1. はじめに

2023 年夏(6-8 月)、北日本近海では海面水温(SST) が記録的に高い状態が持続した。特に三陸沖では、 黒潮続流の顕著な北上に伴い、海面付近に限らず表 層水温全体が異常に高かった。他方、この夏の日本 国内の平均気温は1898 年以降で最も高く、かつ北の 地方ほど気温偏差が著しかった(第1図)。特に北日 本の夏の平均気温は+3.0℃で、2 位以下を大きく引き 離しての高温記録更新となった(気象庁 2023b)。

気象庁異常気象分析検討会は、北日本の異常高温 の一因として近海の高い海水温による影響を挙げた (気象庁 2023a)。本稿では、当検討会における議論 を発展させて、北日本近海の記録的に高い海水温が 北日本の暑夏に与えた影響について調査した結果を 報告する。

第1図 2023 年夏(6~8月)平均気温平年差

2. 使用データと解析手法

大気循環場の解析には気象庁第3次長期再解析 (JRA-3Q; Kosaka et al. 2024)を用いた。SST及び海 洋表層の解析には MGDSST (Kurihara et al. 2006)及 び MOVE/MRI.COM-JPN 北太平洋域 (NPR)モデル データ (Hirose et al. 2019)をそれぞれ用いた。下層 雲量の解析には MODIS の衛星データ (Hubanks et al. 2020)を用いた。MODIS データでは下層雲は雲頂気 圧が 680hPa 以上の雲と定義されている。ただし、こ のデータはパッシブセンサーによる観測に基づくた め、中・上層雲と重なり合った場合に下層雲の検出 ができていない可能性がある。そのため random overlap (Weare 2000)を仮定して下層雲量を補正した。 平年値期間は 1991~2020 年とし、偏差は平年値か 佐藤 大卓 (気象庁 大気海洋部 気候情報課)

らの差で定義した。ただしデータが揃う期間の都合 上、MODIS 及び MOVE/MRI.COM-JPN はそれぞれ 2003~2022 年、1993~2022 年を平年値期間とした。

3. 解析結果

3.1 夏平均の海洋や大気の循環場

まず第2図に2023年夏(6~8月)平均のSST偏差、100m深水温偏差、100m深流速、2m気温(SAT) 偏差、850hPa気温偏差の分布を示す。北日本周辺海 域では、日本海及び三陸沖いずれにおいても顕著に SST(第2図(a))が高く、日本海北部で標準偏差の3 倍以上、三陸沖で4倍以上の極めて偏差が大きい領 域がみられた。特に三陸沖では100m深においても 極めて水温が高く(第2図(b))、これは黒潮続流が顕 著に北上していた(第2図(c))ことと対応している。 直上の大気については、SAT偏差(第2図(d))もSST 偏差と同様に異常に高かった。850hPa気温(第2図 (e))も標準偏差の2倍以上の著しい高温偏差であっ たが、SAT偏差ほどの異常さではなかった。

SAT の方が 850hPa 気温に比べて相対的に高温偏 差が大きかったことに関して、日本海及び三陸沖に おける夏季の SAT と 850hPa 気温の差の年々変動を 第2図(f)に示す。いずれの海域においても、SATと 850hPa 気温差は近年拡大する傾向にあり(t 検定で 信頼水準 95%以上)、1985 年以降では三陸沖では過 去最大、日本海でも過去2番目の気温差だった。特 に三陸沖では、2010年代以降にそうした傾向がより 顕著に見られるようになっている。このことは、北 海道南東方海上で 2010 年~2016 年に突如、毎年夏 に海洋熱波が発生するようになったこと(Miyama et al. 2021)とも合致して興味深い。彼らは海洋熱波の 発生要因を黒潮続流から切離された暖水渦の影響と 論じた。850hPa 気温に対して相対的に SAT の高温偏 差が大きくなることには、海洋からの影響が想像さ れる。

(a)は海面水温偏差、(b)は 100m 深水温偏差、(c)は 100m 深の流速(偏差でない)、(d)は 2m 気温偏差、(c)は 850hPa 気温偏 差。(a)、(b)、(d)、(c)は陰影が偏差(℃)で、等値線は平年値期間の標準偏差で規格化した偏差(無次元)で間隔は 1。矩形領 域は後述の日本海[37.5°-42.5°N, 133°-140°N]と三陸沖[37.5°-42.5°N, 142°-149°N]の領域をそれぞれ表す。

第3回に、三陸沖における夏平均の大気下層気温 偏差及び海洋表層水温偏差の鉛直プロファイルを示 す。2023年夏は対流圏下層全体で気温が記録的に高 く、とりわけ925hPaよりも下層では地表に近づくに つれて高温偏差が一層著しくなり、成層安定度が大 気境界層内で特に低下していた。他方、2023年夏は 海洋表層水温も1993年以降で突出して高かった。

ここで、2023年と、かつての歴代1位暑夏の2010 年との違いは注目に値する。対流圏下層では、950hPa より上層では両年の偏差はほぼ同じであるが、それ よりも下層については、2023年は最下層にかけて一 層高温偏差が大きくなるのに対し、2010年は最下層 にかけて逆に高温偏差が緩和されていた。海洋側は、 2023年は表層全体が異常な高温偏差だったのに対し、 2010年は20mより深い層では水温偏差が小さく、そ れより浅い層のみで水温が正偏差となっていた。こ れらの気温偏差及び水温偏差の鉛直プロファイルの 特徴からは、2010年夏は大気が海洋に熱的な強制を 与えたのに対し、2023年夏は対流圏下層の気温偏差 が海洋の異常な高水温によって支えられていた可能 性が推察される。

第3図 三陸沖における夏平均の気温偏差と水温 偏差の鉛直プロファイル

赤は 2023 年、桃色は 2022 年、紫は 2021 年、水色は 2016 年、緑は 2012 年、橙は 2010 年、鼠色が 1993 年 ~2023 年のうち上記以外の年をそれぞれ表す。

3.2 関連する大気海洋間の物理プロセス

海面での熱及び放射フラックスを解析したところ (第4図)、北日本周辺では正味短波入射フラックス、 下向き長波放射フラックスがいずれも地上気温を加 熱するセンスで平年より大きかった。放射フラック ス偏差から、直接的には大気から海洋への熱的強制 が平年より大きかったと読み取れるが、それを維持 した物理プロセスに海洋からの影響があった可能性 を考察する。また、三陸沖では潜熱フラックス、顕 熱フラックス偏差ともに大気を加熱するセンスで、 海洋から大気へ熱的強制があった。

そこでこれらの放射及び熱フラックス偏差をもた らした大気海洋間の物理プロセスに関して、更に関 連する物理量を解析した。 (a) 正味短波放射フラックス

(c) 潜熱フラックス

(d) 顕熱フラックス

第4図 2023 年夏平均の放射・熱フラックス偏差 (a)は正味(下向きー上向き) 短波放射フラックス、(b) は下向き長波放射フラックス、(c)は潜熱フラックス (上向き正)、(d)は顕熱フラックス(上向き正)。

(1)下層雲-SST フィードバック

北日本近海における地表の正味短波放射フラック ス正偏差(第4図(a))には、高いSST 偏差と関連し て下層雲量が少なかったこと(第5図(a))が影響し ていると考えられる。下層雲量の負偏差は、三陸沖 では標準偏差の 3~4 倍に相当する顕著なものだっ た。日本海でも標準偏差の2倍程度の負偏差だった。

気候学的には、夏季の北日本近海は、SST フロン ト北側の大気下層の安定度が高い領域へ、太平洋高 気圧の縁辺に沿って暖かく湿った空気が南方から移 流される場となる。そのためこの海域では夏季に下 層雲の発生が卓越することが知られている(Klein and Hartmann, 1993; Norris and Leovy, 1994)。また、本 州東岸の黒潮続流域の海洋前線帯近傍では SST 変動 と下層雲量変動には有意な負相関(相関係数-0.61、 信頼水準 95%以上で有意) がある (第5図(b))。2023 年夏は、SST が高い海域で下層雲量が少なく、とり わけ本州東岸周辺は SST 正偏差と下層雲量負偏差が 他の年と比べて突出していた。第3図に示したよう に、SST が高いことによって大気下層の安定度が低 減し、下層雲が形成されにくい環境場となったため と考えられる。さらに、太陽入射の増加は翻って更 なる SST の上昇をもたらし、下層雲-SST フィード バック (Norris and Leovy, 1994)を通じて、高い SST 偏差を増幅させた可能性がある。

(2) 水蒸気フィードバック

北日本周辺の地表での下向き長波放射フラックス 正偏差(第4図(b))は、可降水量正偏差の分布(第 6図)とよく対応していた。Allan et al. (2004)の診断 式に基づいて可降水量偏差が長波放射フラックスに 与えた寄与を見積もると、北日本周辺の10~15W/m² 程度の下向き長波放射フラックス正偏差域では、そ の過半に相当する約+6-9 W/m²の寄与が推定された

(図略)。この放射フラックス偏差は、地表気温を平 年値に相当する 293K (約 20℃) とすると+1.1~1.6℃ の気温偏差に相当し、温室効果の強化が高温偏差に 重要であったと診断される。

北日本周辺の比湿偏差(図略)は気温偏差のプロ ファイル(第3図)に対応して下層ほど大きかった。 (a) 下層雲量偏差

第5図 (a)2023 年夏平均の下層雲量偏差[%]と(b) 本州東岸で平均した夏平均の下層雲量偏差と SST との散布図 (2003~2023 年) (a) 矩形領域は(b)の散布図で用いた本州東岸周辺領域 [35°-42.5°N, 141°-145°N]を示す。(b) この図の SST 偏差は、1991-2020 年の 30 年平均ではなく、下層雲量 のデータ期間と合わせて 2003~2022 年の 20 年平均値 からのずれ。赤丸が 2023 年を示す。

さらに定性的には高い SST に伴って北日本周辺で海 面からの蒸発が平年より活発だったことも関連して いる可能性がある(第4図(c))。これらのことは、大 気中、とりわけ高温が著しい対流圏下層の多湿化に よって温室効果が強化され、水蒸気フィードバック を介して高温偏差が維持された可能性を示唆する。

第6図 2023 年夏平均可降水量平年差

陰影は平年差[mm]。等値線は平年値期間の標準偏差で 規格化した偏差(無次元)で間隔は1。

(3) 大気境界層の加熱

顕熱フラックス(第4図(d))は、特に三陸沖のSST が高い海域においては海洋が大気を直接加熱するセ ンスの偏差となっており、高い海水温が下層大気よ り熱を保持するように寄与した。

4. まとめ

2023年夏の北日本の記録的暑夏について、近海の 顕著に高い海水温の影響を調査した。黒潮続流の顕 著な北上に伴い海洋表層全体が高温となっている状 況下で、地表気温も異常に高い状態であった。気温 及び水温偏差の鉛直プロファイルからは、2023年夏 は海洋の高温が地上気温の高温を支えた可能性が考 えられる。さらに偏差場の維持に関与したとみられ る大気と海洋間の物理プロセスを解析したところ、 記録的に高い海水温の影響について、①下層雲-SST フィードバック、②水蒸気フィードバック、③大気 境界層の直接的な加熱が関与していた可能性が示唆 された。

謝辞

異常気象分析検討会委員の皆さまから頂いた助言 をもとに本調査を進めることができました。ここに 感謝いたします。

参考文献

- 気象庁, 2023a:「令和5年梅雨期の大雨事例と7月後半以 降の顕著な高温の特徴と要因について」(令和5年8 月28日報道発表), <u>https://www.jma.go.jp/jma/press/2308/28a/kentoukai20</u> 230828.pdf (2024年2月9日閲覧)
- 気象庁, 2023b:「夏(6~8月)の天候」(令和5年9月1日報 道発表), <u>https://www.jma.go.jp/jma/press/2309/01b/tenko230608</u> .<u>html</u>(2024年2月9日閲覧)
- Allan, R. P., M. A. Ringer, J. A. Pamment, and A. Slingo, 2004: Simulation of the Earth's radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40). J. Geophys. Res., 109, D18107. <u>https://doi.org/10.1029/2004JD004816</u>.
- Hirose, N., N. Usui, K. Sakamoto, H. Tsujino, G. Yamanaka, H. Nakano, S. Urakawa, T. Toyoda, Y. Fujii and N. Kohno,

2019: Development of a new operational system for monitoring and forecasting coastal and open-ocean states around Japan. *Ocean Dynamics* **69**, 1333–1357. https://doi.org/10.1007/s10236-019-01306-x.

- Hubanks P., R. Pincus, S. Plantnick, and K. Meyer., 2020: Level-3 COSP Cloud Properties (MCD06COSP_L3) Combined Terra & Aqua MODIS Global Gridded Product for Climate Studies User Guide. NASA GSFC, 104pp., <u>https://atmosphere-</u> <u>imager.gsfc.nasa.gov/products/monthly_cosp/document</u> <u>ation</u> (2024 年 2 月 9 日閲覧)
- Klein, S. A. and D. L. Hartmann, 1993: The Seasonal Cycle of Low Stratiform Clouds. J. Climate. 6, 1587-1606.
- Kosaka, Y., S. Kobayashi, Y. Harada, C. Kobayashi, H. Naoe, K. Yoshimoto, M. Harada, N. Goto, J. Chiba, K. Miyaoka, R. Sekiguchi, M. Deushi, H. Kamahori, T. Nakaegawa; T. Y.Tanaka, T. Tokuhiro, Y. Sato, Y. Matsushita, and K. Onogi, 2024: The JRA-3Q reanalysis. *J. Meteor. Soc. Japan*, **102**, 49-109. <u>https://doi.org/10.2151/jmsj.2024-004</u>.
- Kurihara, Y., T. Sakurai, and T. Kuragano, 2006: Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations. Weather Service Bulletin, 73, Special issue, s1-s18 (in Japanese).
- Miyama, T., S. Minobe and H. Goto, 2021: Marine Heatwave of Sea Surface Temperature of the Oyashio Region in Summer in 2010–2016. *Front. Mar. Sci.* 7, 576240. <u>https://doi.org/10.3389/fmars.2020.576240</u>.
- Norris, J. R. and C. B. Leovy, 1994: Interannual Variability in Stratiform Cloudiness and Sea Surface Temperature. J. Climate. 7, 1915-1925.
- Weare, B. C., 2000: Near-global observations of low clouds. J. Climate, 13, 1255–1268.