This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is
DOI:10.2151/jmsj.2019-059

J-STAGE Advance published date: August 9th, 2019

The final manuscript after publication will replace the preliminary version at the above DOI once it is available.
Forward scattering effect on
the estimation of the aerosol optical thickness
for Sun photometry

Tamio TAKAMURA

Center for Environmental Remote Sensing
Chiba University, Chiba, Japan

and

Hitoshi IRIE

Center for Environmental Remote Sensing
Chiba University, Chiba, Japan

March 29, 2019

1) Corresponding author: Tamio TAKAMURA, CEReS, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 JAPAN.
Email: takamura@faculty.chiba-u.jp
Tel: +81-43-290-3844
Fax: +81-43-290-3857
Abstract

The accurate aerosol optical thickness is indispensable for estimating the radiative forcing of aerosols in the atmosphere. Sun photometry is one of the most popular methods, which is simple and easy to use, but it should be noted that some errors due to forward scattering effect can be introduced in the observation of the direct normal irradiance. Consequently, the estimated optical thickness of aerosols can be underestimated even if the calibration constant is correct. This possibility depends on an optical geometry of the measuring instrument as well as aerosol characteristics. This report assesses these effects by assuming several aerosol types and instrumental parameters quantitatively.

Forward scattering ratio $\gamma_{\lambda, \text{fwd}}$, which is defined as a ratio of the forward scattering part to the true direct normal irradiance (I_λ), by $I_{\lambda, \text{obs}} = I_\lambda (1 + \gamma_{\lambda, \text{fwd}})$, is approximately proportional to the product of the optical thickness ($\tau_{\lambda, \text{aer}}$) and the single scattering albedo (ω_λ) of aerosols and the relative air mass (m), $\gamma_{\lambda, \text{fwd}} \approx \varepsilon_\lambda \omega_\lambda \tau_{\lambda, \text{aer}} m$. The coefficient ε_λ is a proportional constant which is dependent on the opening angle of the instrument as well as the optical characteristics of aerosols. The variation of ε_λ is tabulated for several aerosol types and opening angles. Then the error for the estimate of $\tau_{\lambda, \text{aer}}$ can be approximately expressed by $\Delta \tau_\lambda \approx -\varepsilon_\lambda \omega_\lambda \tau_{\lambda, \text{aer}}$.

Keywords aerosol; forward scattering; sun photometry; opening angle
1. Introduction

Climate effects of particles suspended in the atmosphere have been studied by many researchers for a long time due to their importance (e.g., Charlson and Heintzenberg, 1995; Hobbs, 1993; IPCC, 2014). These effects consist of two major aspects, one is a direct effect and the other is an indirect effect, as well known. Recent focus of aerosol studies on the climate change has been mainly on the latter effects as these show a variety of mechanism in the atmosphere and are still not clear. On the other hand, the direct effect is easily understandable through the assessment of radiative effects, among which the following parameters: the optical characteristics i.e. the optical thickness (AOT), the single scattering albedo (SSA), and so on, are estimated by using a combination of the size distribution and the complex refractive index of the particles. Ground-observation networks for aerosol and cloud such as AERONET (https://aeronet.gsfc.nasa.gov) and SKYNET (http://atmos3.cr.chiba-u.jp/skynet/) have been introduced in parallel with satellite monitoring. These network observations can give detailed and useful information on aerosols worldwide. This information is based on the sky brightness measurements including the direct solar irradiance, e.g., Giles et al. (2019), and Kitakoga et al. (2014).

The AOT has been estimated experimentally by sun photometry. This method is reliable and has a long history because of its ease of use (e.g., Voltz, 1974; Shaw, 1983). A sun photometer has been designed and used in order to estimate it, as well as the water vapor and ozone amounts. The field of view (FOV) of the instrument is limited to an angle wide
enough to measure the attenuated irradiance from the solar disk. Grassl (1971) pointed out that the effect of circumsolar irradiance should be corrected when a photometer has a wider FOV. In another aspect, the instrument needs to follow the motion of the solar disk correctly. Regarding the accuracy of the AOT estimate, the smaller FOV is better, but a wider FOV is required for tracking the sun steadily. This is a trade-off. For example, the WMO document (WMO, 2012) provides the FOV angle for an observation instrument such as a pyrheliometer, in order to minimize the effect of forward scattering. Also the improved solar tracking technique can possibly make less forward scattering measurements for direct solar observations.

In this report the effects of forward scattering for the AOT estimate using the sun photometry technique are discussed quantitatively and qualitatively.

2. Error by Forward Scattering

The basic concept to estimate the AOT is simply to use the incoming direct solar irradiance (DNI) attenuated by aerosols at wavelengths without any gaseous absorption. When such wavelengths are selected, the observed irradiance (I_{obs}) including forward scattering in the clear atmosphere can be converted to an apparent atmospheric optical thickness (τ_{app}) of aerosol and molecular scattering. These parameters are a function of wavelength, but it is omitted to avoid complexity, hereafter. If the calibration constant of the used instrument assumes to be F_0^* including the calibration error, the observed DNI, I_{obs} can be expressed
by using the apparent optical thickness τ_{app}:

$$I_{obs} = F_0^*e^{-m\tau}$$

then,

$$\tau_{app} = \tau + 1/m \cdot \ln(\gamma_{cal}/(1+\gamma_{fwd})).$$

The parameter of the distance between the Earth and the sun is also omitted in the equation.

The variable m is the relative air mass corresponding to the solar position. The true values of the calibration constant and the atmospheric optical thickness are F_0 and τ, respectively.

The γ_{fwd} in Eq.(2) is the ratio of the forward scattering part ΔI_{fwd} in the I_{obs} to the true DNI and the γ_{cal} is the ratio of the actual calibration constant to the true one;

$$I_{obs} = I + \Delta I_{fwd}$$

$$= I(1 + \gamma_{fwd}),$$

and,

$$F_0^* = \gamma_{cal} F_0.$$

Then the difference ($\Delta \tau$) between the atmospheric optical thickness and the true value is expressed by the second term of the right-hand side of Eq. (2).

Figure 1 shows the value of $\ln(\gamma_{cal}/(1+\gamma_{fwd}))$ in Eq. (2), which equals the difference ($m\Delta \tau$).

Even if the calibration constant is correct ($\gamma_{cal} = 1$), the forward scattering leads to an under-estimation of the optical thickness, as expected. In general, the erroneous calibration can produce both negative (under-estimation) and positive (over-estimation) effects. Therefore, the line without error is apparently due to the cancellation of these effects. Note that the
vertical axis of Fig. 1 is a logarithmically arbitrary unit (not correct logarithmic scale).

The amount of actual forward scattering must be proportional to the scattering part of the optical thickness under the single scattering assumption, i.e., $\omega \tau$, when the scattering pattern is the same at varying AOTs. However, since the pattern will change depending on the weighted ratio of each part of the Rayleigh and aerosol scattering, the forward scattering ratio can be approximately expressed as $\gamma_{wd} \approx \omega \tau_{aer} m$ for $\gamma_{wd} \ll 1$. So the logarithmic equation of the true DNI is approximately expressed, as follows:

$$\ln I \approx \ln F_0^* - (\tau_{app} + \omega \tau_{aer})m, \quad (4)$$

and, if the calibration constant is correct, $F_0^* = F_0$.

$$\tau_{app} = \tau - \omega \tau_{aer}$$

$$\tau_{app} \approx \tau (1 - \omega). \quad (5)$$

The variable ω in Eqs. (4) and (5) is a proportional coefficient, which will be dependent on the aerosol type and the instrumental geometry. Forward scattering can reduce the optical thickness by roughly $(1 - \omega \omega)$, when the Rayleigh scattering by atmospheric molecules is negligible. Therefore, the underestimate of τ_{app} is dependent on the atmospheric turbidity and the quality of aerosols of the observation day.

2.1 Effect to instrument calibration

When an instrument is calibrated using the Langley method, the forward scattering effects also appears in the DNI observation. A calibration constant estimated by the Langley method,
however, should not be affected under stable atmospheric conditions. Even if the optical thickness has an error due to forward scattering, the Langley plot can produce the correct calibration constant F_0, because $\gamma_{\text{fwd}} = 0$ at $m = 0$, as shown in Fig. 2. The broken lines in the figure depict slopes of the Langley plot used to estimate the calibration constant, of which slopes are the optical thicknesses, τ_{app} and τ, respectively. The difference between $\ln I_{\text{obs}}$ and $\ln I$ at a relative air mass m is equal to $\ln(1 + \gamma_{\text{fwd}})$.

However, when the calibration is performed by comparing a sample instrument with a reference one at any optical thickness of the atmosphere, the scattering effect appears clearly, as follows:

$$F_0 = F_{0\text{ref}} (1 + \gamma_{\text{obs}})/(1 + \gamma_{\text{ref}}).$$ \hspace{1cm} (6)

In Eq. (6), $F_{0\text{ref}}$ and γ_{ref} are the calibration constant and the forward scattering ratio of the reference instrument, respectively.

2.2 Simulation by radiative transfer calculation

To assess the quantitative effect of forward scattering in the DNI observation, the radiative transfer calculation is performed by using the SMARTS code developed by Gueymard (1995). The forward scattering effect by suspended particles is caused by two major sources, as described in the previous section. In the simulation, several typical cases for these parameters are assumed.

The input geometry of an instrument can primarily affect the ΔI_{fwd} in Eq. (3). The FOV is
defined by two parameters, the opening half angle (θ) and the slant angle (Vignola et al., 2012). The simulation is performed by assuming three typical cases, as shown in Table 1. The biggest case is introduced for operational pyrheliometer ($2\theta=5.0$), which is required by the WMO document (WMO, 2012), and the smaller case of $2\theta=1.0$ is used for sun/sky radiometers of the SKYNET observation (http://atmos3.cr.chiba-u.jp-skynet/). An opening angle of $2\theta=2.0$ is assumed for collimating direct solar radiation when calibrating a spectral radiometer (pyranometer).

Different types of aerosols can contribute differently to scattering, as it is well known (van de Hulst, 1981). In the assessment of quantitative and qualitative effects, three aerosol models are taken into consideration for the simulation, by selecting the “S&F Urban” and the “S&F Maritime” models by Shettle and Fenn (1979) and the “Desert-Max” model seen in the strong dust storms (Gueymard, Manual for SMARTS2.9.5: https://www.nrel.gov/grid/solar-resource/smarts.html). The “S&F Urban” model is typical for a polluted atmosphere, which has secondary particles rich in the size distribution and a smaller single scattering albedo (SSA). On the other hand, there are lots of coarse/natural particles in the “Maritime” model which are composed of very light absorptive particles (SSA is close to 1.). The “Desert-Max” model might not be popular in a usual atmosphere, but it is one of the special cases with lots of coarse particles in the desert and its downwind regions. These three models have unique optical characteristics, as shown in Fig. 3.

Six steps of AOT for each model (τ_{aer}: 0.01, 0.05, 0.1, 0.2, 0.5, 1.0 at 500 nm) are used
in the simulation. Figure 3 shows the wavelength dependence of AOT (Fig. 3a) for each model with values of 0.2 and 1.0 at 500 nm. The largest Angstrom Exponent (AE; α) is from the “S&F Urban” model, and the mid value is that of the “S&F Maritime” model. The “Desert-Max” model has $\alpha=0$, which means that the AOT shows no wavelength dependence. Therefore, the coarse particles are relatively more abundant than in the other two models.

The wavelength dependence of SSA are also shown in Fig. 3b. The “S&F Maritime” model has a very weak absorption along the whole wavelength range compared with the other two models. An artificial bump in SSA at 500 nm is found for the “Desert-Max” model. The “Mid-Latitude Summer” model (McClatchey et al., 1971) is used as an atmospheric model with a standard pressure of 1013.25 hPa at the surface. Other atmospheric parameters are shown in Table 2. The wavelengths for calculation range from 300 nm to 1100 nm for the effective region of scattering in the usual atmosphere. The solar position is also made to vary between three relative air masses, $m=1.0$ (solar zenith angle: sza=0 deg.), $m=3.0$ (sza=70.7 deg.) and $m=5.0$ (sza=78.8 deg.).

3. Results and Discussion

The forward scattering ratios f_{fwd} are calculated for eleven models built in the SMARTS code to compare the differences between the aerosol models, as shown in Fig. 4. That figure presents only cases for a relative air mass (AM) $m=5$ and an opening angle (OA) $2\theta=5.0$ deg. Each model has the same AOT of 0.2 at 500 nm. In Fig. 4a, the “S&F Maritime” shows
the biggest contribution of γ_{fwd} among the eleven models. Regarding the difference
in the Angstrom Exponent, the “Desert-Max” (Fig. 4c) is supposed to be the most effective,
but the “S&F Maritime” is the largest due to its high SSA. The “Desert-Max” has also
relatively larger values than that of the others except for the “SRA-Maritime”. The “S&F
Urban” (Fig. 4a) does not have the lowest value, but it is applied due to its most popular type
in the urbanized areas. The three models, “S&F Maritime”, “S&F Urban” and “Desert-Max”,
are selected in the analysis. The characteristics of eight models not selected in the
simulation are also shown in the manual of the SMARTS code (Gueymard, Manual for
SMARTS2.9.5: https://www.nrel.gov/grid/solar-resource/smarts.html).

The dependency of γ_{fwd} on the actual optical thickness for the line of sight to the sun is
examined for eight wavelengths [315, 340, 400, 500, 675, 870, 940 and 1020 nm], which
are used by the sky radiometer of the SKYNET observation network, including channels for
the estimate of the ozone (315 nm) and water vapor (940 nm) amounts.

While forward scattering by a single particle is not generally sensitive to the imaginary part
of the refractive index, the actual amount of the forward scattering observed at the surface
includes information of not only the total optical thickness but also the aerosol absorption,
i.e., SSA, due to the attenuation effect of the DNI. Figure 5 shows an example of γ_{fwd} for the
“Desert-Max” model with an opening angle of 5.0 deg. These γ_{fwd}s are plotted for the 500
nm wavelength as a function of the aerosol scattering optical thickness in line of sight (LOS),
i.e., AOT*SSA*AM ($\tau_{aer} \omega m$) in red squares. In the figure, the variation of AOT*AM ($\tau_{aer} m$)
is shown in black dots as a reference. When the single scattering is dominant, these ratios should be basically proportional to the actual scattering optical thickness. And when the optical thickness is thinner, the linearity gets a little worse due to the relative increase of the Rayleigh scattering. However, the figure shows good proportionality. The equation of \(\gamma_{fwd} \approx \varepsilon \omega_{\text{aer}} m \), is reasonable and the coefficient \(\varepsilon \) is summarized in Table 3 for three models.

Figures 6a-6c show the wavelength dependency of \(\varepsilon \) and the opening angle dependency is seen in Figs. 6d-6f for the three different OAs. Figures 6a and 6d are for the “S&F Urban”, Fig. 6b and 6e for the “Desert-Max”, and Figs. 6c and 6f for the “S&F Maritime” model, respectively. The coefficient \(\varepsilon \) is basically dependent on the opening angle of the instrument as well as the aerosol type (size distribution and refractive index of the aerosol). As expected, the wavelength dependency of the coefficient is influenced by the size distribution pattern, with the fine particle-rich distribution such as the “S&F Urban” model showing a weak dependency. In Fig. 6b (“Desert-Max”), the lines have no abnormal fluctuations around the 500 nm-wavelength because the effect of the discontinuous SSA at 500 nm as shown in Fig. 6b disappears when SSA is taken as a variable.

The relationship between the coefficient \(\varepsilon \) and the Angstrom Exponent \(\alpha \) is depicted in Fig. 7. In the simulation, the AE is defined by using four wavelengths of 400, 500, 675 and 870 nm. In general, a smaller \(\alpha \) can give a larger \(\varepsilon \) because of rich coarse-mode particles. The figure follows this trend except for models of “BD-C” and “BD-C1”, which have been proposed by Braslau and Dave (1973). The AOTs of these two models have a unique
dependence on the wavelength, with peaks shown at 500 nm. The small coefficients \(\varepsilon \) mean that smaller AOTs at wavelengths shorter than 500 nm can produce less forward scattering. Also the AE values seem to be smaller apparently due to the definition.

From Table 3 and Fig. 6, the percentage error of the optical thickness estimation can be approximately found by \(\Delta \tau \approx -\varepsilon \omega \tau_{aer} \). Also from these points, it is important to determine the appropriate opening angle when a new instrument for DNI observation is designed.

4. Summary

The error analysis in sun photometry has been performed with measurements of direct normal irradiance (DNI) including a forward scattering part as well as the true DNI. The error to be estimated in this analysis is discussed based on the contribution of the forward scattering to the optical thickness by assessing the forward scattering ratio \(\gamma_{fwd} \), to the true DNI \([I]\), as defined by \(I_{obs} = I(1+\gamma_{fwd}) \).

The forward scattering effect can cause no erroneous calibration constant as estimated by using the Langley plot technique, despite the underestimate of the apparent optical thickness. However, when calibration is performed by comparing a sample instrument with a reference one, there would be a calibration error if both instruments have different opening angles.

In the analysis, the amount of forward scattering is simulated by using the radiative transfer code (SMARTS 2.9.5) with three typical aerosol types: “S&F Urban”, “Desert-Max”
and “S& F Maritime” types at three opening angles of instrument. The forward scattering ratio is approximately proportional to the product of the aerosol scattering optical thickness and the relative air mass, \(\gamma_{\text{fwd}} \approx \varepsilon \omega \tau_{\text{aer}} \). The coefficient \(\varepsilon \) is a proportional constant which is dependent on the opening angle of the instrument and the optical characteristics of aerosols.

The error is approximately expressed by \(\Delta \tau \approx -\varepsilon \omega \tau_{\text{aer}} \).

Acknowledgments

This report is based partly on the discussion at SKYNET monthly meetings in CEReS, Chiba University and partly supported by the MEXT/JSPS KAKENHI grant of 2451007.

References

Sons Ltd., West Sussex, England.

Grassl, H., 1971: Calculated circumsolar radiation as a function of aerosol type, field of view, wavelength, and optical depth. Applied Optics, 10(11), 2542.

Shettle E.P. and Fenn R.W., 1979: Models for the aerosols of the lower atmosphere and the
effects of humidity variations on their optical properties. AFGL-TR-79-0214, Air Force
Geophysics Lab., Hanscom, MA.

York, NY.

CRC Press, New York, NY.

Voltz, F.E., 1974: Economical Multispectral Sun Photometer for Measurements of Aerosol
Extinction from 0.44 um to 1.6 um and Precipitable water. Appt Opt., 13(8), 1732.

WMO, 2012: Guide to Meteorological Instruments and Methods of Observation. WMO-No.8,

(https://library.wmo.int/pmb ged/wmo _8 _en-2012.pdf)
Fig. 1 Difference \((m \Delta \tau_\lambda)\) in the atmospheric optical thickness caused by the forward
scattering and the erroneous calibration constant when the relative airmass of the solar
position equals \(m\). The negative region in the figure means under-estimation of the
optical thickness.

Fig. 2 An example of Langley plot with forward scattering effects. The apparent optical
thickness \(\tau_\lambda,\text{app}\) is less steep than the true one \(\tau_\lambda\) due to forward scattering, but the
calibration constant \(\ln F_{0,\lambda}\) is equal to \(\ln F^{*}_{0,\lambda}\).

Fig. 3 Optical characteristics of three aerosol models used in the simulation. The left
figure (a) shows the wavelength dependence of two AOTs of 0.2 and 1.0 at 500 nm.
The right figure (b) is the same except for SSA.

Fig. 4 Wavelength dependence of forward scattering ratio \(\gamma_{\text{fwd}} = \Delta I_{\text{fwd}}/I_{\text{dni}}\), as a function of
wavelength in nm for eleven aerosol models (4a to 4c) built in the SMARTS2.9.5 code.
The characteristics of each aerosol model are described in the manual
(https://www.nrel.gov/grid/solar-resource/smarts.html). All the graphs are only for air
mass (AM) m=5 and opening angle (OA) 2\(\vartheta\)=5 deg. Each model has the same aerosol optical thickness of 0.2 at 500 nm.

Fig. 5 An example of the relationship between the scattering ratio \(\gamma_{wd} (=\Delta l_{wd}/l_{DNI})\) and the aerosol (scattering) optical thickness in line of sight at 500 nm for the “Desert-Max” aerosol model. The optical geometry is for an opening angle of 5.0 deg. The red squares show a variation of \(\gamma_{wd}\) as a function of AOT*SSA*AM(\(\tau_{aer} \cdot \omega \cdot m\)), and the black dots are the same except for a function of AOT*AM (\(\tau_{aer} \cdot m\)) as a reference.

Fig. 6 Wavelength dependence (6a to 6c) and opening angle dependence (6d to 6f) of a coefficient \(\varepsilon\) for three aerosol models.

Fig. 7 Relationship between the coefficient \(\varepsilon\) and the Angstrom Exponent \(\alpha\) for eleven aerosol models built in the SMARCTS code with a wavelength of 500 nm and an opening angle of 5 deg. The red triangle, black dot and red star shown in the figure are for “S&F Urban”, “S&F Maritime” and “Desert-Max” model, respectively. Models “BD-C” and “BD-C1” are overlapped.
Fig. 1 Difference \((m \Delta \tau_\lambda)\) in the atmospheric optical thickness caused by the forward scattering and the erroneous calibration constant when the relative airmass of the solar position equals \(m\). The negative region in the figure means under-estimation of the optical thickness.

Fig. 2 An example of Langley plot with forward scattering effects. The apparent optical thickness \(\tau_{\lambda,\text{app}}\) is less steep than the true one \(\tau_\lambda\) due to forward scattering, but the calibration constant \(\ln F_{0,\lambda}\) is equal to \(\ln F_{0,\lambda}^*\).
Fig. 3 Optical characteristics of three aerosol models used in the simulation. The left figure (a) shows the wavelength dependence of two AOTs of 0.2 and 1.0 at 500 nm. The right figure (b) is the same except for SSA.
Fig. 4 Wavelength dependence of forward scattering ratio $\gamma_{fwd} = \Delta I_{fwd}/I_{DNI}$, as a function of wavelength in nm for eleven aerosol models (4a to 4c) built in the SMARTS2.9.5 code.

The characteristics of each aerosol model are described in the manual (https://www.nrel.gov/grid/solar-resource/smarts.html). All the graphs are only for air mass (AM) m=5 and opening angle (OA) 2θ=5 deg. Each model has the same aerosol optical thickness of 0.2 at 500 nm.
Fig. 5 An example of the relationship between the scattering ratio $\gamma_{fwd} (=\Delta I_{fwd}/I_{DNI})$ and the aerosol (scattering) optical thickness in line of sight at 500 nm for the “Desert-Max” aerosol model. The optical geometry is for an opening angle of 5.0 deg. The red squares show a variation of γ_{fwd} as a function of $\text{AOT}^{*}\text{SSA}^{*}\text{AM}(\tau_{\text{aer}}^{*} \omega^{*} m)$, and the black dots are the same except for a function of $\text{AOT}^{*}\text{AM}(\tau_{\text{aer}}^{*}m)$ as a reference.
Fig. 6 Wavelength dependence (6a to 6c) and opening angle dependence (6d to 6f) of a coefficient ε for three aerosol models.
Fig. 7 Relationship between the coefficient ε and the Angstrom Exponent α for eleven aerosol models built in the SMARTS code with a wavelength of 500 nm and an opening angle of 5 deg. The red triangle, black dot and red star shown in the figure are for “S&F Urban”, “S&F Maritime” and “Desert-Max” model, respectively. Models “BD-C” and “BD-C1” are overlapped.
Table 1 Assumed parameters in FOV of an instrument. The definition of each angle is referred in Vignola et al. (2010).

Table 2 Atmospheric model and parameters in the simulation.

Table 3 The wavelength dependence of coefficient ε for three kinds of opening angle (2θ) and three aerosol models. The coefficient ε is derived by $\varepsilon = \gamma_{\text{tot}}(\tau_{\text{aer}} \omega m)$. The term “R2” means the decision coefficient for each ε estimation.
Table 1 Assumed parameters in FOV of an instrument. The definition of each angle is referred in Vignola et al. (2010).

<table>
<thead>
<tr>
<th>Opening angle</th>
<th>Slope angle</th>
<th>Limiting angle</th>
<th>Instrument (Example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(\theta) (deg)</td>
<td>1.0</td>
<td>4.0</td>
<td>Operational pyrheliometer e.g., CHP-1 (Kipp & Zonen), MS-54 (EKO)</td>
</tr>
<tr>
<td>2.0</td>
<td>0.4</td>
<td>1.6</td>
<td>e.g., Collimation tube for calibration of spectral radiometer/pyranometer</td>
</tr>
<tr>
<td>1.0(^*(1))</td>
<td>0.2</td>
<td>0.8</td>
<td>Sun photometer/Sky radiometer e.g., POM-02 (PREDE), (^*(1)) 1.2 deg. for CE318 (CiMEL)</td>
</tr>
</tbody>
</table>

Table 2 Atmospheric model and parameters in the simulation.

<table>
<thead>
<tr>
<th>Atmospheric Model</th>
<th>Surface reflectance</th>
<th>Water vapor</th>
<th>Carbon dioxide</th>
<th>Ozone</th>
<th>Other minors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid Latitude Summer</td>
<td>0.1</td>
<td>29.8mm</td>
<td>400 ppm</td>
<td>300 DU</td>
<td>SMARTS2.9.5 Default values</td>
</tr>
</tbody>
</table>
Table 3 The wavelength dependence of coefficient ε for three kinds of opening angle (2θ) and three aerosol models. The coefficient ε is derived by $\varepsilon = \frac{\gamma_{fwd}}{\tau_{aer} \omega_{m}}$. The term “R2” means the decision coefficient for each ε estimation.

Geometry	Opening Angle: 5.0 deg., Slant Angle: 1.0 deg.						
Aerosol model		Urban	R2	Desert-Max	R2	S&F Maritime	R2
Wavelength (nm)	OA5.0:Coeff.	OA5.0:Coeff.	OA5.0:Coeff.	OA5.0:Coeff.	OA5.0:Coeff.		
315	3.462E-02	0.9917	9.157E-02	0.9957	1.103E-01	0.9994	
340	3.307E-02	0.9965	8.787E-02	0.9984	1.036E-01	0.9997	
400	3.122E-02	0.9994	8.218E-02	0.9998	9.079E-02	1.0000	
500	3.005E-02	0.9999	7.590E-02	1.0000	7.495E-02	1.0000	
675	2.940E-02	1.0000	6.736E-02	1.0000	6.723E-02	1.0000	
870	3.119E-02	1.0000	5.888E-02	1.0000	6.890E-02	1.0000	
940	3.202E-02	1.0000	5.614E-02	1.0000	6.888E-02	1.0000	
1020	3.302E-02	1.0000	5.325E-02	1.0000	6.683E-02	1.0000	

Geometry	Opening Angle: 2.0 deg., Slant Angle: 0.4 deg.						
Aerosol model		Urban	R2	Desert-Max	R2	S&F Maritime	R2
Wavelength (nm)	OA2.0:Coeff.	OA2.0:Coeff.	OA2.0:Coeff.	OA2.0:Coeff.	OA2.0:Coeff.		
315	1.005E-02	0.9976	3.466E-02	0.9993	3.837E-02	0.9999	
340	9.793E-03	0.9990	3.287E-02	0.9997	3.523E-02	0.9999	
400	9.476E-03	0.9998	2.940E-02	1.0000	2.896E-02	1.0000	
500	9.276E-03	1.0000	2.506E-02	1.0000	2.122E-02	1.0000	
675	9.172E-03	1.0000	1.972E-02	1.0000	1.735E-02	1.0000	
870	9.144E-03	1.0000	1.553E-02	1.0000	1.720E-02	1.0000	
940	9.155E-03	1.0000	1.434E-02	1.0000	1.721E-02	1.0000	
1020	9.170E-03	1.0000	1.314E-02	1.0000	1.719E-02	1.0000	

Geometry	Opening Angle: 1.0 deg., Slant Angle: 0.2 deg.						
Aerosol model		Urban	R2	Desert-Max	R2	S&F Maritime	R2
Wavelength (nm)	OA1.0:Coeff.	OA1.0:Coeff.	OA1.0:Coeff.	OA1.0:Coeff.	OA1.0:Coeff.		
315	3.998E-03	0.9990	1.315E-02	0.9997	1.504E-02	0.9999	
340	3.885E-03	0.9996	1.223E-02	0.9999	1.353E-02	1.0000	
400	3.697E-03	0.9999	1.049E-02	1.0000	1.056E-02	1.0000	
500	3.481E-03	1.0000	8.423E-03	1.0000	7.059E-03	1.0000	
675	3.379E-03	1.0000	6.158E-03	1.0000	5.438E-03	1.0000	
870	3.169E-03	1.0000	4.590E-03	1.0000	5.388E-03	1.0000	
940	3.095E-03	1.0000	4.173E-03	1.0000	5.387E-03	1.0000	
1020	3.012E-03	1.0000	3.762E-03	1.0000	5.385E-03	1.0000	