連する海面水温や大気循環場を調べ るために,気象庁現業季節予報アンサンブル予報シ ステム (JMA/MRI-CPS2; Takaya et al. 2018)のハイ ンドキャストデータの月平均値を用いた.予測期間 は初期値翌月以降の7か月間,アンサンブルメンバ 一数は毎月 10 メンバー,対象期間は 1979~2018 年 の 40 年間である.

ジェット減速場は、200hPa 高度の北側 15°と南側

15°間での差(以下,高度差)で定義した.月平均の 高度差は、北半球中高緯度では一般的に負の値をと り、西風ジェットが強い領域ではより小さな値を、 ジェット出口付近を含む西風ジェットが弱い領域 では大きな(ゼロに近い)値となる.

3. 解析結果

3.1. ジェット減速場の年々変動

第1図(a)に7~8月平均の高度差の標準偏差を, 同図(b)には帯状平均で規格化した標準偏差の分布 を示す.チベット高気圧(第1図の12,500m等値線 を参照)の東側にあたるアジアジェット出口付近で は,高度差の年々変動が同緯度帯の他の経度と比べ て大きい.そこで以下では,日本付近での砕波頻度 と最も高い相関が確認された日本の南(25°-35°N, 120°-160°E;第1図の赤破線枠)で領域平均した高 度差(以下,dZ200)に着目する.

 第1図 7~8月で平均した 200hPa 高度差の, (a)気候 値を定義した期間における標準偏差(単位:m)及び (b)標準偏差の帯状平均で規格化した値.等値線は 7 ~8月で平均した 200hPa 高度の気候値.赤破線枠域 は dZ200の評価領域(25°-35°N, 120°-160°E)を表す.

3.2. ジェット減速場の予測精度

第2図に、1~6月初期値における7~8月平均 dZ200の経年変化を示す.アンサンブル平均値(青 線)をJRA-55(黒線)と比較すると、どの初期値の 予測においてもdZ200の経年変動が概ね予測でき ているが、1994年や2010年をはじめとする特定の 年には大きな予測誤差を示している.アンサンブル

第2図 7~8月で平均した dZ200(単位: m)の, 1979~2018年の期間における経年変化. 黒線は JRA-55, 青線はア ンサンブル平均, 青色のエラーバーはアンサンブルスプレッドを示す. (a)は1月, (b)は2月, (c)は3月, (d)は4月, (e)は5月, (f)は6月の初期値における予測を表す.

スプレッドは1月から6月にかけて減少し(青色の エラーバー),リードタイムが短いほど予測可能性 が高い傾向を示している.

dZ200 の予測精度を定量的に評価するために,以下に示す3つの指標を用いた.

○ <u>予測誤差</u>

 $e_i = F_i - A_i$

*F_i*はアンサンブル平均予測値, *A_i*は JRA-55 を表す.
○ <u>2 乗平均平方根誤差(RMSE)</u>

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (F_i - A_i)^2}$$

nは対象年数(40年)を表す. 〇 <u>最大予測可能性 \sqrt{R} (以下,分散比; Sugi et al. 1997)</u>

$$\sqrt{R} = \sqrt{\frac{S^2}{S^2 + N^2}}$$
$$N^2 = \frac{1}{n(m-1)} \sum_{i=1}^n \sum_{j=1}^m (F_{i,j} - \overline{F}_i)^2$$
$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (\overline{F}_i - \overline{\overline{F}})^2$$

$S^2 = \sigma^2 - \frac{1}{m}N^2$

 N^{2} はノイズの分散, σ^{2} はアンサンブル平均の不偏 分散, S^{2} はシグナルの分散であり,mはアンサンブ ルメンバー数 (10 メンバー), $F_{i,j}$ は各メンバーの予 測値, \overline{F}_{i} はアンサンブル平均, \overline{F} はアンサンブル平均 のn年平均を表す.分散比 \sqrt{R} は0から1の間の値を とり,値が大きいほど予測可能性が高いことを示す.

第3回に、各初期値における7~8月で平均した dZ200の分散比、JRA-55との相関係数、RMSE及び アンサンブルスプレッドを示す.リードタイムが短 くなるにつれて分散比及び相関係数は増加(第3回 (a))、RMSE及びアンサンブルスプレッドは減少(同 図(b))しており、dZ200の予測精度は1月から6月 にかけて概ね向上する傾向が見て取れる.次に、 dZ200の予測誤差の各年・初期値における値を第4 図に示す.dZ200の予測誤差は大きな年々変動を示 し、例えば1994年、2010年、2012年及び2018年 にはジェット減速場が過小予測、1980年、1986年 及び2003年には過大予測となるなど、同符号の予 測誤差が1~6月の初期値で持続する傾向が見られ る.この結果は、ENSOに代表されるような季節~ 年スケールでの大気海洋変動の予測誤差が、ジェッ

第3図 1~6月の初期値における,7~8月で平均した dZ200 の予測精度. (a)の棒グラフは分散比,青線は JRA-55との相関係数, (b)の緑線はアンサンブルスプ レッド(単位:m),赤線はRMSE(単位:m)を表す.

第4図 1979~2018年の期間における、1~6月を初期 値とする 7~8 月で平均した dZ200 の予測誤差(単 位:m). 横軸は年,縦軸は初期値の月を示す.

ト減速場の予測誤差に影響を及ぼす可能性を示唆 している.

3.3. ジェット減速場の予測誤差と関連する大気 海洋変動の特徴

前節で示した dZ200 の予測誤差が、どの領域のど のような予測誤差と関連するのかを調べるため、1 ~6月の全初期値及びアンサンブルメンバーを用い た回帰分析を行った.第5図に、7~8月平均の dZ200 の予測誤差に回帰した海面水温及び大気循環場の 予測誤差の分布を示す.

海面水温の回帰分布より,ジェット減速場が過大 (過小)に予測される場合,海面水温は中・東部太 平洋赤道域で JRA-55 と比べて低(高)い傾向が見 られ(第5図(a)), ENSOの予測誤差がジェット減 速場の予測誤差と関連することを示している.なお, 日本近海~その東海上では海面水温が JRA-55 に比 べて高(低)い傾向が見られるが,これは本州南岸 ~その東海上の下層で風速が弱いことや高気圧性 循環偏差(風応力;第5図(c)を参照)に伴って海洋 表層の沈降が強いことと対応しており,主に大気循 環場の誤差に起因する可能性が考えられる.

次に降水量の回帰分布(第5図(b))より,ジェット 減速場が過大(過小)に予測される場合,中・東部 太平洋赤道域では対流活動がJRA-55 に比べて弱 (強)い傾向が見られ, ENSO に伴う海面水温の誤 差(同図(a))と対応している.一方,南シナ海〜フ ィリピンの東海上の20[®]N帯では、対流活動は強(弱) い傾向が見られ、中・東部太平洋赤道域との対流活 動の東西コントラストが明瞭である.降水量の分布 に対応させて 200hPa 速度ポテンシャルの回帰分布 (第5図(d))を見ると、対流圏上層では太平洋東部 ~南米付近で収束、東南アジア付近で発散が、それ ぞれ JRA-55 に比べて強(弱)い傾向が見て取れる. さらに、東南アジア付近の発散の中心からユーラシ ア大陸東部にかけて北向き発散風が強(弱)い傾向 が見られ(第5図(d)の矢印)、アジアジェットの予 測誤差への影響を示唆している.

続いて、アジアジェットの予測誤差への熱帯からの影響を調べるため、第5図(e)に200hPa東西風の回帰分布を示す.ジェット減速場が過大(過小)に予測される場合、ユーラシア大陸東部〜日本付近でアジアジェットがJRA-55に比べて北(南)偏する傾向が見られ、日本付近の30°N帯で西風が弱(強)い傾向はジェット減速場の過大(過小)予測と整合的である.また、南シナ海〜フィリピンの東海上の20°N帯での強(弱)い対流活動(第5図(b))に対応して、850hPa高度の回帰分布(同図(f))はフィリピンの北東海上で負(正)、日本付近〜その東海上で正(負)となる傾向が見られ、太平洋・日本パターン

(Nitta 1987) に類似した予測誤差のパターンが見られることも興味深い.

以上の結果は,発達期・成熟期・衰退期を含む ENSO に伴う海面水温の予測誤差が,熱帯の大気循 環場の予測誤差を通して,ジェット減速場の予測に 影響を及ぼす可能性を示している.

4. まとめと今後の課題

気象庁の現業季節アンサンブル予報システム (JMA/MRI-CPS2)のハインドキャストデータを用 いて,夏季アジアジェット減速場の季節予測可能性 を評価した.その結果,1~6月の初期値におけるジ ェット減速場の予測精度は概ね高い一方,特定の年 には予測誤差が大きく,初期値に関わらず同符号を 持つ誤差が持続する傾向が見られた.予測誤差に基 づく回帰分析より, ENSO に伴う海面水温の予測 誤差は,熱帯域の積雲対流活動及び対流圏上層での 発散場の予測誤差を通して,アジアジェット減速場 の予測誤差と関連することが明らかとなった.

今後は、大気大循環モデルを用いた海面水温の感 度実験等により、回帰分析で得られた予測誤差との 関連性について、因果関係を含めて、さらに詳しく 検証していく必要がある.

謝辞

季節予報ハインドキャストデータは、気象庁の Tokyo Climate Center から提供されたものです.

参考文献

- Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 1878–1896.
- Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. *Int. J. Climatol.*, 25, 865–879.
- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. *J. Meteor. Soc. Japan*, 93, 5–48.
- Lu, R., Y. Li, and B. Dong, 2006: External and internal summer atmospheric variability in the western North Pacific and East Asia, J. Meteor. Soc. Japan, 84, 447–462.

- Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.
- Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359–373.
- Sugi, M., R. Kawamura, and N. Sato, 1997: A study of SSTforced variability and potential predictability of seasonal mean fields using the JMA global model. *J. Meteor. Soc. Japan*, **75**, 717–736.
- Takaya, Y., S. Hirahara, T. Yasuda, S. Matsueda, T. Toyoda, Y. Fujii, H. Sugimoto, C. Matsukawa, I. Ishikawa, H. Mori, R. Nagasawa, Y. Kubo, N. Adachi, G. Yamanaka, T. Kuragano, A. Shimpo, S. Maeda, and T. Ose, 2018: Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): Atmosphere-land-ocean-sea ice coupled prediction system. *Climate Dyn.*, doi:10.1007/s00382-017-3638-5.
- Takemura, K., H. Mukougawa, and S. Maeda, 2020: Large-scale Atmospheric Circulation related to Frequent Rossby Wave Breaking near Japan in Boreal Summer, J. Climate, 33, 6731– 6744.
- Takemura, K., H. Mukougawa, and S. Maeda, 2021: Interdecadal Variability of Rossby Wave Breaking Frequency near Japan in August, SOLA, 17, 125–129.

第5図 1~6月の全初期値における,7~8月で平均した dZ200 の予測誤差に回帰した,海面水温及び大気循環場の予 測誤差の分布(陰影).(a)は海面水温(単位:℃),(b)は降水量(単位:mmd⁻¹),(c)は 850hPa 水平風速(単位:ms⁻¹), (d)は 200hPa 速度ポテンシャル(単位:10⁻⁵ m² s⁻¹),(e)は 200hPa 東西風(単位:ms⁻¹),(f)は 850hPa 高度(単位:m). 点を施した領域は,回帰が 95%信頼度水準で統計的に有意な領域を示す.等値線は気候値を表し,(b)は 4 mm d⁻¹以 上の領域について 4 mm d⁻¹間隔,(e)は 20 m s⁻¹以上の領域について 10 m s⁻¹間隔,(f)は 20m 間隔.(c)及び(d)の矢印 は,それぞれ回帰した 850hPa 水平風及び 200hPa 発散風を表す.