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 32 

It is speculated that floods in many areas of the world have become more severe with global 33 

warming. This study describes the 2017 spring floods in Kazakhstan, which, with about six people 34 

dead or missing, prompted the government to call for more than 7,000 people to leave their homes. 35 

Then, based on the Climatic Research Unit (CRU), the NCEP/NCAR Reanalysis 1, and the 36 

Coupled Model Intercomparison Project 5 (CMIP5) simulations, the seasonal trends of 37 

temperature were calculated using the linear least-squares regression and the Mann–Kendall trend 38 

test. The correlation between the surface air temperature and atmospheric circulation was explored, 39 

and the attributable risk of the 2017 spring floods was evaluated using the conventional fraction 40 

of the attributable risk (FAR) method. The results indicate that the north plains of Kazakhstan had 41 

a higher (March–April) mean temperature anomaly compared to the south plains, up to 3°C, 42 

relative to the 1901–2017 average temperature. This was the primary cause of flooding in 43 

Kazakhstan. March and April were the other months with a higher increasing trend in temperature 44 

from 1901 to 2017 compared with other months. In addition, a positive anomaly of the geopotential 45 

height and air temperature for the March–April 2017 period (based on the reference period 1961–46 

1990) was the reason for a warmer abnormal temperature in the northwest region of Kazakhstan. 47 

Finally, the FAR value was approximately equal to 1, which supported the claim of a strong 48 

anthropogenic influence on the risk of the 2017 March–April floods in Kazakhstan. The results 49 

presented provide essential information for a comprehensive understanding of the 2017 spring 50 

floods in Kazakhstan and will help government officials identify flooding situations and mitigate 51 
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damage in future. 52 

Keywords  2017 spring floods; Kazakhstan; attribution analysis; CMIP5; atmospheric 53 

circulation; Central Asia 54 
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Introduction 56 

In 2017, a rapid spring thaw caused heavy flooding in the northern and central regions in 57 

Kazakhstan (Figure 1a), which swept away cars, submerged cities, as well as destroyed homes, 58 

schools, roads, bridges, and other infrastructure. The flood had about six people dead or missing and 59 

prompted the government to call for more than 7,000 people to leave their homes (Davies, 2017; 60 

RFE/RL's Kazakh Service, 2017). These floods were primarily attributed to the rapid increase in 61 

temperature in Spring 2017, which caused the rapid melting of snow and ice. The resulting water 62 

runoff quickly accumulated, resulting in rivers overflowing their banks and inundating riverside 63 

traffic arteries (e.g., railways) and cities and districts, especially Karaganda, Atbasar, Tselinograd, 64 

Sandyktau, Aktobe, and Beskaragay (see Fig. 1b).  65 

Kazakhstan, located in Central Asia, is the world’s largest landlocked country, the climate of 66 

which is typically continental with warm summers and very cold winters (Salnikov et al., 2015). It is 67 

highly prone to river floods (Plekhanov, 2017), droughts (Zhang et al., 2017a), earthquakes 68 

(Campbell et al., 2015), and landslides (Havenith et al., 2015). As per the statistics of the Global 69 

Emergency Disaster Database (EM-DAT), a significant number of floods occurred (58.8% of all 70 

disasters) during the 1990–2014 period, causing significant casualties, economic losses, and 71 

environmental pollution (Heaven et al., 2000; Plekhanov, 2017). On the basis of the water regime of 72 

rivers in Kazakhstan, all floods could be divided into four types, namely, the Kazakhstan type, Tien 73 

Shan type, Altai type, and “No outflow” type (Plekhanov, 2017). Kazakhstan type flooding occurred 74 

in the steppe and semidesert rivers located in the northwestern, northern, and central regions mainly 75 
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due to the melting of seasonal snow cover on the plains and low mountain areas. Tien Shan type 76 

flooding is typical for rivers (e.g., Syr Darya River) of southeastern and southern Kazakhstan mainly 77 

because of the intensive melting of seasonal snow or glacial cover in mountainous areas (Aizen et al., 78 

1996). Altai-type flooding is typical for rivers (e.g., Irtysh River) of the mountain regions of eastern 79 

Kazakhstan in which rivers were characterized by spring floods that lasted for 1–2 months. “No 80 

outflow”-type flooding happens in small rivers in the central and western desert and semidesert parts 81 

of the country mainly due to the strong, intensive rainfalls. It is obvious that considerable melting of 82 

seasonal snow and glaciers is the primary reason for flooding in Kazakhstan, which will probably 83 

become more frequent and serious under global warming (Pollner et al., 2010). For example, future 84 

anthropogenic climate change possibly will lead to (1) additional intense precipitation events (Zhang 85 

et al., 2017a); (2) accelerated melting of snow and glaciers (Sorg et al., 2012); and (3) increased soil 86 

aridity because of high rates of evaporation (Lioubimtseva et al., 2005), resulting in the upper layer 87 

of soil washing away more readily. All these changes tend to increase flood losses because of increase 88 

in exposure linked to ongoing economic development (Thurman, 2011).  89 

The evidence for the impact of climate change on both hydro-climatology and water-related 90 

disasters of Kazakhstan is considerable (Salnikov et al., 2015; Shivareva and Bulekbayeva, 2017; 91 

Zou et al., 2019). The annual bulletin of climate change (issued by the Ministry of Environmental 92 

Protection of the Republic of Kazakhstan) indicates that the country’s average annual temperature 93 

increased by 0.27°C/decade during the 1941–2014 period and that the biggest increase, up to 94 

0.38°C/decade, was detected in spring in the northern, central, and eastern regions. The annual 95 
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precipitation slightly decreased by 0.8 mm/decade from 1941 to 2014 and increased during winter, 96 

whereas it decreased during the other three seasons. Furthermore, climate change already increased 97 

the frequency of extreme precipitation and temperature over Central Asia (Zhang et al., 2017b), thus 98 

causing additional water-related disasters in Kazakhstan (Salnikov et al., 2015; Thurman, 2011).  99 

Many studies have examined the impact of climate change on global floods (Blöschl et al., 2017; 100 

Iwami et al., 2017; Winsemius et al., 2016). Seasonal floods are the norm in many rivers (Wirth et 101 

al., 2013), of which spring floods are usually attributed to enough snow accumulation in winter and 102 

warm temperatures in spring (Prowse et al., 2010). Heavy snow accumulation in many parts of the 103 

middle- to high-latitude regions indicates an increased risk of flooding if the weather turns to spring 104 

too quickly (Frolova et al., 2015; Mazouz et al., 2012), which has become increasingly common under 105 

climate change (Blöschl et al., 2019; Veijalainen et al., 2010). However, only a few relevant studies 106 

examined the causes and contributors to spring floods in Kazakhstan, especially for the investigation 107 

of temperature. 108 

Therefore, the aim of this study is (1) to investigate the changes in the March–April temperature 109 

in Kazakhstan from 1901 to 2017 because the increasing temperature was the primary driver for the 110 

2017 spring floods; (2) to evaluate the relation between the warming temperature and atmospheric 111 

circulation; and (3) to explore how human-induced climate change causes a warmer temperature and 112 

increased spring flood events in Kazakhstan. This study is structured as follows: the datasets and 113 

methods are briefly described in Section 2. The results of changes in temperature, correlation analysis, 114 

and contribution analysis are elaborated in Section 3, followed by the conclusions in Section 4. 115 
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Datasets and methods 116 

2.1. Datasets 117 

In Central Asia, because of the lack of long-term ground-based observation data, the Climatic 118 

Research Unit (CRU, TS v.4.03) was used to calculate the monthly, seasonal, and yearly temperature 119 

and precipitation in Kazakhstan from 1901 to 2018. In May 2019, this dataset was produced and 120 

issued by CRU at the University of East Anglia, England, with a resolution of 0.5° × 0.5° and using 121 

the same method as for an earlier version (Harris et al., 2014). Furthermore, the CRU dataset has been 122 

extensively used in many previous studies (Nakaegawa et al., 2015) and has been confirmed to be 123 

reasonable for Central Asia (Malsy et al., 2015; Zou et al., 2019). 124 

To fully understand the atmospheric processes leading to the 2017 spring floods in Kazakhstan, 125 

the data of the NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996) were used to understand the large-126 

scale atmospheric circulation from the surface to upper layers. On the basis of the data from 1948 to 127 

present, a state-of-the-art analysis/forecast system was used to perform data assimilation in the 128 

NCEP/NCAR Reanalysis 1 project, which has been extensively applied in multiple studies (Basu and 129 

Sauchyn, 2019; Romanic et al., 2018). In this study, parameters, including the air temperature, 130 

geopotential height, and wind, were used to evaluate the relation between atmospheric circulation and 131 

2017 spring floods. 132 

To assess the contribution of human influence on increase in temperature in Kazakhstan, 133 

temperature simulations from about 40 global climate models (GCMs) from the Coupled Model 134 

Intercomparison Project Phase 5 (CMIP5; see Taylor et al., 2012) were employed. These CMIP5 135 
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models provided 13 temperature simulations (one member run “r1i1p1”) with a preindustrial control 136 

setting, natural forcing only (NAT), and all forcing (ALL). Then, two evaluation methods were 137 

applied to identify and select models. One is the positive spatial correlation coefficient for the 138 

interannual March–April mean temperature between the CRU and the CMIP5 ALL simulations in 139 

Kazakhstan. Furthermore, the criterion is that the coefficient should be larger than or equal to 0. The 140 

other method is the Kolmogorov–Smirnov (K–S) test (Nakaegawa and Kanamitsu, 2006; Nakaegawa 141 

and Nakakita, 2012) between the CRU and the CIMP5 ALL simulations; the p value should be <0.05. 142 

Finally, 10 models were selected to analyze the attribution (Table 1). For each CMIP5 model, only 143 

one member run (“r1i1p1”) was employed. The ALL simulations of most models ended in 2005. To 144 

compare the observations from 1961 to 2017 better, the March–April annual mean temperature 145 

projections from the Representative Concentration Pathways 8.5 (RCP8.5) scenario were used to 146 

extend the time series of ALL simulations through 2017 based on the method proposed by Zhou et al. 147 

(2014).  148 

2.2. Methodology 149 

Linear least-squares regression (Hess et al., 2001) was applied to estimate the trend of the 150 

monthly and yearly temperatures at the grid and the national scales for Kazakhstan, and their 151 

significance in each time series was evaluated using the Mann–Kendall trend test (Kendall, 1975). 152 

The national temperature time series were calculated from the average of all grid points. 153 

To understand the temperature variations in different subperiods better, we divided the period 154 

into four subperiods, namely, 1901–1930, 1931–1960, 1961–1990, and 1991–2017, as well as 155 
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calculated the probability distribution functions for the March–April annual mean temperature for all 156 

four subperiods. 157 

When evaluating the contribution of the human influence on the increasing temperature in 158 

Kazakhstan, three temperature indices were measured namely, TNn (monthly minimum value of the 159 

daily minimum temperature), TXx (monthly maximum value of the daily maximum temperature), 160 

and the mean temperature. 161 

The conventional fraction of the attributable risk (𝐹𝐴𝑅 ) method was used to quantify the 162 

attributable risk of the 2017 spring floods in the model analysis (Stone and Allen, 2005; Stott et al., 163 

2004). The 𝐹𝐴𝑅 value could be calculated using the following equation: 164 

𝐹𝐴𝑅 = 1 −
𝑃NAT

𝑃ALL
                        (1) 165 

where 𝐹𝐴𝑅 is the fraction of the risk for the occurrence of the 2017 spring floods in Kazakhstan that 166 

is attributed to the inclusion of additional forcing from one scenario to the next, 𝑃ALL  is the 167 

probability of the event under ALL forcing, and 𝑃NAT is the probability under the NAT forcing. Both 168 

𝑃ALL and 𝑃NAT could be computed based on the CMIP5 ALL and NAT simulations. Based on the 169 

definition of the calculating process of 𝐹𝐴𝑅 and the CMIP5 ALL and NAT simulations, we first 170 

compared the real temperature and ALL and NAT simulations, and then calculated 𝑃ALL and 𝑃NAT. 171 

The 𝐹𝐴𝑅 values provide a quantification of the change in probability of the defined event occurring 172 

(here, the occurrence of the 2017 spring floods in Kazakhstan) that can be attributed to a particular 173 

cause, particularly the difference between model experiments (i.e., anthropogenic climate forcings). 174 

For instance, a value of 𝐹𝐴𝑅 =  0.5 suggests that the risk of an extreme event is doubled over natural 175 
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conditions because of the anthropogenic climate change. Because of the lack of the observed TXx 176 

and TNn, we only compared the probability of the observed 2017 March–April mean temperature 177 

occurring in the ALL forcing (𝑃ALL) and the NAT forcing (𝑃NAT) simulations to determine the 178 

contribution of anthropogenic climate change. 179 

Furthermore, to estimate the 𝐹𝐴𝑅 uncertainty, the bootstrapping method (with replacement) 180 

was applied in this CMIP5-based study. For determining the 𝐹𝐴𝑅 values associated with the 2017 181 

March–April mean temperatures in Kazakhstan, each distribution of temperature was bootstrap 182 

resampled 1,000 times (using in each iteration subsamples of all years from only 50% of available 183 

model simulations) to produce a distribution of 𝐹𝐴𝑅  values (Lewis and Karoly, 2013). This 184 

distribution of 1,000 𝐹𝐴𝑅 values represents the uncertainty associated using different models and 185 

provides a basis for communicating 𝐹𝐴𝑅  ranges. In this study, e.g., both the median and 10th 186 

percentile 𝐹𝐴𝑅 values indicate that they are exceeded by 90% of values in the bootstrapped 𝐹𝐴𝑅 187 

distributions; moreover, they can be described as “best estimate” and “very likely” values, 188 

respectively.  189 

Results and discussions 190 

3.1. Changes in temperature 191 

Figure 2a shows the distribution of mean temperature in the March–April 2017 period 192 

(Kazakhstan), suggesting that the temperature was high in most regions except for northern 193 

Kazakhstan and high mountains. The south plains had a higher temperature than the north plains; 194 

moreover, both Tien Shan and Altai Mountains showed a lower temperature than other plains. 195 
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However, the north plains had a higher mean temperature anomaly (up to 3°C) in March–April than 196 

the south plains compared to the average temperature in 1901–2017 (Figure 2b), which shows that 197 

abnormally high temperatures appeared in spring 2017 and probably accelerated the snow and ice 198 

melting in Kazakhstan. The unusually warm temperatures engulfed a large part of Kazakhstan in 199 

March–April 2017, which agreed with the trend of mean temperature in March–April from 1901 to 200 

2017 (Figures 2c and 2d).  201 

Figure 2c also clearly illustrates that all grids in Kazakhstan exhibited positive trends at the 95% 202 

confidence level and that the southern regions had lower trends than the northern regions. Figure 2d 203 

shows that a significant, increasing trend at 0.25°C/decade was detected during the 1901–2017 period 204 

for the entire Kazakhstan; moreover, the national mean temperature in March–April was greater than 205 

7.50°C since 2004. Of those, the most notable warm temperature anomalies were present across most 206 

of Kazakhstan during March and April 2008, up to 6.77°C, and the value amounted to 3.41°C in 2017. 207 

All these springs (with a warm temperature anomaly) had floods in the warm temperature and 208 

dramatically accelerated the snow melting and ice disintegration in early spring. Figure 2e shows the 209 

bivariate return periods for the current March–April mean temperature, which suggests that the 2017 210 

March–April warm temperature was close to a 1-in-6-year event. Figure 2f shows that the March–211 

April temperature demonstrated a positive shift from the first time (1901–1930) to the fourth time 212 

period (1991–2017), suggesting that the warm temperature anomaly has increasingly become 213 

common and significant (the right tail of each time period). The increasing trend in temperature is 214 

consistent with the analysis from Pilifosova et al. (1997) and Salnikov et al. (2015). 215 
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Furthermore, Figure 2d shows that certain other years had higher mean temperatures in March–216 

April compared with that in March–April in 2017. For example, the national mean temperature was 217 

greater than 10°C in March–April 2008, which was considerably higher than that in March–April 218 

2017. However, the warm temperature in 2008 did not cause more floods than in 2017 because there 219 

was not enough snow accumulation during this year. More concretely, there was additional winter 220 

precipitation in 2017 over Kazakhstan (Figure 2g), and precipitation anomaly was greater than 10 221 

mm in northern regions (Figure 2h). Figure 2i shows the spatial distribution of differences of winter 222 

precipitation between 2008 and 2017, which suggests that winter precipitation in 2017 was 223 

considerably higher than that in 2008; furthermore, the largest difference value was up to 20 mm in 224 

the northern regions of Kazakhstan.  225 

To compare temperature variations between March–April and the other months, the monthly 226 

temperature was analyzed. Figure 3 shows the mean monthly temperature in Kazakhstan from 1901 227 

to 2017, which shows that July had the highest mean temperature (approximately 23.14°C), whereas 228 

January had the lowest (approximately −12.55°C). The mean temperature was greater than 0°C in 229 

April, May, June, July, August, September, and October; however, it was negative in November, 230 

December, January, February, and March. Of those, the temperature during March and April is 231 

extremely important for determining the spring melting and snow cover (see blue box plots in Figure 232 

3b). For example, the increasing temperature could cause earlier spring melting and reduced snow 233 

cover seasons and vice versa. Uneven spatial distributions are also found in Figure 3a. Generally, the 234 

southern regions have a higher temperature than northern regions, and the temperature is greater than 235 
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30°C in the southern regions in summer but less than −30°C in the northern regions in summer.  236 

Figure 4 shows the trends of mean monthly temperature in Kazakhstan from 1901 to 2017, which 237 

shows that an increase was detected for all months ranging from 0.06°C to 0.37°C/decade. Note that 238 

July had the lowest trend for the mean temperature (approximately 0.06°C/decade), whereas March 239 

had the highest trend for the mean temperature (approximately 0.37°C/decade), followed by April 240 

(approximately 0.26°C/decade) and February (approximately 0.22°C/decade). Obviously, in these 241 

two months, the increase in (both March and April) temperature had significantly uplifted the mean 242 

temperature (see Figure 3), probably causing earlier spring melting and shorter snow cover seasons 243 

(Kaldybayev et al., 2016; Kitaev et al., 2005). Moreover, Figure 4 shows that an uneven spatial 244 

distribution was detected for all months. The north had higher trends than the south in March and 245 

April, and the largest increase amounted to 0.5°C/decade in the north fringe in Kazakhstan. The 246 

northern regions had higher trends than the southern regions in March and April, and the largest 247 

increase was more than 0.5°C/decade in the north fringe regions in Kazakhstan; however, in July and 248 

September, the southern regions had higher trends than the northern regions, and the lowest increase 249 

was reported in the north fringe regions in Kazakhstan, up to 0°C/decade. 250 

3.2. Relation with the atmospheric circulation 251 

Generally, the anomalies of synoptic conditions have been confirmed to contribute to extreme 252 

temperature and precipitation events (Lau and Kim, 2012; Milrad et al., 2015), particularly under 253 

climate change. Therefore, to investigate the characteristics of flood occurrence in Kazakhstan, 254 

composite analysis was calculated and contoured for the following atmospheric variables in the data 255 
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of the NCEP/NCAR Reanalysis 1: 500 and 850 hPa air temperature, geopotential height, and wind. 256 

Figure 5 shows the contour maps of the anomalies in air temperature, geopotential height, and wind 257 

vector at 500 and 850 hPa from March to April 2017 (based on the 1961–1990 reference period). 258 

As can be seen from Figures 5a and 5b, a positive air temperature anomaly was detected in the 259 

northwest and northeast regions at both 500 and 850 hPa but a negative one in the southeast mountains. 260 

The anomalies of air temperature at 500 hPa show that the largest anomaly was up to +1℃ in the 261 

northern regions, which probably accelerated ice melting and caused a series of floods in the northern 262 

regions of Kazakhstan because there are multiple small river networks in these areas (see Figure 1). 263 

Figure 5c shows that the March–April 2017 period was characterized by a strong positive geopotential 264 

anomaly at 500 hPa, based on the 1961–1990 reference period of ~30 gpm with a maximum (larger 265 

than 40 gpm) in the northwest region and a minimum (less than 20 gpm) in the southeast corner of 266 

Kazakhstan. Moreover, Figure 5c shows a blocking high in the east of Kazakhstan, which may be the 267 

main cause of high temperatures in Kazakhstan. The 850 hPa geopotential anomaly reached about 20 268 

gpm with a maximum (more than 30 gpm) in the southwest corner (Figure 5d). Compared with 269 

Figures 5a and 5c, the occurrence of warm spring in Kazakhstan was accompanied by a positive 270 

anomaly at 500 hPa. Moreover, large positive anomalies at 500 hPa played an important role in 271 

maintaining prolonged extreme temperature spells and atmospheric blocking (Tomczyk et al., 2017). 272 

Furthermore, Figures 5e and 5f show anomalies of the wind vector at 500 and 850 hPa (m/s) in 273 

March–April 2017, thus revealing an anticyclonic system in eastern Kazakhstan for both pressure 274 

layers.  275 
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Figure 6 shows that the anomalies of the geopotential height and air temperature were calculated 276 

and contoured in the vertical cross-sections of the troposphere. Generally, the occurrence of the 277 

anomalies in the March–April 2017 period was related to the positive anomalies of geopotential 278 

height on all isobaric levels (100–1000 hPa) throughout the troposphere. On the basis of the 1961–279 

1990 reference period, the largest anomalies of geopotential heights occurred at the level of ~250 hPa, 280 

with the maximum along the meridian of 100°E (>120 gpm) (Figure 6d). Figure 6d also shows that 281 

the positive air temperature anomalies occurred with the highest values exceeding 4°C on the 1000–282 

750 hPa geopotential levels. Moreover, in Figures 6a and 6b (40°N, 45°N), there were negative air 283 

temperature anomalies from 60°E to 80°E in the lower troposphere (below the level of 300 hPa) 284 

probably because most of these regions are high mountains and the surface air temperature is 285 

extremely low. In the upper troposphere (above the level of 200 hPa), however, there were negative 286 

air temperature anomalies in Figures 6c and 6d (50°N, 55°N), which shows a characteristic circulation 287 

of air masses within high-pressure areas. That is, the horizontal convergence of air masses in the 288 

upper part of the high-pressure area causes adiabatic cooling, leading to negative air temperature 289 

anomalies, whereas the positive anomalies in its lower part are a consequence of the settlement of air 290 

masses activating adiabatic heating (Tomczyk, 2018).  291 

The spatial patterns of the 1948–2017 trends constructed with air temperature and geopotential 292 

height at 500 hPa are plotted in Figure 7, suggesting an increasing trend over Kazakhstan. The trends 293 

both show an overall increase at 500 hPa and display negative trends in certain regions for both air 294 

temperature and geopotential height. The spatial patterns of trends may trigger a dynamical climatic 295 



 15 

response via changes in circulation, whereas increased geopotential height at 500 hPa may contribute 296 

to the occurrence of warm spells weather through direct and indirect effects (Black et al., 2004; 297 

Freychet et al., 2017). Here, the relative increase in geopotential height at 500 hPa around Kazakhstan 298 

(Figure 7b) may enhance the downward solar radiation and subsidence warming and moderate cold 299 

flow from the Siberia and the Arctic Ocean, which consequently increased the surface air temperature.  300 

From the above analysis, therefore, we can possibly conclude that the northeastward shift of the 301 

anticyclonic high-pressure system reduced the northerly wind transporting cold air from the Siberia 302 

and the Arctic Ocean to Kazakhstan, thus favoring a positive air temperature anomaly. The result is 303 

consistent with the interdecadal variation in the Central Asia pattern from Yu et al. (2019): that is, a 304 

positive 500-hPa height anomalies and an anomalous anticyclonic circulation over the northwest of 305 

the region, corresponding to the increasing occurrence of warm spells weather in Central Asia. 306 

3.3. Contribution analysis 307 

To conduct the attribution analysis of the 2017 spring floods in Kazakhstan, we calculated and 308 

compared the probability of the event occurrence under the CMIP5 ALL and NAT simulations. Figure 309 

8 shows the kernel curves of the TNn, TXx, and the mean temperature for CMIP5 ALL and NAT 310 

simulations. 311 

As shown in Figure 8a, the TNn probability density curves shifted to the right from the NAT 312 

simulations to ALL simulations with a corresponding mean value at −18.47℃ and −17.99℃, 313 

respectively, which suggests an increase in the mean value of the TNn and a decrease in the 314 

occurrence of cold weather in spring in Kazakhstan. Similarly, the March−April TXx probability 315 
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density curves (Figure 8b) shifted to the right from NAT simulations to ALL simulations with a 316 

corresponding mean value at 22.72℃ and 22.96℃, respectively. This indicates an augmentation in 317 

the occurrence of hot weather in spring in Kazakhstan under the influence of anthropogenic forcing. 318 

Similar to the case of TNn and TXx, the probability density curves regarding the mean 319 

temperature in March−April tended to shift from the NAT distributions to the right direction in ALL 320 

simulations with a corresponding mean value at 2.34℃ and 2.43℃, respectively, which indicates that 321 

the average temperature increased by 0.09℃ because of the natural forcing. Correspondingly, the 322 

contribution of the anthropogenic forcing to the observed spring floods 2017 in Kazakhstan was 100% 323 

(𝐹𝐴𝑅 = 1, Figure 8c), thus supporting the claim of a strong anthropogenic influence on these floods.  324 

Furthermore, we note that although CMIP5 models’ outputs are suitable for estimating 𝐹𝐴𝑅, 325 

the 𝐹𝐴𝑅 values are arguably uncertain because of the complexity of extreme climate events and the 326 

intrinsic uncertainty that arises from model deficiencies (Bellprat and Doblas Reyes, 2016; National 327 

Academies of Sciences, Engineering, and Medicine, 2016). To reduce uncertainties from the 328 

limitations of climate model resolution and erroneous representation relevant physical mechanisms, 329 

previous studies have to date attempted to use multimodel ensembles (Duan et al., 2019; Fischer and 330 

Knutti, 2015) or multimethod approaches (Otto et al., 2015). However, unreliable climate models are 331 

still prone to overestimating 𝐹𝐴𝑅 because of overconfident ensemble spread and model deficiencies; 332 

furthermore, the 𝐹𝐴𝑅 may affect the interannual and decadal variabilities with different phases in 333 

different model simulations (Bellprat and Doblas Reyes, 2016; National Academies of Sciences, 334 

Engineering, and Medicine, 2016; Slingo and Palmer, 2011). Therefore, contribution studies in future 335 
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should increasingly consider model correction approaches and larger ensembles to reduce sampling 336 

uncertainty and account for model uncertainties, respectively (Bellprat and Doblas Reyes, 2016; Otto 337 

et al., 2016). 338 

Conclusions 339 

In this study, the spring floods in Kazakhstan were first described in 2017, which indicates that 340 

a rapid spring thaw caused heavy flooding in the northern and central regions in Kazakhstan, resulting 341 

in rivers overflowing their banks and inundating the riverside cities. Then, on the basis of the CRU 342 

datasets and NCEP/NCAR Reanalysis 1, the trends of monthly and yearly temperatures at the grid 343 

and national scales (for Kazakhstan) were calculated; moreover, their correlation with the 344 

atmospheric circulation was assessed. The contribution from the influence of the anthropogenic force 345 

was estimated by calculating three temperature indices, namely, TXx, TNn, and mean temperature, 346 

for the CIMP5 NAT and ALL simulations. The results could be summarized as follows: 347 

(1) The warmer abnormal temperature in March–April 2017 was the primary cause of flooding 348 

in Kazakhstan. The north plains had a higher March–April mean temperature anomaly compared to 349 

southern regions, up to 3°C, relative to the 1901–2017 average temperatures, thus accelerating the 350 

snow and ice melting in Kazakhstan, which was consistent with the trend of the mean March–April 351 

temperature during the 1901–2017 period. Compared with other months, both March and April 352 

demonstrated a higher trend from 1901 to 2017, with the value at approximately 0.37°C/decade and 353 

0.26°C/decade, respectively. This probably caused earlier spring melting and shorter snow cover 354 

seasons. 355 
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(2) A blocking high in the east of Kazakhstan directly caused a positive anomaly of the 356 

geopotential height and air temperature in the March–April 2017 period (based on the reference 357 

period 1961–1990), eventually leading to a warmer abnormal spring temperature in Kazakhstan. The 358 

largest geopotential height and air temperature anomalies at both 500 and 850 hPa were up to 40 gpm 359 

and +1℃, respectively, in the northwestern part of Kazakhstan. This explained why the warmer 360 

abnormal temperature in the northwest region was higher than that in the southeast region. Moreover, 361 

the northeastward shift of the anticyclonic high-pressure system reduced the northerly wind 362 

transporting cold air from the Siberia and Arctic Ocean to Kazakhstan, thus favoring a positive air 363 

temperature anomaly. 364 

(3) The attribution analysis indicated that the risk of the 2017 March–April floods in Kazakhstan 365 

could be attributed to anthropogenic forcing. The kernel curves of the March–April TNn, TXx, and 366 

mean temperature shifted to the right from the CMIP5 NAT simulations to the CMIP5 ALL 367 

simulations. Moreover, the contribution of anthropogenic forcing to the observed 2017 spring floods 368 

in Kazakhstan was 100% (FAR = 1), thus supporting the claim of a strong anthropogenic influence 369 

on 2017 spring floods. However, additional contribution studies should increasingly consider model 370 

correction approaches and larger ensembles to reduce sampling uncertainty and account for model 371 

uncertainties, respectively. 372 
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List of Figures 562 

Fig. 1 (a) Location of Kazakhstan and the distribution of locations hit by floods (Map Review 563 

[Inspection]Number: GS [2019]3266); (b) retrieved Google Earth KMZ view of the total water extent 564 

on April 20, 2017, in Kazakhstan. The red color represents the flooding mapped from the ESA SAR 565 

and NASA optical data, and the blue color shows the preflood surface water (Brakenridge and Kettner, 566 

2017); (c) flooded village; and (d) flooding from rivers overtopping their bank. 567 

 568 

Fig. 2 (a) The mean temperature in March and April 2017 in Kazakhstan. (b) Spatial distribution of 569 

the March–April mean temperature anomaly in 2017, based on the average from 1901 to 2017. (c) 570 

Spatial distribution of the trend (°C/decade) of the March–April mean temperature from 1901 to 2017, 571 

and areas with red dots indicate p values less than 0.05. (d) Time series of the regional mean for the 572 

March–April temperature from 1901 to 2017 in Kazakhstan. (e) Bivariate return periods for the 573 

current March–April mean temperature. (f) Probability distribution functions for the mean March–574 

April temperature (mean value of the grid temperature all over Kazakhstan) between 1901 and 2017 575 

for the four time periods: 1901–1930, 1931–1960, 1961–1990, and 1991–2017. (g) Spatial 576 

distribution of winter precipitation (mm) in 2017. (h) Spatial distribution of the winter precipitation 577 

anomaly in 2017, based on the average from 1961 to 1990. (i) Spatial distribution of differences of 578 

winter precipitation between 2008 and 2017 and, here, 2017 winter precipitation minus 2008 winter 579 

precipitation.  580 

 581 

Fig. 3 Spatial distribution (a) and box plot (b) of the mean monthly temperature (°C) in Kazakhstan 582 

from 1901 to 2017. Boxes indicate the interquartile model spread (25th and 75th quartiles), with the 583 

horizontal line indicating the medium monthly temperature. The red dot represents the mean monthly 584 

temperature, the values of which are shown for each month in the figure. 585 

 586 

Fig. 4 Spatial distribution (a) and box plot (b) of the trends in the mean monthly temperature in 587 
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Kazakhstan from 1901 to 2017. Boxes indicate the interquartile model spread (25th and 75th quartiles), 588 

with the horizontal line indicating the country medium monthly temperature and the green dot 589 

representing the whole trend in the mean monthly temperature. 590 

 591 

Fig. 5 Anomalies of the air temperature (a and b), geopotential height (c and d), and wind (e and f) at 592 

500 and 850 hPa in March–April 2017 based on the reference period 1961–1990. 593 

 594 

Fig. 6 A vertical cross section along the latitude of 40°N (a), 45°N (b), 50°N (c), and 55°N (d) of the 595 

geopotential height and air temperature anomalies from 0°E to 120°E, based on the reference period 596 

1961–1990. The air temperature anomalies are shown in colors, and the geopotential height anomalies 597 

are demonstrated in black contours. 598 

 599 

Fig. 7 Spatial distribution of the trend of air temperature (a) and geopotential height (b) at 500 hPa 600 

from 1948 to 2017, and areas with red dots indicate 95% significance. 601 

 602 

Fig. 8 Frequency distributions of the March–April (a) minimum temperature, (b) maximum 603 

temperature, and (c) mean temperature for the entire Kazakhstan under the CIMP5 ALL and NAT 604 

simulations, estimated by the kernel method (Kimoto and Ghil, 1993). 605 
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 607 

Fig. 1  (a) Location of Kazakhstan and the distribution of locations hit by floods (Map Review 608 

[Inspection]Number: GS [2019]3266); (b) retrieved Google Earth KMZ view of the total water extent 609 

on April 20, 2017, in Kazakhstan. The red color represents the flooding mapped from the ESA SAR 610 

and NASA optical data, and the blue color shows the preflood surface water (Brakenridge and Kettner, 611 

2017); (c) flooded village; and (d) flooding from rivers overtopping their bank. 612 
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 615 

Fig. 2 (a) The mean temperature in March and April 2017 in Kazakhstan. (b) Spatial distribution of 616 

the March–April mean temperature anomaly in 2017, based on the average from 1901 to 2017. (c) 617 

Spatial distribution of the trend (°C/decade) of the March–April mean temperature from 1901 to 2017, 618 

and areas with red dots indicate p values less than 0.05. (d) Time series of the regional mean for the 619 

March–April temperature from 1901 to 2017 in Kazakhstan. (e) Bivariate return periods for the 620 

current March–April mean temperature. (f) Probability distribution functions for the mean March–621 

April temperature (mean value of the grid temperature all over Kazakhstan) between 1901 and 2017 622 

for the four time periods: 1901–1930, 1931–1960, 1961–1990, and 1991–2017. (g) Spatial 623 

distribution of winter precipitation (mm) in 2017. (h) Spatial distribution of the winter precipitation 624 

anomaly in 2017, based on the average from 1961 to 1990. (i) Spatial distribution of differences of 625 

winter precipitation between 2008 and 2017 and, here, 2017 winter precipitation minus 2008 winter 626 

precipitation.  627 
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629 
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 630 

Fig. 3  Spatial distribution (a) and box plot (b) of the mean monthly temperature (°C) in Kazakhstan 631 

from 1901 to 2017. Boxes indicate the interquartile model spread (25th and 75th quartiles), with the 632 

horizontal line indicating the medium monthly temperature. The red dot represents the mean monthly 633 

temperature, the values of which are shown for each month in the figure. 634 
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 637 

Fig. 4 Spatial distribution (a) and box plot (b) of the trends in the mean monthly temperature in 638 

Kazakhstan from 1901 to 2017. Boxes indicate the interquartile model spread (25th and 75th quartiles), 639 

with the horizontal line indicating the country medium monthly temperature and the green dot 640 

representing the whole trend in the mean monthly temperature. 641 
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 644 

Fig. 5  Anomalies of the air temperature (a and b), geopotential height (c and d), and wind (e and f) 645 

at 500 and 850 hPa in March–April 2017 based on the reference period 1961–1990. 646 

  647 

(a) Air temperature at 500 hPa (b) Air temperature at 850 hPa (c) Geopotential heights at 500 hPa

(d) Geopotential heights at 850 hPa (e) Wind at 500 hPa (f) Wind at 850 hPa
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 648 

Fig. 6 A vertical cross section along the latitude of 40°N (a), 45°N (b), 50°N (c), and 55°N (d) of the 649 

geopotential height and air temperature anomalies from 0°E to 120°E, based on the reference period 650 

1961–1990. The air temperature anomalies are shown in colors, and the geopotential height anomalies 651 

are demonstrated in black contours. 652 
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 654 

Fig. 7 Spatial distribution of the trend of air temperature (a) and geopotential height (b) at 500 hPa 655 

from 1948 to 2017, and areas with red dots indicate 95% significance. 656 
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 658 

Fig. 8 Frequency distributions of the March–April (a) minimum temperature, (b) maximum 659 

temperature, and (c) mean temperature for the entire Kazakhstan under the CIMP5 ALL and NAT 660 

simulations, estimated by the kernel method (Kimoto and Ghil, 1993). 661 
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List of Tables 663 

 664 

Table 1 List of the CMIP5 models used in this study. The spatial correlation coefficients between the 665 

observed spatial pattern and the models were computed for the entire Kazakhstan from 1901 to 2017, 666 

and the criterion is that the coefficient should be larger than or equal to 0. Compared with the 667 

observations, the variability of the March–April annual mean temperature model simulations should 668 

pass the Kolmogorov–Smirnov (K-S) test, with p < 0.05. Ten models were selected to analyze the 669 

attribution. For each CMIP5 model, only one member run (“r1i1p1”) was employed here. 670 

  671 
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 672 

Table 1   List of the CMIP5 models used in this study. The spatial correlation coefficient between 673 

the observed spatial pattern and the models were computed for whole Kazakhstan from 1901 to 2017 674 

and the criterion is that the coefficient should be larger than or equal to zero. Compared with the 675 

observations, the variability of the March- April annual mean temperature model simulations should 676 

pass the Kolmogorov–Smirnov (K-S) test with p < 0.05. Ten models were selected so as to analyze 677 

the attribution. For each CMIP5 model, only one member run (‘r1i1p1’) was employed here. 678 

Model ID Name of GCM Abbr. of GCM Institute ID Country 

1 CanESM2 CaE CCCMA Canada 

2 CNRM-CM5 CM5 CMCC France 

3 CSIRO-Mk3.6.0 CSI CSIRO-QCCCE Australia 

4 GFDL-CM3 GF2 NOAA GFDL USA 

5 GFDL-ESM2M GF4 NOAA GFDL USA 

6 HadGEM2-ES Ha2 NIMR/KMA Korea 

7 IPSL-CM5A-MR IP1 IPSL France 

8 MIROC-ESM MI3 MIROC Japan 

9 MIROC-ESM-CHEM MI4 MIROC Japan 

10 MRI-CGCM3 MR3 MRI Japan 

 679 
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