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Abstract 36 

 37 

The impact of assimilating thermodynamic profiles measured with lidars into the Weather 38 

Research and Forecasting (WRF)-Noah-Multiparameterization model system on a 39 

2.5-km convection-permitting scale was investigated. We implemented a new forward 40 

operator for direct assimilation of the water vapor mixing ratio (WVMR). Data from two 41 

lidar systems of the University of Hohenheim were used: the water vapor differential 42 

absorption lidar (UHOH WVDIAL) and the temperature rotational Raman lidar (UHOH 43 

TRL). Six experiments were conducted with 1-hour assimilation cycles over a 10-hour 44 

period by applying a 3DVAR rapid update cycle (RUC): 1) no data assimilation 2) 45 

assimilation of conventional observations (control run), 3) lidar−temperature added, 4) 46 

lidar−moisture added with relative humidity (RH) operator, 5) same as 4) but with the 47 

WVMR operator, 6) both lidar−temperature and moisture profiles assimilated (impact 48 

run). The root-mean-square-error (RMSE) of the temperature with respect to the lidar 49 

observations was reduced from 1.1 K in the control run to 0.4 K in the lidar−temperature 50 

assimilation run. The RMSE of the WVMR with respect to the lidar observations was 51 

reduced from 0.87 g kg−1 in the control run to 0.53 g kg−1 in the lidar−moisture 52 

assimilation run with the WVMR operator, while no improvement was found with the RH 53 

operator; it was reduced further to 0.51 g kg−1 in the impact run. However, the RMSE of 54 

the temperature in the impact run did not show further improvement. Compared to 55 
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independent radiosonde measurements, the temperature assimilation showed a slight 56 

improvement of 0.71 K in the RMSE to 0.63 K, while there was no conclusive 57 

improvement in the moisture impact. The correlation between the temperature and 58 

WVMR variables in the static-background error-covariance matrix affected the 59 

improvement in the analysis of both fields simultaneously. In the future, we expect better 60 

results with a flow-dependent error covariance matrix. In any case, the initial attempt to 61 

develop an exclusive thermodynamic lidar operator gave promising results for 62 

assimilating humidity observations directly into the WRF data assimilation system. 63 

 64 

Keywords data assimilation; numerical weather prediction; water vapour; temperature; 65 

lidar 66 
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 67 

1. Introduction 68 

The vertical and horizontal distribution of water vapor and temperature in the 69 

atmosphere is crucial for the evolution of weather on all spatial and temporal scales. 70 

Detailed observations are important for improving the initial fields for numerical weather 71 

predication (NWP) from nowcasting to the very short-range, the short-range, and the 72 

medium range. However, our present representation of land−atmosphere (L−A) interaction 73 

and convection initiation (CI) suffers in mesoscale models largely from huge observational 74 

gaps, consequently also limiting the predictive skill of NWP. Therefore, it is essential to 75 

enhance these observations and to investigate the impact of new remote sensing systems 76 

which are capable of measuring water vapor and temperature profiles into NWP models by 77 

means of data assimilation (DA). 78 

Small-scale variations in moisture due to collision of boundaries (Kingsmill 1995), 79 

horizontal convective rolls and mesocyclones (Weckwerth et al. 1996; Murphey et al. 2006), 80 

and intersections between boundaries and horizontal convective rolls (Dailey and Fovell 81 

1999) influences the location and timing of CI. The amount of moisture and variations in the 82 

vertical gradients of moisture and temperature at lower levels of the atmosphere can 83 

change the strength of CI significantly (Lee et al. 1991; Crook 1996). Several field 84 

campaigns have been conducted to understand the relationship between the 85 

three-dimensional thermodynamic fields and CI as well as the impact of assimilation of 86 
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thermodynamic profiles. These have included the Mesoscale Alpine Program 1990 87 

(Richard et al. 2007); the International H2O Project (IHOP) 2002 (Weckwerth and Parsons 88 

2006); the Convection Storm Initiation Project conducted in the summer period of 2004 and 89 

2005 (Browning et al. 2007) and which provided sufficient data for impact studies using the 90 

Met Office unified model (Dixon et al. 2009); the Lindenberg Campaign for Assessment of 91 

Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling 92 

(LAUNCH, Engelbart and Haas (2006) in the late summer of 2005; the Convective and 93 

Orographically-induced Precipitation Study (COPS) 2007 (Wulfmeyer et al. 2011); and the 94 

Plains Elevated Convection At Night (Geerts et al. 2017) campaign in summer 2015. 95 

Recently, studies of land−atmosphere (L−A) feedback have also become the focus 96 

of improving the quality of weather forecast models as it was realized that a realistic 97 

representation of L−A interaction in mesoscale models is crucial for an accurate prediction 98 

of the pre-convective, dynamic, and thermodynamic environments. The first extensive 99 

study was the Land Atmosphere Feedback Experiment (Wulfmeyer et al. 2018) conducted 100 

in August 2017, which also provided a large data set for the assimilation of thermodynamic 101 

profiles measured with lidar in mesoscale models. The importance and sensitivity of L−A 102 

feedback for the simulation and prediction of the formation and organization of clouds and 103 

precipitation was exemplified in Santanello et al. (2018). 104 

At the major forecast centers, there are mainly three DA approaches which are 105 

currently used: (1) variational techniques like 3DVAR and 4DVAR (Courtier 1998; Barker et 106 
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al. 2004; Huang et al. 2009); (2) ensemble-based approaches which include flavors of the 107 

ensemble Kalman filter (Evensen 2003), and (3) hybrid combinations of these (Ingleby et al. 108 

2013). In 3DVAR, the data is assimilated at specific analysis time-steps, whereas in 4DVAR 109 

there is an adjoint model so that the cost function is minimized over a time period and not at 110 

a particular time-step. The drawback of the 3DVAR is the static nature of the background 111 

error covariance (B) matrix in the cost function. This prevents the model from incorporating 112 

the present dynamics of the atmosphere. Although 4DVAR implicitly incorporates a 113 

time-evolving background error covariance model (Lorenc 2003), the same static matrix, B, 114 

is propagated implicitly to a later time-step. However, the 4DVAR is superior to the 3DVAR 115 

scheme due to the evolution of the background error covariance matrix and the reduction of 116 

the model imbalance at the analysis time. Meteo-France uses the incremental 3DVAR in 117 

the Aire Limitée Adaptation dynamique Développement InterNational (ALADIN) model 118 

(Brousseau et al. 2011; Berre 2000); the German Weather Service (DWD) and MeteoSwiss 119 

uses the Local Ensemble Transform Kalman Filter (LETKF) DA in the Consortium for 120 

Small-scale Modelling (COSMO) model (Schraff et al. 2016); the UK Met Office has 121 

implemented incremental 3DVAR and 4DVAR (Ingleby et al. 2013); NOAA’s National 122 

Centers for Environmental Prediction uses incremental hybrid 3DEnVar and non-variational 123 

cloud analysis (Wu et al. 2017; Hu et al. 2006; Benjamin et al. 2004, 2016; Hu et al. 2017); 124 

and the Japan Meteorological Agency (JMA) applies incremental 4DVAR and 3DVAR 125 

(Honda et al. 2006; Aranami et al. 2015). A recent discussion of the DA methods used in 126 
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various forecast centers is given by Gustafsson et al. (2018). All of these DA techniques are 127 

capable of assimilating profiles of the thermodynamics and dynamics of the atmosphere. 128 

Radiosonde and aircraft measurements are the only conventional data observation 129 

sources currently providing water vapor and temperature data within the planetary 130 

boundary layer (PBL) and lower troposphere. Radiosondes provide a vertical 131 

thermodynamic profile of the atmosphere from the surface layer through the lower 132 

troposphere whereas weather stations provide only surface measurements with limited 133 

impact on the vertical thermodynamic structure. Radiosondes provide instantaneous data 134 

only at the time of ascent, giving more or less a snapshot of the atmosphere along their 135 

vertical track. Therefore, the soundings suffer from significant sampling errors, especially in 136 

the boundary layer with its highly turbulent fluctuations (Weckwerth et al. 1999). The 137 

coverage of the radiosonde network is quite coarse, and the number of radiosonde stations 138 

is decreasing rather than increasing in most countries due to their high cost of operation. 139 

Another option is the application of passive and active remote sensing data. 140 

Wulfmeyer et al. (2015) gave a comprehensive overview of the current observational 141 

capabilities of remote sensing techniques with respect to thermodynamic fields in the lower 142 

troposphere. It was demonstrated that using space-borne passive remote sensing systems 143 

for thermodynamic observations does not provide the necessary vertical resolution in the 144 

lower troposphere to recover its vertical structure. Ground-based passive remote sensing 145 

instruments like microwave radiometers produce reliable data but have a coarse resolution 146 
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of around 300 m to 1000 m in the lower 2000 m above the ground (Blumberg et al. 2015; 147 

Cadeddu et al. 2002; Wulfmeyer et al. 2015). IR spectrometers have higher vertical 148 

resolutions due to having more spectroscopic lines which can be evaluated; however, their 149 

vertical resolution is still limited to 100 m to 800 m up to 2000 m above ground level (Turner 150 

and Löhnert, 2014). Convection-permitting models have vertical resolutions in the range of 151 

100 m or less within the boundary layer, where fine-scale processes are crucial, in order to 152 

recover the thermodynamic structure of the atmosphere. Therefore the observation 153 

systems must fulfill the data requirements of convective-scale DA models to ensure higher 154 

representativeness (Wulfmeyer et al. 2015). Therefore, microwave radiometers and IR 155 

spectrometers are not capable of resolving the vertical structure of the lower troposphere, 156 

including the top of the PBL, the inversion strength at the PBL top, or the elevated inversion 157 

layers and the moisture structure in the free lower troposphere. However, this capability is 158 

expected to be crucial to achieving an improved prediction of L−A feedback and CI. Typical 159 

temporal resolutions of passive remote sensing instruments are 5−10 minutes, but further 160 

processing time is required either for the inversion of the spectra to vertical water vapor and 161 

temperature information or for the assimilation of the spectra through a forward operator in 162 

a DA system. 163 

Active remote sensing techniques offer high temporal and spatial resolution data 164 

simultaneously to accurately capture the atmospheric fields without much loss of 165 

temperature and moisture gradient information. Two main techniques for humidity profiling 166 
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are available: water vapor differential absorption lidar (WVDIAL) and water vapor Raman 167 

lidar (WVRL). Both systems achieve a high vertical and temporal resolution during both 168 

day- and night-time (Lange et al. 2018; Späth et al. 2018). Whereas WVDIAL does not 169 

require calibration (Ismail and Browell 1989; Bösenberg 1998), it has been demonstrated 170 

that, for WVRL, the calibration has long-term stability, and a high accuracy can be 171 

maintained for the measurements. Ground-based WVDIAL has been implemented for 172 

tropospheric measurements at various centers. Depending on the efficiency of the receiver 173 

and the average power of the laser transmitter, the combination of temporal and spatial 174 

resolution ranges from 1 s, 15 m (Metzendorf 2019) to 5 min, 300 m (Spuler et al. 2015). 175 

The NCAR and Montana State University have developed a compact, field-deployable 176 

micro-pulse DIAL (Spuler et al. 2015; Weckwerth et al. 2016) with a range resolution of 300 177 

m and a temporal resolution of 1−5 min. The vertically pointing WVDIAL of the Institute of 178 

Physics and Meteorology (IPM, Wagner et al. 2011, 2013; Metzendorf 2019) has a range 179 

resolution of 15−300 m and temporal resolution of 1−10 s. The first WVDIAL with a 3-D 180 

scanner was also developed at the IPM of the University of Hohenheim (UHOH, Behrendt 181 

et al., 2009; Späth et al., 2014). Typical accuracies of the absolute humidity for the IPM’s 182 

WVDIAL are in the range of 5−10% within the PBL during the daytime. WVRLs have been 183 

making continuous measurements at various centers, such as the operational WVRL 184 

(Goldsmith et al. 1998; Turner and Goldsmith 1999) at the Atmospheric Radiation 185 

Measurements Southern Great Plains site in the U.S; the Raman Lidar for Meteorological 186 
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Observations ( RALMO, Dinoev et al. 2013; Brocard et al. 2013) in Payerne, Switzerland 187 

used by MeteoSwiss; the Raman Lidar for Atmospheric Moisture Sensing (RAMSES, 188 

Reichardt et al. 2012) in Lindenberg, Germany, used by the German Meteorological Service 189 

(DWD); and the WVRL at the Cabauw Experimental Site for Atmospheric Research 190 

( CESAR, Apituley et al. 2009) in the Netherlands. Typical resolutions of WVDIALs are 191 

around 150 m for the spatial resolution and 10 s for the temporal resolution, with an 192 

accuracy of < 5%. 193 

For temperature profiling in the lower troposphere, the temperature rotational 194 

Raman lidar (TRL) technique demonstrated the best performance (Behrendt et al. 2004; Di 195 

Girolamo et al. 2004; Arshinov et al. 2005; Radlach et al. 2008). It is now possible to 196 

measure temperature profiles from close to the surface to the lower troposphere with a 197 

temporal resolution of a few minutes and a vertical resolution of approximately 100 m. This 198 

performance permits the detection of inversion layers and the characterization of the 199 

temperature gradient with a high degree of accuracy (Hammann et al. 2015). Continuous 200 

time−height cross-sections of the atmospheric thermodynamic profile are a unique feature 201 

of these lidar systems which enables promising research and applications in the direction of 202 

mesoscale DA. Therefore, WVDIAL, WVRL, and TRL are suitable and ready for application 203 

in DA impact studies. 204 

The subject of this work is the analysis of the impact of two relatively new lidar 205 

systems used for water vapor and temperature profiling in mesoscale DA. The two active 206 
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remote sensing system are the high-power, high-efficiency, 3D scanning WVDIAL which 207 

has an extraordinary resolution, accuracy, and range (Wagner et al. 2013; Späth et al. 2016, 208 

2014) and the TRL for daytime and night-time temperature profiling (Radlach et al. 2008; 209 

Hammann et al. 2015; Behrendt et al. 2015; Lange et al. 2018), both developed and 210 

operated at the IPM in Stuttgart, Germany. 211 

The experimental setup was based on the Weather Research 212 

Forecasting-Noah-Multiparameterization (WRF-Noah-MP) model system and the WRF DA 213 

(WRFDA) system using a 3DVAR rapid update cycle (RUC). This RUC was developed and 214 

optimized for Europe (Schwitalla and Wulfmeyer 2014) and is operated on the 215 

convective-permitting scale. Previously, the water vapor mixing ratio (WVMR) or other 216 

water vapor variables were assimilated by applying the radiosonde relative humidity (RH) 217 

operator. It is obvious that this is not the optimal approach because the RH is strongly 218 

sensitive to temperature. Therefore, we developed a new forward operator for the 219 

assimilation of absolute humidity, mixing ratio or specific humidity independent of any 220 

cross-sensitivity to temperature. This forward operator was based on an already-existing 221 

atmospheric infrared sounding retrieval (AIRSRET) observation operator in the WRFDA 222 

system. We expected that this new operator would provide a strong and direct impact. The 223 

first key objective of this work was to quantify this impact. 224 

So far, there have been only a few impact studies using thermodynamic lidar data. 225 

During IHOP 2002, Wulfmeyer et al. (2006) assimilated airborne water vapor DIAL data 226 
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from the NASA LASE system into the 5th generation Pennsylvania State University-NCAR 227 

Mesoscale Model (MM5), which was based on a 4DVAR DA system. The results from the 228 

assimilation resulted in a considerably improved prediction of CI due to strong and positive 229 

analysis increments, not only with respect to water vapor but also to dynamics. During 230 

LAUNCH, Grzeschik et al. (2008) assimilated water vapor data from a triangle of three 231 

WVRLs, again into the MM5. The initial water vapor field was corrected by about 1 g kg−1 232 

and the WVRL impact on the water vapor field continued for up to 12 h in the forecast 233 

model. Airborne water vapor data from the Water Vapour Lidar Experiment in Space 234 

demonstrator was assimilated into the ECMWF 4DVAR global model by Harnisch et al. 235 

(2011). The analysis error was reduced after the assimilation of WVDIAL observations. 236 

COPS (Wulfmeyer et al. 2011) had two airborne lidars which measured lower tropospheric 237 

water vapor fields: these were assimilated into the 3DVAR assimilation system of the 238 

Application of Research to Operations at MEsoscale (AROME) numerical weather 239 

prediction model (Bielli et al. 2012). Temperature data from TRL were assimilated into the 240 

WRF model by Adam et al. (2016), which produced positive results. Also recently, as 241 

described in Yoshida et al. (2020), water vapor profiles from Raman lidar were assimilated 242 

using the LETKF system to investigate the effects on precipitation forecasts. All of these 243 

results confirm the positive impact of thermodynamic lidar DA on NWP models. The first 244 

study where WV and T profiles from active remote sensing measurements were assimilated 245 

simultaneously into a forecast system will be presented here. 246 
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For this purpose, we investigated the impact of assimilating high-resolution 247 

temperature profiles from the UHOH TRL and water vapor profiles from the UHOH WVDIAL 248 

into our version of the WRFDA model using a 3DVAR RUC. 249 

This work describes how well the new forward operator can assimilate WVMR and 250 

temperature data from the lidar instruments and focuses on the following questions: 251 

- Does the new operator work and have a reasonable impact on the analysis of the 252 

WV field? 253 

- What is the impact of WV DA alone, the impact of T DA alone, and the combined 254 

impact? 255 

- How large is the inter-dependency of the WVMR and temperature variables in the 256 

DA system? 257 

The manuscript is arranged as follows. Section 2 gives a brief overview about the HOPE 258 

campaign. Section 3 describes the WRFDA system, the configuration of the RUC applied in 259 

our study, as well as the new water vapor operator. The lidar observations are shown at the 260 

end of section 3 together with a brief description of their principles. Section 4 describes the 261 

results of the impact study with respect to temperature and moisture. The manuscript 262 

finishes with a summary of our results and an outlook. 263 

 264 

2 Observations 265 

2.1 The HOPE measurement campaign 266 
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The High Definition Clouds and Precipitation for advancing Climate Prediction 267 

HD(CP)2 project aimed at improving the representation of clouds and precipitation in 268 

atmospheric models. By resolving clouds and precipitation processes, the uncertainty in 269 

climate change predictions can be significantly reduced (Stevens and Bony (2013); see 270 

http://www.hdcp2.eu for more information). The project was initiated by the German Federal 271 

Ministry of Education and Research in coordination with the German Meteorological 272 

Service (DWD) in October 2012. In order to evaluate the performance of models, the 273 

HD(CP)2 Observation Prototype Experiment (HOPE) campaign (Macke et al. 2017) was 274 

conducted to provide high-resolution observations. The HOPE campaign focused on 275 

multi-sensor synergy within a micro- to mesoscale domain. The campaign took place in 276 

north-western Germany around the Jülich Research Centre during April and May 2013. The 277 

HOPE field campaign was conducted mainly at three supersites, which covered an 278 

approximately 10-km radius around the Jülich Research Centre. The supersites were 279 

designed in such a way to derive data concerning moisture, temperature, and wind at a 280 

resolution of 100 m for a volume of around 10 km ×10 km × 10 km. The three supersites 281 

used, where the main remote sensing facilities were deployed, were Jülich (JUE), 282 

Krauthausen (KRA), and Hambach (HAM). The IPM lidar systems were deployed at the 283 

Hambach site, where radiosondes were also launched during intensive observation periods 284 

(IOPs). The radiosonde type used during the IOPs was the DFM-09 model from GRAW 285 

(https://www.graw.de/products/radiosondes/dfm-09/). The WVDIAL (Späth et al. 2016) and 286 
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the TRL (Hammann et al. 2015) from UHOH were positioned at 50°53’50.55” N, 287 

6°27’50.27” E and 110 m above sea level (Fig. 1). The IPM lidar systems were designed to 288 

observe the three-dimensional thermodynamic temperature and moisture fields along with 289 

their turbulent fluctuations (Muppa et al. 2016; Behrendt et al. 2015; Wulfmeyer et al. 2016). 290 

2.2 UHOH WVDIAL 291 

In the DIAL technique, two laser signals are used, namely  and , the online 292 

and offline signals, respectively. The wavelength of the  signal is tuned in such a way 293 

that there is a strong absorption of water vapor in the atmospheric signal resulting in a 294 

reduction in the backscatter, whereas the  signal wavelength is tuned for weak 295 

absorption. The number density of the water vapor molecules is derived from the differential 296 

absorption of the online and offline signals (Schotland, 1966): 297 

 

(1) 

where  is the water vapor number density,  denotes the absorption cross section, 298 

 is the background signal, and the argument  is the distance measured from the lidar 299 

system to the scattering volume along the line of sight of the laser beam. Further details of 300 

the UHOH WVDIAL can be found in Wagner et al. (2013) and Späth et al. (2016). 301 

The data acquisition system had a sampling rate of 10 MHz, which allowed the 302 

atmospheric backscatter signals to be recorded with a fine vertical resolution of 15 m. The 303 

data were recorded for each laser shot and averaged over a period of 1 s to 10 s. The raw 304 
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data used for the present study had a temporal resolution of 10 s. In Eq. (1), the derivative 305 

with respect to the range is derived by the Savitsky−Golay (SaGo) algorithm (Savitzky and 306 

Golay 1964). The window length in the SaGo algorithm was set to 135 m up to a height of 307 

1500 m above ground level based on a consideration of the average height of the PBL. 308 

Between 1500 m and 3000 m, a window length of 285 m was applied since the 309 

signal-to-noise-ratio (SNR) of the signals decreased due to a reduction in the signal 310 

strength and differential optical thickness. 311 

Time windows of ±10 minutes around the assimilation time step were chosen. A 312 

total of 120 lidar profiles from the high-resolution absolute humidity data (Fig. 2) which fall 313 

into these 20-minute windows were averaged for input at each assimilation time-step. The 314 

absolute humidity data and the corresponding error derived from the number density were 315 

then converted to WVMR data with associated errors. We ensured that the input data for 316 

the assimilation had a resolution roughly similar to that of the model. Hence the WVMR 317 

data, which was in 15-m steps, was fed into the assimilation data in 30-m steps. The 318 

WVDIAL error for the resolutions that were used ranged from 0.01 g kg−1 at a height of 400 319 

m to a maximum of 1 g kg−1 at heights above 2 km (Späth et al. 2014). 320 

2.3 UHOH TRL 321 

The UHOH TRL measures atmospheric temperature profiles through the rotational 322 

Raman technique (Cooney 1972; Behrendt and Reichardt 2000; Behrendt et al. 2004). This 323 

method relies on the temperature-dependent inelastic scattering of UV laser pulses when 324 
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collided with, Nitrogen and Oxygen molecules, the major gaseous constituents of the 325 

atmosphere. 326 

The rotational Raman spectrum of air consists of two parts, the Stokes and the 327 

anti-Stokes branches. The Stokes branch is found at wavelengths greater than that of the 328 

incident radiation while the anti-Stokes branch is found at shorter wavelengths. The UHOH 329 

TRL extracts only signals of the latter. The temperature is determined using the ratio  of 330 

the two background-corrected Raman signals  and .  and  are the 331 

signals for low and high quantum-number transition settings of the filter, respectively, so 332 

that 333 

 
(2) 

The temperature profile of the atmosphere  is obtained from 334 

 
(3) 

where  and  are calibration constants. The statistical error in the temperature 335 

measurements are derived from Poisson statistics applied to the signal intensities of the 336 

photon-counting data. For a signal count number ,  denoting the standard deviation, 1  337 

statistical error is given by the square root of . The error characteristics are detailed in 338 

Behrendt et al. (2015), Behrendt and Reichardt, (2000), and Wulfmeyer et al. (2015, 2016). 339 

The temperature profiles are also averaged over a time window of 20 minutes at each 340 

assimilation time-step before assimilation into the model. The vertical profile from the TRL 341 

was smoothed with a running-average window of 108.75 m and then thinned to one value 342 
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of 3.75 m. The error range of the profiles was from 0.1 K at 500 m to 1.1 K at 3000 m 343 

(Hammann et al. 2015). Figure 3 shows the time series data prior to further temporal 344 

averaging over 20 minutes. The averaged data were then used for assimilation. 345 

2.4 Conventional Observations 346 

The DA system was augmented by a dense network of surface reports, SYNOP 347 

and METAR, over Europe. A set of radiosonde (RS) measurements, TEMP, provided a 348 

snapshot of the thermodynamic structure of the atmosphere from the point of launch. A set 349 

of wind profilers (PROFL) provided wind measurements along with the wind data provided 350 

along with the radiosonde products. Aircraft measurements (AMDAR) were also 351 

assimilated as part of the conventional observations. All of these observations were 352 

obtained from the Global Telecommunication System data archive of the WMO, which are 353 

stored at the ECMWF. Satellite Atmospheric Motion Vectors (AMVs) above 700 hPa from 354 

the Meteosat Second Generation satellite were also included in the assimilation dataset. 355 

The AMVs data below 700 hPa were discarded since the data retrieval algorithm is not 356 

reliable (Horváth et al. 2017). Apart from these observations, global navigation satellite 357 

systems-zenith total delay (GNSS-ZTD) data were used in the DA system for improving the 358 

accuracy for humidity distributions over the domain. These data were obtained from the 359 

E-GVAP network (http://egvap.dmi.dk/). Table 1 shows a summary of the already large 360 

number of observations assimilated into the DA system within the conventional DA run, 361 

which meant that it was quite a challenge for the lidar data to achieve any additional impact. 362 
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Figure 4 depicts the conventional observations assimilated into the model for 09 UTC: this 363 

was roughly the same for all the subsequent assimilation cycles. 364 

 365 

3. Model setup 366 

3.1 WRF model and configuration 367 

The WRF model (Skamarock et al. 2008), version 3.8.1, was used for the impact 368 

study presented here. The WRF model has been applied for research at various 369 

characteristic spatial scales like the synoptic-scale, mesoscale, and large eddy simulation 370 

(LES) scale (Talbot et al. 2012; Wei et al. 2017; Muppa et al. 2018; Schwitalla et al. 2017). 371 

Furthermore, the WRF model is extensively used for operational forecasting in various 372 

weather forecasting centers across the world (Powers et al. 2017). The WRF has two 373 

dynamical solvers − the Advanced Research WRF (ARW) core (Skamarock et al. 2008) 374 

and the Nonhydrostatic Mesoscale Model core (Janjic 2003). The former was applied in our 375 

study. 376 

Compressible and nonhydrostatic Euler equations are integrated in the ARW 377 

dynamic solver. The prognostic variables in the model are the velocity components  and 378 

 in Cartesian coordinates and  in the vertical coordinate, the perturbation potential 379 

temperature , the perturbation geopotential , and the perturbation surface pressure . 380 

The WVMR  is also a prognostic variable in the ARW solver. 381 
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The model was configured with a spatial resolution of 2.5 km and 856 × 832 grid cells (Fig. 382 

1). The vertical resolution of the model was set to 100 levels up to 50 hPa with 27 levels 383 

within the PBL. Compared to the study of Adam et al., (2016), the number of vertical levels 384 

in the model was increased from 57 to 100 in order to even better resolve gradients. The 385 

model time step for the simulation was set to 15 s. All simulations were initialized using 386 

European Centre for Medium Range Weather Forecasts (ECMWF) analysis with a spatial 387 

resolution of 0.125° (approximately 13.5 km). Also the Operational Sea Surface 388 

Temperature and Sea Ice Analysis (OSTIA; Donlon et al., 2012) data provided by the Met 389 

Office were applied to accurately initialize the sea surface temperatures. 390 

The WRF model physics configuration used for the simulations is summarized in 391 

Table 2. The physics configuration used for the study was based on previous research and 392 

DA efforts (Adam et al. 2016; Schwitalla and Wulfmeyer 2014; Bauer et al. 2015; Schwitalla 393 

et al. 2011). The WRF was coupled with the Noah−MP Land Surface Model (Niu et al. 2011; 394 

Yang et al. 2011) which includes a canopy layer, three layers of snow, and four layers of soil. 395 

The skin temperature of the canopy and snow or soil surface are predicted by an interactive 396 

energy balance method. Shortwave and longwave radiation are parameterized with the 397 

RRTMG scheme (Iacono et al. 2008). Microphysical properties are represented by the 398 

Thompson double-moment scheme (Thompson et al. 2008), which explicitly predicts mixing 399 

ratios of cloud water, rain, cloud ice, snow, and graupel. The Mellor–Yamada Nakanishi 400 

Niino (MYNN; Nakanishi and Niino (2006) Level-2.5 scheme (Nakanishi and Niino 2009) 401 
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was used as the PBL scheme. A new formulation of the turbulent length scales and 402 

parameterization of the pressure covariance as well as parameterization of the stability 403 

functions of third-order turbulent fluxes were incorporated in this MYNN scheme. 404 

Deep-convection parameterization was not used in the study since we were 405 

running the model at the convection-permitting scale (Weisman et al. 2008). For shallow 406 

cumulus parameterization, the Global/Regional Integrated Model System Scheme (Hong et 407 

al. 2013) was used. 408 

3.2 Data assimilation system 409 

The WRFDA system incorporates a number of DA techniques which can be broadly 410 

classified as being based on the deterministic approach or the probabilistic approach. 411 

Deterministic approaches include the variational DA systems like the 3DVAR and 4DVAR. 412 

In this study, we applied the 3DVAR DA system in a RUC mode with an hourly update cycle. 413 

The code of the RUC is completely automated from the pre-processing stage to 414 

post-processing of the analysis and is designed for variable assimilation time windows. The 415 

WRFDA 3DVAR system is based upon the principle of iteratively minimizing the cost 416 

function , whose independent variable or the control variable is the analysis state 417 

vector . The equation of the cost function for 3DVAR reads 418 

 
(4) 

The cost function  consists of two terms, a background and an observation 419 

term. The vector fields ,  and  are the analysis state, the background or the first 420 
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guess, and the observation state vectors, respectively.  is the forward operator, which 421 

maps the analysis state vector space to the observation vector space. For instance, a 422 

corresponding operator is required for the DA of WVMR profiles, but this did not exist at the 423 

time this project started. 424 

Apart from the general column vectors, there are two square matrices which play a 425 

major role in the cost function minimization: the background error covariance matrix  and 426 

the observation error covariance matrix . In the DA system,  is a diagonal matrix since 427 

we assume that there is no correlation among the observation errors between different 428 

instruments or height levels.  is a square, positive, semi-definite and symmetric matrix 429 

whose eigenvalues are positive.  consists of the variances of the background forecast 430 

errors as the diagonal elements, and the covariance between them as the symmetric upper 431 

and lower triangular elements. The variances and covariances of  strongly contribute to 432 

the response of an analysis after an observation has been assimilated. The ratio of these 433 

values to the RMS errors of  determine the impact on the analysis. Hence an appropriate 434 

determination of  is crucial in a variational DA system. 435 

  can be calculated mainly by three methods, namely, the NMC method (Parrish 436 

and Derber, 1992), the analysis ensemble method (Fisher, 2003), and by using innovation 437 

statistics (Hollingsworth and Lönnberg, 1986). All these methods have their own merits 438 

(and drawbacks). The NMC method, in which climatological background error covariances 439 

are estimated, is the most widely used method for the generation of . We used the NMC 440 
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method in our study since it provides physically reasonable results in regional model 441 

domains and is computationally less expensive than the ensemble method. In the NMC 442 

method, forecast difference statistics are computed, from which the forecast error 443 

covariance is then derived. The forecast error covariance is specifically derived for the 444 

domain in order to incorporate the errors applicable to that domain. However, the NMC 445 

method has certain drawbacks: it overestimates the covariances in large-scale simulations 446 

and poorly observed regions (Berre 2000; Fischer 2013; Berre et al. 2006). The statistics 447 

were derived for a period of a month from forecast differences of 24 hours and 12 hours 448 

since we were performing a regional simulation. The month of April 2013 was selected to 449 

derive the statistics. We used the CV6 option for implementing multivariate background 450 

error statistics in the  matrix. In the CV6 option, the moisture analysis is multivariate, 451 

which means that moisture increments are derived from temperature and wind increments 452 

and vice-versa. 453 

3.3 WVMR forward operator 454 

To assimilate the WVMR directly, a new forward operator had to be developed and 455 

incorporated in the WRFDA. This new forward operator allowed WVMR data to be used 456 

directly without converting it to RH, for which temperature data is also needed. Until now, 457 

the WRFDA system has ingested humidity data in the form of RH through the conventional 458 

radiosonde operator. Previously, all the vertical profile data products from radiosondes, 459 



 2

 

ground-based microwave radiometers, and other humidity profiling instruments have used 460 

the radiosonde operator for the assimilation of humidity in the form of RH (Bielli et al. 2012). 461 

The advantage of expressing moisture in the form of the WVMR is that the variable 462 

is a tracer and remains insensitive if there are changes in the atmospheric temperature or 463 

pressure fields. Consequently, the maximum information content of the observation is used 464 

with respect to the WV budget in the area of interest and unnecessary cross-sensitivities 465 

are avoided. 466 

When the RH operator in the WRFDA is used for assimilating mixing ratio 467 

measurements , the following relationship is used: 468 

 

 

 

 

 
(5) 

Here,  is the ambient temperature in units of  and  is the total atmospheric pressure 469 

exerted by moist and dry air in units of .  and  are the specific gas constants of 470 

water vapor and dry air, respectively, in units of . This relationship confirms that it 471 

is not the best idea to assimilate the WVMR using an RH operator because the sensitivity to 472 

temperature in the equation for the water vapor saturation pressure  (Bolton 1980), 473 

, (6) 
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 is comparable with the sensitivity to  and thus not negligible. This can be proved by 474 

deriving the total derivative of  with respect to the variables , , and . Starting from 475 

the total derivative of Eq. 5 with reference to Eq. 6, we finally get the expression for  476 

as 477 

 

(7) 

Considering the absolute values of the terms within the square brackets in Eq. 7, the third 478 

term  is comparable with the first term . The second term  is very 479 

small compared to the other two terms. Please refer to the appendix section for a quantified 480 

analysis. From Eq. 7, we infer that the value of  is dependent on  and . 481 

Therefore, a new operator that focuses on increased analysis of the WVMR field 482 

was implemented in the WRFDA in this study. In the case of the measurement of WVMR, 483 

the conversion is trivial because this is the prognostic variable used in the WRFDA. It 484 

should be noted that, in contrast to the WVRL, the WVDIAL measures absolute humidity 485 

and not the WVMR as the primary product. However, the conversion of absolute humidity to 486 

WVMR is not as critically sensitive to temperature as the conversion to RH is. 487 

When the absolute humidity is measured, the conversion is very simple and 488 

reads 489 

 

(8) 
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For the conversion, simply the model temperature and pressure variables are used. The 490 

WVMR error becomes mainly dependent on the error in the absolute humidity and reads 491 

 

(9) 

since  and since  is less than the other two terms. Please 492 

find a numerical example in the appendix. 493 

The error in  was determined with the total error in the absolute humidity data, which is 494 

the sum of a time-independent systematic error, the noise error, and the representativeness 495 

error. The systematic error was obtained from previous comparisons with other sensors 496 

(Bhawar et al. 2011) and the WVDIAL equation error propagation (Wulfmeyer and 497 

Bösenberg 1998). Due to the self-calibration property of the WVDIAL, the results revealed a 498 

very low systematic error of approximately 3 %, and so this error could be neglected in the 499 

DA process. It is one of the big advantages of the WVDIAL methodology that the 500 

corresponding measurements can be considered as bias-free or very small and unknown, 501 

and thus used as a reference. Hence we can only consider the statistical uncertainty for DA 502 

studies. Regarding the bias of the model, we constrained ourselves to the quality control of 503 

the data input to the model at the time of assimilation by introducing a new variable 504 

, into the WRF model registry that is described later in this section. The 505 

model bias greatly depends upon the model physics, which was not modified in this 506 

research. 507 
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The noise error can be determined in near-real-time by the determination of the 508 

autocovariance function of the high-resolution absolute humidity time series at each height. 509 

This method is explained in detail in Lenschow et al. (2000) and Wulfmeyer et al. (2016) 510 

and is routinely implemented in the IPM data-processing algorithms. Another advantage of 511 

the temporal resolution of time series data is that it allows an estimate of the 512 

representativeness error to be obtained. If we apply the Taylor hypothesis to the water 513 

vapor time−height cross section measured in a grid box of the model system, the water 514 

vapor variability will be representative for this box for a time period , where  is 515 

the horizontal grid increment of the model and  is the horizontal wind speed. Using 516 

autocovariance function analysis, it is possible to separate atmospheric variance and noise 517 

variance to produce information about the accuracy of the measurement and the 518 

atmospheric variability. If the autocovariance is taken at lag 0, which is equivalent to 519 

calculating the total variance of the time series, we can take this as an estimate of the total 520 

error consisting of the noise error variance and the variance of the representativeness error 521 

so that we can write 522 

 
(10) 

These error profiles were calculated by averaging temporally over a 20-minute window of 523 

±10 minutes around the time-step of the assimilation. 524 

The new operator contains a couple of further essential data-processing steps. The 525 

WRFDA system assimilates observations obtained from various instruments. The initial 526 
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step is the conversion of raw observations from these instruments to the LITTLE R format. 527 

LITTLE R is an ASCII-based file format and is an intermediate format used by the WRFDA 528 

to assimilate any number of observation types in a universal manner. The observation 529 

preprocessor (OBSPROC) of the WRFDA package reads only observations in the LITTLE 530 

R format. The OBSPROC removes the observations which do not fit in the specified 531 

temporal and spatial domain. Also it applies a number of other tasks like reordering and 532 

merging or deleting duplicate data. 533 

As a starting point in our efforts toward developing an exclusive forward operator 534 

for the atmospheric products derived by lidar, an already-existing atmospheric infrared 535 

sounding retrieval (AIRSRET) or the FM-133 observation operator was used. We tested the 536 

AIRSRET operator because this operator has temperature and WVMR fields, which are 537 

basically the lidar end-products, in the model. The AIRSRET operator takes RH and 538 

temperature data and then converts them to WVMR: 539 

 
(11) 

which is basically Eq. (5). In the new operator, the WRFDA code was modified in such a 540 

way that the RH field was replaced by the WVMR data field by using Eq. (8). We call this 541 

new operator the thermodynamic lidar (TDLIDAR) operator. 542 

The vertical profiles of the WVMR and temperature fields are linearly interpolated 543 

from the model levels to the observation data levels according to 544 

 
(12) 
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Here  is the model vertical level and  is the observation point within the model 545 

levels  and .  is the height difference between two model levels. 546 

As the total observation error for moisture measurements obtained from lidar is 547 

much lower than that for conventional datasets, a new error factor  548 

was incorporated in the WRFDA registry. This new error factor enables the user to adjust 549 

the size of the error window through which the observations are ingested by the model. The 550 

observations are ingested only if the innovation or the difference between the observation 551 

and the first guess fall within  (Eq. 13). The model filters out low-quality WVDIAL 552 

observations that have a significant difference with the first guess of the model. The filtering 553 

is done with the help of this variable. The error factor is a scalar quantity which is multiplied 554 

by , the observation error, to get 555 

 (13) 

The error factor can be included in the WRFDA name list under section wrfvar 5 556 

as . We did not yet introduce a separate registry variable for the 557 

temperature. However, we will incorporate the error factor for temperature in the next 558 

version of the operator. 559 

3.4 Experimental setup 560 

The assimilation was designed with 10 assimilation time-steps with hourly intervals 561 

between them. As shown in Fig. 5, the RUC was started after a spin-up period of 18 hours 562 

from 12 UTC 23rd April to 06 UTC 24th April, 2013. This spin-up was necessary for the 563 
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model to stabilize itself with the initial and boundary conditions so that the model could then 564 

be forced in any desired manner. Only after a minimum spin-up time period are the model 565 

forecasts reliable for further analysis through DA. 566 

We conducted 6 experiments: 1) a run (NO_DA) with no assimilation, 2) a 567 

conventional run (CONV_DA) with all the conventional data assimilated—the control run, 3) 568 

a TRL DA (T_DA) with TRL data assimilated along with conventional data using the 569 

standard TEMP forward operator, 4) a WVDIAL DA (Q_DA) with WVMR data assimilated 570 

along with conventional data using the TDLIDAR operator, 5) a WVDIAL DA (RH_DA) with 571 

RH data assimilated along with conventional data using the RH operator, and 6) finally the 572 

combined WVDIAL and TRL DA run (QT_DA) with WVMR and temperature lidar data along 573 

with conventional data assimilated using the TDLIDAR operator. In the Q_DA run, since the 574 

new operator also required the input of a temperature profile, we used for this the 575 

background temperature. After the initial spin-up of 18 hours, the CONV_DA run was 576 

initiated for three cycles starting from 0600 UTC each hour. At 0900 UTC, the other DA runs 577 

commenced with the forecast based on the 0800 UTC analysis that was valid for 0900 UTC 578 

as the background for that assimilation time-step. From 0900 UTC, all DA runs including the 579 

CONV_DA initiated from 0600 UTC were cycled till 1800 UTC (Fig. 5). In addition, a 580 

preconditioning DA run that included only hourly conventional data between 0600 and 0800 581 

UTC was carried out to prepare the lidar DA and then to analyze the exclusive impact of the 582 

lidar data. 583 
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 584 

4. Results 585 

We analyzed the impact of assimilating the temperature and WVMR by applying 586 

TDLIDAR and also the RH forward operator for comparison. This section is divided into 4 587 

subsections: first, the single observation tests for WVMR and temperature are described 588 

followed by an analysis of the sensitivity to the WVMR error factor, the impact of the 589 

temperature, and finally the impact of WVMR. The results of the assimilations are 590 

compared with available, independent radiosondes, which were launched every two hours 591 

during the IOP. It is important to note that the radiosonde measurements performed during 592 

the IOP were not assimilated in any of the experiments conducted. 593 
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 594 

4.1 Single observation tests 595 

The spatial impact of assimilating an observation into the 3DVAR DA system is 596 

dependent on the structure of . In order to understand the behavior of , single 597 

observation tests (SOTs) were conducted. As we assimilated the WVMR and temperature 598 

profiles that also included experiments with background temperature profiles into the 599 

WRFDA system, the correlation of WVMR and temperature needs to be understood to 600 

interpret the combined impact with . Since we were interested in the impact of WVMR 601 

data in the WRFDA system, an increment of 1 g kg−1 with a unit error of 1 g kg−1 was 602 

assigned at model level 10, which was approximately 255 m above ground level. This 603 

height was chosen to investigate the impact of assimilating near-surface observations. The 604 

impact on the vertical profile of the SOT is shown in Fig. 6a. The assimilation of a 605 

pseudo-WVMR observation of 1 g kg−1 results in an analysis increment of 0.3 g kg−1 at 606 

model level 10. As there is an increment in the WVMR analysis, there is a corresponding 607 

decrement in the temperature analysis at the same sigma level describing the correlation of 608 

temperature and WVMR in the DA system. The temperature at sigma level 10 has 609 

undergone an analysis decrement of 0.15 K. The impact of the assimilated WVMR 610 

pseudo-variable has a Gaussian-like distribution response across the vertical levels. While 611 

the WVMR assimilation created an increment in the WVMR variable, not only in the model 612 

level where assimilation was done but also in the model levels above, the temperature 613 

showed an opposite response. Figure 6b and 6c show the spatial impact of the SOT 614 
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conducted at model level 10 for an assimilation carried out over the whole model domain. 615 

The impact of the assimilation has the highest WVMR increment at the point of assimilation 616 

and decreases radially with a Gaussian-like shape. The results for the temperature are 617 

similar but with the opposite sign. The WVMR increment was 0.1 g kg−1 to 0.3 g kg−1 over a 618 

region 250 km in diameter (Fig. 6b), while the temperature decrement was 0.1 K to 0.15 K 619 

over a region with a 300-km diameter (Fig. 6c). A similar SOT with a 1-K temperature 620 

increment and error of 1 K was also carried out at model level 10. Figure 6d shows the 621 

vertical profile of the SOT used for the temperature increment. An analysis increment of 622 

0.28 K resulted from the SOT with a corresponding decremented response of 0.17 g kg−1 623 

for the WVMR. The temperature increment was 0.1 K to 0.28 K over a region 300 km in 624 

diameter (Fig. 6e), while the WVMR decrement was 0.1 g kg−1 to 0.17 g kg−1 over a region 625 

150 km in diameter (Fig. 6f). 626 

4.2 Sensitivity to WVMR error factor 627 

In order to test the sensitivity to the error factor, the QT_DA experiment was 628 

conducted in two modes: one with the factor  1 (QE1) and the other 629 

with  = 4 (QE4). There were considerable differences in the model 630 

outputs of the two experiments since the number of observations assimilated was different 631 

in QE1 and QE4. Although the number of observations assimilated in QE1 and QE4 at 09 632 

UTC were similar at 46 and 51, respectively, the later time-steps differed in terms of the 633 
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number of observations assimilated, which was greater for QE4 than for QE1. The total 634 

number of observations during each assimilation cycle was 70. 635 

The model rejected most of the observations in the interfacial layer, where the 636 

gradient of WVMR was high, since the observations were too far away from the first guess. 637 

The difference between the observation and the first guess value of any variable 638 

(innovation) decides whether the observation should be assimilated or not. The vertical 639 

profile of the analysis, profile of the background, and the WVDIAL WVMR observation 640 

profile along with its error bars are depicted in Fig. 7. From Fig. 7 we can see that at 09 641 

UTC, QE4, which used 51 observations, shows a clearer impact on the vertical profile at 09 642 

UTC than QE1, which used 46 observations. The QE1 profile has a higher deviation from 643 

the WVDIAL observations in the PBL than QE4. The WVMR profile from the WVDIAL has a 644 

low observation error until a height of 1300 m but grows significantly above this height. 645 

Hence the error window in the PBL is too small for the observations to be ingested into the 646 

DA. 647 

The choice of the error factor is crucial for the quality of the model output. If it is too 648 

low, the model rejects most of the observations, not letting the model adapt toward the 649 

observations, which in turn does not improve the analysis. Otherwise, the model ingests all 650 

the observations including observations with considerable errors compared to the real-time 651 

observations, and this can cause the quality of the analysis to decrease. In this study, the 652 



 3

 

error factor was fixed as four times the DIAL WVMR observation error, which was 653 

considered enough for the experiments to pass the quality check. 654 

4.3 Temperature 655 

Figure 8 depicts the temperature profiles at the assimilation time steps 09, 11, 13, 656 

and 15 UTC of all five experiments together with TRL and radiosonde observations. The 657 

radiosonde observations provided by the KIT cube (Kalthoff et al. 2013) were quality 658 

controlled before validation of the temperature profiles since GRAW DFM-09 radiosondes 659 

have a significant bias (Ingleby 2017). At these time-steps in the PBL, the NO_DA 660 

experiment showed a maximum deviation of around 2 K, which was less than the difference 661 

between the other DA experiments and the radiosonde observations. In the other five 662 

profiles where DA was performed, the temperature profiles significantly improved in the 663 

PBL. The CONV_DA and T_DA runs show a significant improvement in the temperature 664 

profile in the PBL compared to the NO_DA run for all four time-steps. Q_DA, RH_DA, and 665 

QT_DA agree well with the radiosonde at 09 UTC in the PBL but start to deviate slowly to a 666 

higher temperature value after the first time-step. The Q_DA and RH_DA deviate by more 667 

in the PBL compared to the other three DA runs since no external temperature profile was 668 

assimilated. As the height increases, the CONV_DA profile becomes similar to the NO_DA 669 

profile. This is due to a lack of data points above the PBL in the conventional observations. 670 

However, after assimilating the TRL data along with the conventional data into the model, 671 

the deviation is reduced. In the interfacial layer and the lower free troposphere above this, 672 
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the T_DA temperature profile, now having assimilated ample data points, is in good 673 

agreement with the TRL profile at all four assimilation time-steps. The radiosonde profile is 674 

almost the same as the TRL profile for 09, 11, and 13 UTC but deviates above the PBL at 675 

15 UTC. There is a difference of almost 1 K above the PBL; this gradually decreases with 676 

increasing height. This difference occurs due to the decrease of the SNR in the TRL profiles 677 

with height and the increase in distance between the sensors. The Q_DA, RH_DA, and 678 

QT_DA profiles in the lower free troposphere, deviate by less than 1 K and 2 K in the 679 

morning and afternoon, respectively, compared to the radiosonde observations. However, 680 

in the interfacial layer, the QT_DA is able to capture the inversion at all four time-steps, 681 

which Q_DA and RH_DA cannot. Figure 8 shows that Q_DA, RH_DA, and QT_DA deviate 682 

by more at higher ambient temperatures. In short, Q_DA, RH_DA, and QT_DA do not 683 

further improve the temperature profiles of the model compared to the improvement made 684 

by T_DA. 685 

Figure 9a and 9b shows the RMSE with respect to the radiosonde data for all four 686 

assimilation times shown in Fig. 8 and the RMSE with respect to lidar data for all ten 687 

assimilation times, respectively. The overall average RMSE for each experiment (Fig. 9c 688 

and 9d), and the relative change in the RMSE for other DA experiments with respect to 689 

CONV_DA (Fig. 9e and 9f). At 09 UTC, in Fig. 9c, CONV_DA and T_DA have almost the 690 

same RMSE, though the radiosonde temperature profile deviates from the TRL 691 

observations slightly in the upper part of the PBL region. At 11 and 13 UTC, the RMSE of 692 
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T_DA has the lowest value. At 15 UTC, the RMSE is higher due to the difference between 693 

the TRL and radiosonde profiles above the PBL which has been discussed earlier. Q_DA, 694 

RH_DA, and QT_DA have a slightly higher RMSE than the other two DA runs but show an 695 

improvement compared to the NO_DA experiment. Compared to CONV_DA, the relative 696 

change in the RMSE (Δ RMSE) in Fig. 9e for T_DA shows a decrease of 0.1 K, but Q_DA, 697 

RH_DA, and QT_DA show an increase of 0.5 K, 0.5K, and 0.45 K, respectively. 698 

The RMSE of the analysis compared to the lidar observations is shown in Fig. 9b 699 

for all 10 assimilation time-steps. Q_DA, RH_DA, and QT_DA overestimated the 700 

temperature during daytime and, hence, the temperature RMSE with respect to the TRL 701 

observations increases from the first assimilation to the later cycles and decreases again 702 

for the final cycle. Q_DA and RH_DA have a higher RMSE than NO_DA for later cycles. 703 

The interesting feature to note here is that when the amount of moisture in the boundary 704 

layer is higher—that is, from 0900 UTC to 1100 UTC and from 1400 UTC to 1800 705 

UTC—than between 1200 and 1300 UTC, the assimilation has a higher impact. The RMSE 706 

for QT_DA is less than for CONV_DA during this time period. Between 1200 UTC and 1300 707 

UTC, when the moisture in this region is lower, the temperature is overestimated, leading to 708 

a higher RMSE during this time. This is again a clear impact of the static nature of the 709 

background error covariance. Due to these counteracting impacts of the assimilation at 710 

different time-periods, the RMSEs for CONV_DA and QT_DA are similar in magnitude. The 711 

T_DA temperature RMSE is mostly constant over the assimilation cycles although there is a 712 
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decrease of 0.2 K at around 1300 UTC from 0.4 K at 0900 UTC. From Fig. 9f, QT_DA has 713 

an increase of less than 0.05 K in Δ RMSE, which means that QT_DA did not worsen 714 

CONV_DA much, whereas Q_DA and RH_DA showed an increase of 0.5 K in Δ RMSE. 715 

T_DA shows a decrease of 0.7 K in Δ RMSE. In summary, T_DA outperformed all the other 716 

experiments in terms of the temperature impact. 717 

4.4 Water vapor mixing ratio 718 

Figure 10 depicts the profiles of the analyzed WVMR at the assimilation time steps 719 

09, 11, 13, and 15 UTC for all the different DA experiments including the observations. The 720 

DIAL WVMR observations were limited to a height of 2.5 km since the observation error 721 

was higher than the observed value. 722 

All the assimilation runs do not show much difference from NO_DA in the PBL at 09 723 

UTC. The surface observations were well captured by all the experiments at 11 UTC except 724 

for Q_DA which shows insignificant values of WVMR. But in the PBL above the surface 725 

layer, Q_DA and QT_DA are in good agreement with the radiosonde and DIAL observations 726 

at later time-steps. The Q_DA and QT_DA profiles agree with the radiosonde and DIAL 727 

observations at 13 and 15 UTC, whereas NO_DA, CONV_DA, and T_DA have higher 728 

values of WVMR in the PBL. The Q_DA and QT_DA profiles are similar to those of the other 729 

two assimilation experiments in the surface layer since there were no lidar observations 730 

available at those levels. NO_DA shows an overestimation in the WVMR of around 1 g kg−1 731 
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in the PBL. RH_DA did not outperform Q_DA and QT_DA as expected although it was close 732 

to QT_DA at 09 UTC. 733 

The interfacial layer was best captured by Q_DA and QT_DA at all time-steps apart 734 

from the first assimilation time-step at 09 UTC. NO_DA and CONV_DA underestimated the 735 

WVMR at all time-steps, whereas T_DA shows a positive deviation at 13 and 15 UTC in the 736 

interfacial layer. RH_DA shows a negative deviation at 11 UTC and a positive deviation at 737 

15 UTC. The lower free troposphere impact for Q_DA, RH_DA, and QT_DA is in better 738 

agreement with the observations than compared to the other runs, which have mixed 739 

results. NO_DA and CONV_DA always have a positive deviation. T_DA has positive and 740 

negative deviations at 09 and 15 UTC, respectively, but matches with Q_DA, RH_DA, and 741 

QT_DA at 11 and 13 UTC. In short, Q_DA and QT_DA had a more major impact on the 742 

WVMR than the other experiments. 743 

Figures 11a and 11b depict the WVMR RMSE compared to the radiosonde 744 

observations at 09, 11, 13, and 15 UTC, and the WVMR RMSE compared to the lidar 745 

observations at all ten assimilation time steps from 09 UTC to 18 UTC, respectively. The 746 

overall average of RMSE for each experiment are shown in Figs. 11c and 11d. The relative 747 

change in RMSE for the other DA experiments compared to CONV_DA are shown in Figs. 748 

11e and 11f. Keeping in mind the radiosonde error due to drifting, Q_DA and QT_DA 749 

performed better than the other experiments although the difference with T_DA was less. 750 

The RMSE for RH_DA is the same as for CONV_DA although slightly better than T_DA and 751 
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QT_DA. From Fig. 11a, the decline in WVMR RMSE as the assimilation cycle progresses is 752 

visible. Although the QT_DA RMSE decline rate is small, the decrease is consistent. 753 

Although the overall RMSE for Q_DA and QT_DA is closer to that for T_DA and CONV_DA, 754 

it is lower (Fig. 11c). The RMSE differences compared to CONV_DA are considerably less 755 

with magnitudes of +0.01 g kg−1 for RH_DA, +0.03 g kg−1 for QT_DA, and +0.05 g kg−1 for 756 

T_DA. Q_DA has a difference of −0.05 g kg−1 compared to CONV_DA. 757 

Compared to the WVDIAL observations, the RMSEs in the WVMR (Figs. 11b, d) 758 

also have a similar declining trend to those seen in the radiosonde comparisons in 759 

consecutive assimilation cycles, but the decline is higher. An important difference between 760 

the WVDIAL and radiosonde observations which needs to be considered is the error due to 761 

the temporal coverage of the two datasets. The WVDIAL dataset gives a complete profile of 762 

the atmosphere every 10 s, while the radiosonde provides data only from the point of 763 

ascent. The mean rate of ascent of the radiosondes launched during IOP 6 of the HOPE 764 

campaign was around 5 m s−1. This means that the time taken for a radiosonde to cross the 765 

PBL (taking its height to be 1500 m) would be 5 minutes, which is still 30 times higher than 766 

the time required for obtaining a single lidar profile. This temporal resolution is not optimal if 767 

the atmosphere is rapidly changing. Hence, the DIAL dataset is a continuous measurement 768 

whereas the radiosonde data are instantaneous ones. This also explains the reason why 769 

the DIAL dataset does not have such a smooth profile as the radiosonde data because the 770 

DIAL data capture all the fluctuations in the atmosphere. Q_DA and QT_DA (Fig. 11b) have 771 
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the lowest RMSE in all the assimilation cycles; also, the declining trend for the RMSE in the 772 

successive assimilations proves that the model successfully corrects the WVMR. T_DA 773 

does not show a visible impact for successive assimilations. Hence, the WVMR RMSE for 774 

T_DA in Fig. 11b is always higher than for Q_DA and QT_DA. However, the WVMR RMSE 775 

for T_DA has a value similar to the CONV_DA. Although RH_DA has lower RMSE values 776 

than CONV_DA at 09 and 10 UTC, later cycles have a higher RMSE. In Fig. 11d, the overall 777 

RMSE for QT_DA is the lowest for all the experiments. The Δ RMSE in Fig. 11f indicates 778 

that there is a decrease of 0.36 g kg−1 for QT_DA and 0.3 g kg−1 for Q_DA but only 0.03 g 779 

kg−1 for T_DA when compared to CONV_DA. RH_DA shows an increase of 0.02 g kg−1 780 

compared to CONV_DA. Figure 12 shows an analysis of the difference between QT_DA 781 

and CONV_DA. The spatial analysis difference at 09 UTC and 18 UTC on 24 April 2013 are 782 

shown in Fig. 12a and 12b, respectively. A vertical cross-section of the analysis difference 783 

at 09 UTC is shown in Fig. 12c. In order to analyze the impact of the assimilated lidar data, 784 

a 6-hr forecast difference between QT_DA and CONV_DA initiated from 18 UTC is shown 785 

in Fig. 12d. However the assimilation impact cannot be due completely to the lidar 786 

observations and, presumably, the number of observations in the conventional data should 787 

be considered. The spatial analyses shown in Figs. 12a, b, and d are for a height of 2000 m, 788 

which is assumed to be the PBL top, where the impact is significant. The impact of a single 789 

lidar profile spreading over an area with a diameter of 300 km shows the potential of a 790 

network of lidars. The forecast difference after six hours initiated from 18 UTC (Fig. 12d) 791 
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clearly shows that the impact of the assimilation is both enduring and stable since the 792 

impact of the assimilated lidar data lasts for short-range forecasts and does not lead to 793 

significant errors during this forecast range. The six-hour forecast difference does not 794 

exceed an absolute value of 1.2 g kg−1 in the areas near the lidar instrument location, which 795 

accounts for the stability of the atmosphere after assimilating the thermodynamic lidar data. 796 

 797 

5. Summary and outlook 798 

In this study, we investigated the impact of assimilating WVMR and temperature 799 

data from lidar systems on the vertical structure of temperature and moisture inside the 800 

PBL. For this purpose, we applied WRF version 3.8.1 together with its 3DVAR DA system at 801 

a convection-permitting horizontal resolution of 2.5 km over central Europe. The DA system 802 

was operated in the RUC mode, meaning that the assimilations were hourly. For the 803 

present study, lidar data from the HOPE campaign were used for the assimilation. The IOP 804 

took place from 0900 UTC to 1800 UTC on the 24 April 2013 in western Germany on a 805 

clear-sky day with hardly any optically thick clouds. Temperature data from heights of 500 m 806 

to 3000 m above the ground were taken for the experiment. WVMR data were taken from 807 

400 m to 2500 m above the ground level. Data from lower levels had to be discarded due to 808 

the overlap error. Apart from the lidar measurements, there were four radiosonde launches 809 

at 09, 11, 13 and 15 UTC. The mean of these radiosonde measurements was used for 810 

calibrating the TRL and as an independent measurement for comparison with the model 811 

output since these radiosonde measurements were not assimilated in the DA system. 812 
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Six model runs were conducted for the whole impact study. A run (NO_DA) with no 813 

data assimilated, conventional data assimilation (CONV_DA) or the control run with only 814 

conventional observations from the ECMWF, TRL data assimilation (T_DA) along with the 815 

conventional dataset, WVMR data assimilation (Q_DA) along with the conventional dataset, 816 

RH data assimilation (RH_DA) along with the conventional dataset, and finally the WVMR 817 

and TRL data assimilation (QT_DA) along with the conventional data. 818 

In this study, we introduced a new forward operator called TDLIDAR for direct 819 

WVMR DA, which was developed through the modification of an already-existing operator 820 

in the WRFDA system, the AIRSRET operator. Also, separate sensitivity tests were 821 

conducted with the QT_DA to study the sensitivity of the newly introduced error factor 822 

( ) in the WRFDA registry. SOTs were conducted to analyze the 823 

response of the input WVMR and temperature data separately in the DA system. An 824 

increase in the WVMR resulted in a subsequent cooling at the point of assimilation in the 825 

model. On the other hand, an increase in the temperature resulted in a subsequent drying. 826 

The impact of the assimilation of WVMR and temperature lidar data through the 827 

new forward operator was, overall, positive. The input observations were assimilated with a 828 

very low number of rejected observations: the model only rejected a few observations 829 

during the first assimilation cycle. The WVMR and temperature profiles of the model output 830 

indicated that the input lidar observations could correct the first guess during the 831 

assimilation process to a reasonable extent. From the results of the five DA runs, we 832 
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conclude that, the assimilation of both temperature and WVMR lidar observations improved 833 

the thermodynamic profiles in the analyses. T_DA and Q_DA improved the temperature 834 

and moisture profiles, respectively, whereas QT_DA improved both compared to 835 

CONV_DA. RH_DA did not outperform either Q_DA or QT_DA in the study, showing that 836 

the TDLIDAR operator leads to a better impact than the RH operator. We quantified the 837 

analyses by their RMSE with respect to the assimilated lidar observations as well as 838 

independent radiosonde observations. However, the lidar observations were more suitable 839 

for model verification than radiosonde data because they point exactly to the zenith rather 840 

than along an irregular vertical track. The WVMR RMSE computed with respect to the 841 

WVDIAL observations for QT_DA reduced by 40% compared to those computed for 842 

CONV_DA run whereas RH_DA did not show an overall improvement. This highlights that 843 

using the forward operator for the data input had a positive impact on the modeled WVMR 844 

variable. However, at the same time, the impact on the temperature was reduced due to the 845 

significant dependency between the WVMR and temperature variables in the analysis. 846 

In real-time operational forecasting with data assimilated from in-situ instruments 847 

like lidars, which provide data with a very low observational bias, a deterministic DA system 848 

whose correlation statistics are derived from a set of forecast error differences might not 849 

provide the best analysis. With the introduction of a flow-dependent background 850 

error-covariance matrix with the help of ensemble-based DA systems, the cross-correlation 851 

between the temperature and humidity variables is expected to be a better representative 852 
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of the real-time scenario. The matrix B in ensemble-based DA systems reflects the dynamic 853 

nature of the atmosphere. Thus, we plan to assimilate thermodynamic lidar data with 854 

ensemble DA techniques in the future. Furthermore, modules for the conversion of absolute 855 

humidity and specific humidity to the WVMR will be incorporated. Currently, with a limited 856 

number of lidars, we limited our studies to convective-scale DA. However, in the future, with 857 

a larger number of lidars which operate as a network, we can enhance our studies to 858 

synoptic-scale DA. We foresee synoptic-scale DA of lidar networks as very beneficial for 859 

operational numerical weather forecasting centers. 860 
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Appendix 869 

The total derivative of RH expands as per the equation 870 

 

(A1

) 
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After dividing Eq. A1 by  we get the relative error equation 871 

 

(A2) 

For normal atmospheric conditions 872 

 873 

. 874 

We took a normal value of 10 g kg−1 and an error of 1 g kg−1 for the mixing ratio in the 875 

numerical example, which are similar to the values for the absolute humidity measurements 876 

from the WVDIAL. Similarly, a temperature error of 1.1 K was taken for the TRL 877 

measurements. Substituting the above values in Eq. A2, we get these values for the 878 

individual terms: 879 

, 880 

, 881 

. 882 

 883 

 884 

The WVMR error  expands to 885 

 

(A3) 

For normal atmospheric conditions 886 

 887 

. 888 
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Substituting the above values we get 889 

, 890 

, 891 

. 892 
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GPS zenith total delay, yellow: radiosondes (TEMP), and brown: wind profiler (PROFL). 1340 
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Fig. 7. Vertical profiles of the WVMR from 09 UTC, 11 UTC, 13 UTC, and 15 UTC on 24 1366 

April 2013 for the QE1 and QE4 experiments along with WVDIAL observations and 1367 

associated error bars. The solid line represents the analysis profile and the dashed line the 1368 

background profile. 1369 

1370 



 7

 

 1371 

 1372 
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(c) 13 UTC, and (d) 15 UTC. The TRL observations (orange) along with their total errors 1374 
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were not assimilated are plotted for reference. Black: NO_DA, green: CONV_DA, olive 1376 
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Fig. 9. Temperature RMSE of the analyses compared to local radiosonde data not 1381 

assimilated into the model together with assimilated TRL observations. (a) Comparison of 1382 

the RMSE at the four assimilation time-steps (09, 11, 13, 15 UTC) with respect to the 1383 

radiosonde data and (b) comparison of the RMSE with respect to the TRL observations at 1384 

the 10 assimilation time-steps from 09 UTC to 18 UTC 24 April 2013. (c) and (d) 1385 

comparison of the overall temperature RMSE for the corresponding time-steps for (a) and 1386 

(b), respectively. (e) and (f) depict the relative change in the average RMSE of (c) and (d), 1387 

respectively, compared to the RMSE of CONV_DA. 1388 
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Fig. 10. WVMR profiles of WVDIAL, radiosondes, and analyses at (a) 09 UTC, (b) 11 UTC, 1393 

(c) 13 UTC, and (d) 15 UTC. The WVDIAL observations (orange) along with their total 1394 

errors shown by error bars are plotted up to 2500 m AGL. Radiosonde observations (violet) 1395 

which were not assimilated are plotted for reference. Black: NO_DA, green: CONV_DA, 1396 

olive green: RH_DA, dark purple: Q_DA, blue: T_DA, and red: QT_DA are shown. 1397 
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Fig. 11. WVMR RMSE of the analyses compared to local radiosonde data not assimilated 1401 

into the model together with assimilated WVDIAL observations. (a) Comparison of the 1402 

RMSE at the four assimilation time-steps (09, 11, 13, 15 UTC) with respect to the 1403 

radiosonde data and (b) comparison of the RMSE with respect to the WVDIAL observations 1404 

at the 10 assimilation time-steps from 09 UTC to 18 UTC 24 April 2013. (c) and (d) compare 1405 
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and (f) depict the relative change in the average RMSE of (c) and (d) respectively, 1407 
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Fig. 12. Analysis of the difference between QT_DA and CONV_DA at (a) 09 UTC and (b) 18 1412 

UTC 24 April 2013; (c) shows the vertical cross section of the difference, valid at 09 UTC; 1413 

(d) is the six-hour forecast difference between QT_DA and CONV_DA initiated from 18 1414 

UTC. The spatial distributions are valid at a height of 2000 m ASL. 1415 


