

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is

DOI:10.2151/jmsj.2021-019

J-STAGE Advance published date: January 13th, 2021 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

Long-term trends and variations in surface humidity and
temperature in the Japanese archipelago over 100 years from
1880 s
Kiyotaka Shibata 1
Kochi University of Technology, Kochi, Japan,
Meteorological Research Institute, Tsukuba, Japan
and
Ayano Sai
Kochi University of Technology, Kochi, Japan,
December 27, 2020
(6th version)
1) Corresponding author: Kiyotaka Shibata, Meteorological Research Institute, 1-1 Nagamine
Tsukuba, Ibaraki 305-0052 JAPAN.
Email: kshibata@mri-jma.go.jp
Tel: +81-029-853-8552

Abstract

35	The surface meteorological data in Japan, beginning around the 1880s, archived by the
36	Japan Meteorological Agency are analyzed focusing on the long-term trends and variations in
37	humidity and temperature. It is found that the annual-mean temperature trend exhibits
38	statistically significant warming of 1.0° C– 2.5° C century ^{-1} for most stations, while the annual–
39	mean relative humidity shows significantly decreasing trend of -2% to -12% century ⁻¹ for most
40	stations with small seasonality. On the other hand, the annual-mean mixing ratio trend displays
41	a different spatial distribution compared to the temperature or relative humidity trend. In this
42	study, three types of trends exist: significantly positive and negative values, and virtually zero.
43	Significantly negative trends of about -0.2 to -0.3 g kg ⁻¹ century ⁻¹ are located approximately
44	in the Pacific side of Honshu from the middle Tohoku through Shikoku to the eastern Kyushu.
45	Significantly positive trends of about 0.2 to 0.4 g kg ^{-1} century ^{-1} are observed over Hokkaido,
46	the western Japan along Sea of Japan, the western Kyushu, and the remote islands including
47	Okinawa. The overall pattern is similar for other seasons except for most of the remote islands
48	in winter. Empirical orthogonal function (EOF) analysis indicates that the linear trends in the
49	annual-mean temperature and relative humidity can be almost explained by the nearly uniform
50	persistent warming and drying of EOF-1 components. On the other hand, for the annual-mean
51	mixing ratio, EOF-2 is almost identical with the linear trend component, although the fraction

52	of EOF-2 (14%) is much smaller than that of EOF-1 (49%). In recent years from 1960 to 2018
53	the mixing ratio and temperature trends are very different from those in the longer period from
54	the 1880s. The mixing ratio trend and the temperature trend increase on average from 0.0 to 0.5
55	g kg ⁻¹ century ⁻¹ and from 1.5° C to 2.5° C century ⁻¹ , respectively
56	

58 Keywords water vapor; mixing ratio; long-term trend; Japanese archipelago

59 1. Introduction

60 Water vapor is one of the most important greenhouse gases in the earth's climate system, 61 because its radiative absorption is prevailing throughout the entire terrestrial wavelength range 62 except for the infrared atmospheric window region $(8-14 \mu m)$. This is in sharp contrast to other greenhouse gases, wherein the major absorption of which is confined to a certain narrow 63 wavelength band e.g., 15 μ m for carbon dioxide (CO₂), 7.6 μ m for methane (CH₄) and 7.9 μ m 64 for nitrous oxide (N₂O). Under the current climate condition, the terrestrial radiative forcing of 65 66 water vapor is about two times as large as that of CO₂ for a clear sky (Kiehl and Trenberth, 67 1997). With increasing CO₂ concentration in the atmosphere, the warming of sea surface 68 temperature due to the resultant increase in the downward radiative flux at the surface 69 accelerates evaporation and the increased moisture in the atmosphere consequently intensifies 70 the warming, i.e., the water vapor feedback. 71 Simulations for a doubling of CO₂ without feedback result in a warming of 1.2°C–1.4°C in the radiative-convective models (RCMs) (e.g., Manabe and Wetherald, 1967; Kluft et al., 72 73 2019) and in the general circulation models (GCMs) (e.g., Hansen et al., 1984; Bony et al., 2006). 74 On the other hand, with the water vapor feedback the warming is doubled or more intensified in 75 the RCM (e.g. Manabe and Wetherald, 1967; Kluft et al., 2019) and GCM simulations (IPCC, 76 2007). Hence, under large variabilities in the atmosphere due to internal modes and external 77 forcings, monitoring the atmospheric water vapor and other greenhouse gases for very long

periods (as long as possible) is indispensable not only for assessing the global warming effects
but also for validating the performance and reliability of models such as GCMs and climate
system models.

81 Water vapor is not distributed as uniformly in the atmosphere as the other major greenhouse gas of the tropospheric ozone, being in contrast to well-mixed major greenhouse 82 gases such as CO₂, CH₄, and N₂O. Water vapor abundance widely differs in space and time 83 depending on geographical locations, altitudes, and atmospheric conditions, because its 84 85 saturation vapor pressure strongly depends on temperature. Under a fixed relative humidity, a 86 fractional increase of temperature (1°C) leads to an increase in the absolute humidity by about 87 7% in the lower troposphere through the Clausius–Clapeyron (CC) relation (e.g., Sun and Held, 88 1996). However, under variable relative humidity, the change in water vapor mixing ratio 89 (simply mixing ratio henceforth, if otherwise specified) depends both on the change in 90 temperature and on the change in relative humidity.

For an atmospheric parcel of temperature (T), relative humidity (RH), mixing ratio (rr), vapor pressure (e), and saturated vapor pressure E(T) under a fixed atmospheric pressure (P), the definitions of relative humidity (RH = e/E(T)), mixing ratio (rr ~ 622e/P), and the CC relation, [equivalently Tetens (1930) formula: E(T) = 6.11exp(aT/(b + T)), where a = 17.27 and b = 237.3 for T > 0.0 °C] lead to an approximate diagnostic relation among small changes in RH, rr, and T:

97 98 $\delta \ln(RH) \sim \delta \ln(rr) - (a/b) \delta T \sim \delta \ln(rr) - 0.073 \delta T$, (1a) 99 100 namely, 101 $\delta RH(\%) \sim \delta rr(\%) - 7(\%/°C) \delta T(°C),$ (1b) 102 103 or, 104 $\delta rr(\%) \sim \delta RH(\%) + 7(\%/°C) \delta T(°C).$ (1c)105 106 This diagnostic relation Eq. (1) indicates that the mixing ratio is not straightforwardly

interpreted to increase through the global warming and that, if higher drying continues to surpass
the moistening from the warming, a decreasing trend in mixing ratio would occur. However, it
should be noted that relative humidity is not an independent variable but a dependent variable,
and thereby, the causality is different. Positive changes in temperature and mixing ratio result in
the drying and moistening on relative humidity, respectively. Conversely, negative changes in
temperature and mixing ratio lead to moistening and drying, respectively.
Water vapor observation record is limited before the first half of the 20th century due

114 partly to the difficulty in making accurate water vapor observation, while there are some 115 temperature records of longer than a hundred years from the 19th century. So far, to the authors' 116 knowledge, the meteorological records of water vapor appear to begin in the 1870s for the United States. Kincer (1922) compiled maps of relative humidity, wet-bulb temperature 117 118 depression, and vapor pressure for 1888–1913, while Visher (1954) made relative humidity 119 maps for 1899–1938 in the United States. Brazel and Balling (1986) examined a very long-term 120 (nearly 90 years) record, which is the 1896–1984 humidity record in Phoenix, Arizona, to seek 121 local influences. They found a decrease in the relative humidity accompanying the urban warming in Phoenix, but little change in dew point temperature (almost equivalent to absolute 122 123 humidity). Foscue (1932) presented an annul-cycle of relative humidity at noon at Brownsville, 124 Texas for 1923–30.

125 On the other hand, much more papers for humidity trend analysis have been published 126 after the 1960s. Schönwiese at al. (1994) analyzed the surface humidity data over Europe for 127 1961–1990 and showed that the trends in vapor pressure are positive values of about 0.5 hPa in 128 summer and winter. Moreover, the positive trends are much larger in the summer Central 129 Mediterranean with a maximum of 3 hPa (about 15% of the mean). Gaffen and Ross (1999) 130 analyzed the surface humidity of weather stations in the United State for thirty years 1961–1990 and found that the specific humidity increases about several % decade⁻¹, along with the upward 131 132 temperature trends and also reported weaker relative humidity trends than the specific humidity trends. Dai (2006) investigated the global surface humidity using the weather station and ship 133 134 data from 1975 to 2005 and found that the surface specific humidity increases 0.06 g kg⁻¹

135	decade ^{-1} globally and 0.08 g kg ^{-1} decade ^{-1} in the Northern Hemisphere. Willett et al. (2008)
136	studied the changes in the surface humidity using the Met Office Hadley Centre and Climatic
137	Research Unit Global Surface Humidity dataset for 1973-2003 and found that the surface
138	specific humidity increases 0.11 and 0.07 g kg ^{-1} decade ^{-1} for land and marine, respectively.
139	Willett et al. (2010) also showed that the relative changes in the land's surface specific humidity
140	over the globe and the Northern Hemisphere are about 4.1% and 6.0% between 1973 and 1990,
141	respectively, i.e., about 1.5% and 2.2% decade ⁻¹ , respectively. All these analyses demonstrate
142	significant increases in the surface absolute humidity.
143	In accord with the surface absolute humidity increase, the upper air absolute humidity is
144	also analyzed to be increasing in recent years. Ross and Elliot (1996) reported from radiosonde
145	data that the increase in precipitable water (PW) over North America, Central America, and
146	South America that are located north of the equator ranges from greater than 2.0 mm decade ⁻¹
147	to nearly zero for 1973–1993. Zhai and Eskridge (1997) presented that the increase in PW over
148	China amounts to 0.5–1.0 mm decade ⁻¹ for 1970–1990. Ross and Elliott (2001) pointed out that
149	the Northern Hemisphere's 850-hPa specific humidity trends show smaller increases for 1958-
150	95 and that most of the overall increase probably occurred since 1973. Trenberth et al. (2005)
151	reported that recent trends in PW over the global ocean by the special sensor microwave imager
152	(SSM/I) are generally positive with an average trend of 0.40 mm (1.3%) decade ^{-1} for 1988–
153	2003. By analyzing the PW via the global positioning system (GPS) over Japan for 1996–2010,

Fujita and Sato (2017) demonstrated that the atmosphere holds more water vapor than that expected under higher surface air temperature. Fujibe (2015) showed that extreme (annual maximum one–, six–, and 24–hour) precipitation intensities over Japan show increasing trends (3%–4 % decade⁻¹), which are in phase with those ($0.2^{\circ}C-0.3^{\circ}C$ decade⁻¹) in the annual–mean surface air temperature over the land and sea around Japan for 1981–2013, implicitly suggesting the increase in absolute humidity in the atmosphere.

160 However, these increasing trends in absolute humidity are for large scales such as over the 161 globe, tropics, and Northern Hemisphere. In regional or smaller scales, different results are 162 observed. For example, some negative trend areas are analyzed in the global map (e.g., Dai, 163 2006; Willet et al., 2008; IPCC, 2013) and an absolute humidity budget analysis, i.e., difference between precipitation (P) and evaporation (E), P-E, indicated that the wet and dry regions 164 165 become wetter and drier in the tropics, respectively (Liu and Allan, 2013). Also the humidity 166 observation in the French inland city Cézeaux (410 m altitude) presents a significant negative trend for the surface mixing ratio of -0.16 g kg⁻¹ decade⁻¹ during 2003-2017 (Hadad et al., 167 2018). This negative trend agrees well with a negative value of -0.09 g kg⁻¹ decade⁻¹ at 950 168 hPa deduced from the European Centre for Medium-Range Weather Forecasts ERA-Interim 169 170 reanalysis on the most closed point of Cézeaux, although the GPS PW presents a positive trend of +0.42 g kg⁻¹ decade⁻¹ during 2006–2017 (Hadad et al., 2018). Furthermore, three radiometer 171 data analyses prove that none of the observed global PW trends over the ocean is significantly 172

173	different from	zero fo	r 2004–2010	(Thao	et	al.,	2014).	Also,	the	increase	in	global	surface
174	specific humid	ity over	land has abat	ed duri	ng i	rece	ent year	s (IPC	C, 2	013).			

175 The Japan Meteorological Agency (JMA) (formerly Japan Central Meteorological Observatory before 1956, and Tokyo Observatory before 1887) has been steadily continuing 176 177 surface observations, inclusive of humidity and pressure, over the Japanese archipelago since 178 the 1870s (mostly the 1880s and the 1890s), immediately after the introduction of western 179 modern meteorological technology and instruments. Thus, the record length is longer than 130 180 years for most stations. This reveals that the JMA humidity data is one of the sustained 181 observations over several decades detecting long-term moisture increases (Elliott, 1995). Based 182 on the JMA long surface observation record, this study is to "extract what one can from existing 183 records" (Elliott, 1995) and to evaluate long-term trends and variations in the surface humidity 184 and temperature in the Japanese archipelago over 100 years from the 1880s.

The rest of this paper is organized as follows. Section 2 describes the details of the JMA datasets, and section 3 presents the validity of the water vapor mixing ratio evaluated from monthly–mean relative humidity, temperature, and pressure. Section 4 describes the linear trends in temperature, relative humidity, and mixing ratio, and section 5 deals with the results of empirical orthogonal function analysis for temperature, relative humidity, and mixing ratio. Section 6 gives discussion and the linear trends in recent years from 1960, and conclusions are given in Section 7. 193 2. Data

194	The Japanese archipelago extends to more than 3,000 km along the East Asia's Pacific coast
195	from the cold subarctic to the humid subtropical climate zones with five major islands/regions
196	of Hokkaido, Honshu (main island), Kyushu, Shikoku and Okinawa and a number of other
197	islands (Fig.1). Approximately, the northernmost Hokkaido belongs to the subarctic zone, the
198	southernmost Okinawa to the subtropics zone, and the remaining to the temperate zone. Over
199	this long archipelago JMA is operating a very dense surface observation network system called
200	the Automated Meteorological Data Acquisition System (AMeDAS). This is composed of about
201	1300 stations, in which about 460 stations focus on precipitation alone, while the other (about
202	840) stations observe precipitation, wind, temperature, sunshine duration, and etc., including
203	snow depth in snowy areas. Of these meteorological quantities, the sensor (or intake air) height
204	of temperature (and humidity) is specified to be 1.5 m, which is nearly an intermediate value of
205	the World Meteorological Organization's (WMO) recommendation range (e.g., WMO, 2018).
206	However, among dense AMeDAS, fully integrated surface observations of humidity,
207	temperature, pressure, precipitation, wind, and other meteorological quantities have been made
208	in limited stations. Approximately speaking, there are a few integrated observation stations in
209	one prefecture. From these stations, those with an existing set of humidity, temperature and
210	pressure records of longer than 120 years from the 1870s, 1880s or 1890s to 2018 were chosen.

211 The starting dates (year and month) of these records differ widely depending on the stations. 212 This selection results in a sparse distribution for the humidity dataset with roughly one station 213 in one prefecture (subprefecture in Hokkaido) and mostly situated in the capital city (urban area) 214 of each prefecture. There are some exceptions, i.e., two or three stations in one prefecture. Of 215 these, a special case is observed, in which two stations, Hiroshima and Kure, are too closely located (about 18 km apart from each other) in the Hiroshima prefecture. Nevertheless, both 216 data were used because there is no a priori reason to exclude one of them. In addition to the 217 218 above mentioned stations, two and five stations beginning in the 1900s and the 1910s, 219 respectively, were also included to fill the vacant regions of the station distribution in 220 geographically important area such as remote islands in the sea. 221 In the surface observation data there are inevitably temporal inhomogeneities of abrupt 222 changes due to instrument replacements for all the stations as well as the location movements 223 for some stations, which relocated the observation fields within about 5 km from the original or 224 previous positions. In addition, there are gradual changes due to the surrounding environment

variations. For example, the effect of urbanization in big cities leads to rural–urban differences
in humidity as well as temperature (Lee, 1991). For instrument replacements, three instrument
changes during humidity observation (JMA, 2013) were noted as follows: Initial hair
hygrograph; aspirated psychrometer observing dry– and wet–bulb temperatures (1950); lithium

229 chloride hygrometer measuring dew point temperature (1971); electrical capacitive hygrometer

230	(1996). The impact of instrument changes was assessed using a non-parametric test statistic
231	(Lepage, 1971), i.e., the Lepage test for the detection of discontinuity. First, a linear trend
232	component was subtracted from the annual-mean data, and the test statistic was then evaluated,
233	because the Lepage test includes the Wilcoxon rank-sum test (e.g., Lanzante, 1996). The same
234	sample length of 20 years in adjacent periods was adopted to diminish irrelevant interannual
235	variations, since the sample length may affect the test result for shorter periods (Yonetani, 1992a,
236	b). The Lepage test indicates that the instrument changes did not introduce crucial impacts for
237	the evaluation of long-term trend, similarly to Gaffen and Ross (1999).
238	The Lepage test was also made for the impacts of location moves for some stations. Aside
239	from the much shorter time values such as instantaneous maximum or minimum temperature,
240	results show that the location moves did not produce significant abrupt changes in annual and
241	seasonal averages of the observed humidity and temperature values as in Gaffen and Ross (1999).
242	This is because the spatial scale of atmospheric flow or air mass generally increases with the
243	temporal scale, and vice versa. A variogram analysis (Hadano et al., 2004) demonstrates the
244	annual-mean surface temperature of AMeDAS with some slight correction of altitude, latitude,
245	and longitude to have a spatial representation of about 50 km, which is much larger than the
246	station's movement distances. Following the results of the Lepage tests and the variogram
247	analysis of AMeDAS data, an assumption was made that the seasonal- and annual-mean values
248	are usable in the original form without any correction such as an adjustment for the

249 discontinuous inhomogeneities (Karl and Williams, 1987) for the trend analysis of surface 250 humidity and temperature. However, there is one exception of Kobe station, which moved 251 eastward by about 3.5 km from the middle (about 55 m altitude) of a hill to a seashore station (about 5 m altitude) nearly faced to wharves in 1999, leading to a substantial discontinuity in 252 253 the observed record for the annual-mean absolute humidity. Thus, after excluding Kobe station, there remained 63 stations in total (Fig.1 and Table 1) for the long-term trends and variations 254 analysis of surface humidity over the Japanese archipelago. The effect of urbanization was not 255 256 treated in the analysis, though the dataset in highly-populated areas possibly included it 257 surrounding the stations, which will be discussed in Section 6. 258 In the observation data prior to about 1960, there existed some limitations. First, available 259 forms of humidity, pressure, and temperature were monthly-mean values in the shortest interval, 260 and humidity was recorded as relative humidity. The errors stemming from the conversion from 261 monthly-mean relative humidity to monthly-mean absolute humidity is investigated in the next 262 section. Second, before about 1950, the available pressure was not station pressure but sea level 263 pressure. Further, in two stations (Sapporo and Hakodate in Hokkaido) before around 1900, 264 humidity and temperature observations exist but no record for sea level pressure was found. To 265 substitute the recorded sea level pressure for that period, a climatological sea level pressure was employed for each month, which is an average for 30 years from the earliest years of pressure 266

267 observation, because the effect of variations in atmospheric pressure on mixing ratio is very

slight. For the conversion of sea level pressure to station pressure, the JMA formula (a
hydrostatic balance equation) was used, which describes a relation between the two pressures
with station temperature, station altitude, and climatological values of lapse rate and humidity
over Japan.

272

273 3. Comparison of monthly–mean mixing ratios

274 The surface data prior to about 1990 was observed presumably at three-, four- or six-hour 275 interval except for precipitation, and averaged/compiled in the form of monthly-mean. This 276 process gives rise to uncertainty in the evaluation of monthly-mean mixing ratio evaluated from 277 the monthly-mean temperature and relative humidity through the non-linear dependence of 278 saturation vapor pressure on temperature. Initially, the accuracy and validity of the monthly-279 mean mixing ratio (rr_RH) calculated from the monthly-mean temperature, relative humidity, 280 and station pressure were investigated through the comparison between rr RH and monthly-281 mean mixing ratio (rr) based on a one-hour interval observation from 1990 to 2018. This 282 comparison method is very similar to that used for monthly-mean dew point temperatures 283 between one-hour and three-hour intervals data (Robinson, 1998). Saturation vapor pressure 284 was calculated through the formula of Tetens (1930), which is sufficiently accurate for most 285 meteorological purpose except when extreme accuracy at low temperature is required (Murray, 286 1967). Monthly-mean mixing ratios were calculated to the first decimal place similarly to the 287 observed hourly data. Figure 2 shows the comparison between rr_RH and rr for annual means, 288 and the relative errors $(rr_RH - rr)/rr$ in 10 stations from the subarctic northernmost area through 289 the temperate middle area to the subtropical southernmost islands area over the Japanese archipelago. Both the annual-mean mixing ratios agree very well for a wide range from about 290 5-22 g kg⁻¹. The relative errors are generally within two percent, though they tend to be slightly 291 larger for smaller mixing ratios, i.e., for lower temperatures because the denominator in the 292 293 relative error decreases for smaller mixing ratios. Seasonally, the mixing ratio ranges from a minimum of about 2 g kg⁻¹ in winter to a maximum value of about 22 g kg⁻¹ in summer. The 294 295 relative errors are mostly positive in summer but mostly negative in other seasons (not shown), 296 resulting in much smaller relative errors in the annual means. This is because higher positive 297 absolute errors in summer were substantially cancelled by smaller negative absolute errors in 298 the other three seasons. 299 Also in the trend evaluation the mixing ratio rr RH is proved to have good accuracy, in which the trend analysis is made by the two methods described in the next section. The seasonal

and annual trends of mixing ratio range from -1.0 to 5 g kg⁻¹ century⁻¹ for about 30 years from 301

300

1990 to 2018 (Fig. 3). The relative errors of rr RH in the trend are mostly within 10% (Fig. 3), 302

303 indicating that rr_RH is accurate enough for the analysis of trend as a surrogate of rr. So far, the comparison is made using hourly data. Next, the effect of observation interval on rr_RH is 304 305

306 integrated observation stations, manual observation was made less frequently at three-hour or 307 longer interval, depending on the observation periods. Thus, daily means nor monthly means 308 were not calculated from the hourly data accordingly. Based on this, additional evaluations are 309 made between the monthly-mean mixing ratios, rr_RH and rr, where are computed using longer 310 time intervals, such as three and six hours for the same period from 1990 to 2018. It is found 311 that rr_RH is also as accurate as that based on one-hour interval values (not shown). 312 Comparisons made using longer hour intervals proved that rr_RH based on monthly-mean 313 values can be quantitatively used for the evaluation of the long-term behavior of absolute 314 humidity from the 1880s. As for the specific humidity, the monthly-mean specific humidity 315 evaluated from the monthly-mean temperature, relative humidity, and station pressure and the 316 monthly-mean specific humidity calculated from the one-hour data also exhibit slight 317 differences between them, similarly to the mixing ratio. Henceforward, mixing ratio refers to 318 rr RH.

319

320 4. Linear trend analysis

The linear trends in seasonal– and annual–mean mixing ratios were calculated by both the parametric least squares method and a non–parametric method, in the latter of which the slope and intercept of a regression line were calculated by Sen's slope estimator (Sen, 1968) and the method by Siegel (1982), respectively. The linear trends in temperature and relative humidity

325	were also evaluated by the same methods. Statistical significance of the trends was made using
326	the Student's t-test for the least squares method and by the Mann-Kendall test for Sen's slope
327	estimator. Seasonal means of spring (March, April, and May), summer (Jun, July, and August),
328	autumn (September, October, and November), and winter (December, January, and February)
329	were calculated if more than two months of data existed in each season. Otherwise, the seasonal
330	mean was treated as a missing (non-valid) data. Similarly, the annual-mean was calculated as
331	an average of four valid consecutive seasonal means, and thereby, the annual-mean of a year is
332	an average from December of the previous year to November of the year concerned. Missing
333	data were skipped and thus not used in the trend analysis. Sen's slope estimator is significantly
334	more robust than the least squares method, because the former is insensitive to outliers. However,
335	the two methods led to very similar results, and thereby only the results by Sen's slope estimator
336	are shown henceforth.
337	Figures 4-6 show the time series of annual-mean temperature, relative humidity, and
338	mixing ratio with regression lines from the 1880s or the 1890s to 2018 in Nemuro (northeastern
339	Japan), Gifu (central Japan), and Ishigakijima (remote island in southwestern Japan) (see Fig. 1
340	for locations). Apparently these three stations' records do not exhibit significant jumps
341	corresponding to the time of instrument changes around 1950, 1971, and 1996.
342	The annual-mean temperature is commonly increasing at rates of 1.0°C, 1.8°C, and 1.2°C
343	century ^{-1} in the three stations with statistical significance of 99%. On the other hand, the annual–

344	mean mixing ratio exhibits a decrease of -0.3 g kg ⁻¹ century ⁻¹ in Gifu and an increase of $+0.2$
345	g kg^{-1} century ⁻¹ both in Nemuro and Ishigakijima. The relative trend of the mixing ratio
346	calculated as a ratio of the (absolute) trend to the regressed value in the year 2000 is +3.7%,
347	-3.8%, and $+1.1%$ century ⁻¹ in Nemuro, Gifu, and Ishigakijima, respectively. The magnitude of
348	the relative trend remains approximately the same even if an average is used for the denominator,
349	instead of the regressed value. One of the reasons why only Gifu exhibits a negative trend may
350	stem from its geographical location. Nemuro and Ishigakijima stations are situated near the
351	seashore, while Gifu is an inland station away (about 40 km) from the sea. However, as shown
352	later, the geographical location does not play a crucial role because the locations of the stations
353	having negative trend were systematically separated from those with positive trend irrespective
354	of the distance from the sea.
355	In accordance with the warming (positive trends in temperature), relative humidity
356	commonly exhibits a decreasing trend of -1.7% , -11.1% , and -4.6% century ⁻¹ and their relative
357	change rates of -2.1% , -16.5% , and -6.0% century ⁻¹ in Nemuro, Gifu, and Ishigakijima,
358	respectively. In the three stations the quantitative relation Eq. (1c) among small changes in
359	mixing ratio, relative humidity, and temperature approximately holds true. For example, the
360	relative change of mixing ratio (~ +4%) for 100 years in Nemuro is nearly equal to the addition
361	of the relative change of the relative humidity (~ -2%) and 7% of the temperature change (+1°C).
362	Among the three stations, Gifu exhibits the largest decrease in relative humidity by far because

the decreasing trend in mixing ratio accelerates the decrease in relative humidity due to warming,

364 while in Nemuro and Ishigakijima the increasing trend in mixing ratio decelerates it.

- 365 Figure 7 shows the spatial distribution of the annual-mean temperature trend over the Japanese archipelago from around the 1880s to 2018. All the stations show values of the same 366 sign (positive) with most stations, exhibiting statistically significant warming of 1.0°C-2.5°C 367 century⁻¹, with nearly parallel features observed for each season (not shown). Similarly, the 368 369 annual-mean relative humidity trend (Fig. 8) shows the same sign (negative) distribution except 370 for one remote island station (Hachijyojima) and significantly decreasing values of -2% to -12% century⁻¹ for most stations with small seasonality (not shown). 371 372 On the other hand, the annual-mean mixing ratio trend (Fig. 9) displays different spatial 373 distribution from the temperature or relative humidity trend. Three types of trends are observed: 374 statistically significant increase (positive) and decrease (negative), and very slight changes of mixed sign (virtually zero). The negative trend stations of about -0.2 to -0.3 g kg⁻¹ century⁻¹, 375 376 inclusive of slightly decreasing trend stations, are located approximately in the Pacific side of Honshu from the middle Tohoku (the northern Honshu) through Shikoku to the eastern Kyushu. 377 378 It should be noted that the magnitude of negative trend scarcely correlates with population, i.e., a measure of urbanization. Significant positive trends of about 0.2–0.4 g kg⁻¹ century⁻¹ are 379 observed over Hokkaido, Sea of Japan side of the western Japan, the western Kyushu, and the 380
- 381 remote islands including Okinawa. The overall pattern of positive and negative trends

distribution is similar for other seasons, and polarities of the trends are almost the same for allthe seasons, except for most of the remote islands in winter.

384 The magnitude of the trend in each station maximizes mostly in summer, minimizes in 385 winter (Fig.10), and takes intermediate values in spring and autumn. This seasonal variation in 386 the mixing ratio trend approximately synchronizes with the seasonal cycle of mixing ratio and temperature, with usually increasing amplitude with latitudes over the Japanese archipelago. 387 This is because the meridional gradient of temperature (and mixing ratio) is small in summer 388 389 and large in winter and because the seasonal cycle is small in subtropics. The proportion of the 390 summer climatological mixing ratio (maximum) to that of winter (minimum) is about five in 391 subarctic Hokkaido, four in temperate Honshu, Shikoku, and Kyushu, and two in subtropical 392 Okinawa. These figures are larger than the proportion of the summer trend to the winter trend 393 in most stations as seen in Fig. 10. So that, the change ratio (the trend divided by the 394 climatological seasonal mean) becomes similar or larger in winter than in summer, depending 395 on the stations. However, the seasonality of the trend in the remote islands is very different. Here, the trend is significantly positive of about 0.3–0.5 g kg⁻¹ century⁻¹ during summer but 396 weakly negative (~ -0.2 g kg⁻¹ century⁻¹) or virtually zero during winter except for the Aikawa 397 398 station in Sado island (Fig. 10). This is in contrast with the winter warming trend in the remote islands where the urbanization effect is supposed to be very small. 399

400

401 5. Empirical orthogonal function analysis

An empirical orthogonal function (EOF) analysis was also made respectively for 402 403 temperature, mixing ratio, and relative humidity data to investigate mutually independent 404 (orthogonal) spatial patterns as to what extent the data variance is explained by each mode and 405 to derive their temporal coefficients (scores). The EOF analysis is performed using the data from 406 1900 to 2018, because the starting years of observation differ widely from one station to another 407 before 1900 as stated above. In addition, similar to the trend analysis, the data beginning in the 408 1900s and the 1910s were also included to cover a wider area in the sparse observation data. 409 Prior to the EOF analysis, missing seasonal mean data were interpolated or extrapolated in the 410 yearly time series of the same season. After, a moving average with a length of five years was 411 applied for each seasonal-mean data to diminish short-term variations irrelevant to long-term 412 components. The same procedure was made for the annual-mean data. 413 Figure 11 shows the first and the second EOF (EOF-1 and -2) scores and spatial patterns 414 regressed to their scores for the annual-mean temperature. EOF-1 and -2 are found to explain 91% and 3% of the total variance, respectively. The EOF–1 spatial pattern is a distribution with 415 416 similar signs and magnitudes and corresponds fairly well to the positive and almost uniform 417 linear trend pattern of the annual-mean temperature shown in Fig. 7. In addition, the EOF-1

418 score displays nearly persistently increasing characteristics except during the 1960s and the

419 1970s, when there is substantially no tendency. This is similar to the annual surface temperature

420	anomalies over the Japanese's 15 stations of weak urbanization (e.g., JMA, 2019) and the
421	global-mean land and sea surface temperatures (e.g., IPCC, 2013). EOF-1 occupies a dominant
422	(91%) fraction of the total variance. Consequently, these facts (the persistent increase and
423	dominant fraction of EOF-1) demonstrate that the annual-mean temperature linear trend is
424	almost explained by the uniform persistent warming of EOF-1. Conversely, EOF-1
425	substantially consists of linear trend, which most likely stems from the greenhouse gas increase.
426	On the other hand, the EOF-2 spatial pattern shows a seesaw-like distribution between the
427	northern Japan and the southern Pacific area of the central and southwestern Japan. Its score is
428	mostly comprised of decadal variations with a small contribution (3%) to the total variance.
429	For the annual–mean mixing ratio, EOF–1, –2, and –3 (the third mode) scores are found to
430	explain 49%, 14%, and 8% of the total variance, respectively as shown in Fig. 12 along with
431	their corresponding spatial patterns. The EOF-1 spatial pattern is comprised of similar
432	magnitude values with the same sign bearing class recomblence to that of the annual magn
	magnitude values with the same sign, bearing close resemblance to that of the annual-mean
433	temperature (Fig. 11). However, the EOF–1 score does not show any apparent trend until about
433 434	
	temperature (Fig. 11). However, the EOF-1 score does not show any apparent trend until about
434	temperature (Fig. 11). However, the EOF–1 score does not show any apparent trend until about 1960, after which it exhibits a prominent decreasing tendency for about 20 years during the

438	On the other hand, the EOF-2 spatial pattern is approximately composed of two areas of
439	positive and negative values, which is very similar to the distribution of the annual-mean mixing
440	ratio linear trend (Fig. 9). In addition, the EOF-2 score shows a nearly monotonically and
441	significantly increasing trend throughout the whole period, indicating that the EOF-2 spatial
442	pattern can be approximately interpreted as the linear trend pattern with drying and moistening
443	areas, i.e., the significant decrease in the Pacific side of Honshu from the middle Tohoku through
444	Shikoku to the east Kyushu and the significant increase in Hokkaido, Sea of Japan side of the
445	western Japan, the west Kyushu, and Okinawa. In other words, EOF-2 is almost identical with
446	the linear trend component in annual-mean mixing ratio. The EOF-3 spatial distribution
447	represents a seesaw-pattern between the northern area (Hokkaido and Tohoku) and the western
448	and southern Japan as the temperature EOF-2 spatial pattern (Fig. 11d).
449	For the annual-mean relative humidity, the EOF-1 and -2 scores and spatial patterns are
450	exhibited in Fig. 13, wherein EOF-1 and -2 explain 76% and 6% of the total variance,
451	respectively. The EOF-1 spatial pattern displays a distribution with the same sign and larger
452	values from Kanto (Tokyo and its surrounding prefectures) through Chukyo (Nagoya and its
453	surrounding prefectures) and Kansai (Osaka and its surrounding prefectures) to the northern
454	Kyushu. Meanwhile, the EOF-1 score (Fig. 13a) shows almost persistent decreases except for
455	a constant increase after the 2000s. If the sign is inverted, the EOF-1 spatial pattern (Fig. 13b)
456	appears to be very similar to the linear trend distribution (Fig. 8), indicating that EOF-1

457	represents the linear trend component. The EOF-2 spatial pattern practically represents a
458	seesaw-like distribution between the western Japan and the eastern Japan except for Hokkaido.
459	

460 6. Discussion

Over the Japanese archipelago from about the 1880s to 2018 the linear trend in the annual-461 462 mean temperature exhibits the same polarity with positive sign in all the stations (Fig. 7). This is similarly observed with linear trend in the annual-mean relative humidity with negative sign 463 except for a small positive value in Hachijyojima (Fig.8). On the other hand, the linear trend in 464 465 the annual-mean mixing ratio does not show the same polarity but is very approximately 466 separated into three consecutive areas, depending on the signs (Fig. 9).: (1) negative area: 467 Honshu, Shikoku, and eastern Kyushu, (2) positive area: Hokkaido, and (3) positive area: 468 western Kyushu and Okinawa. Because these results reflect the climate change, the relation to 469 the types of climate classification is first investigated. The spatial patterns in the annual-mean 470 linear trends are found to be hardly correlated with the Köppen–Geiger climate classification (e.g., Beck et al., 2018) or other climate divisions (e.g., Koizumi and Kato, 2012; Kusanaga, 471 2016). 472

473 Next, the effect of sea surface temperature (SST) is examined. According to JMA analysis
474 (e.g., JMA 2019) using the COBE-SST (Ishii et al., 2005), the annual-mean linear trends in SST
475 surrounding the Japanese archipelago during the recent 100 years are 0.7°C-1.7°C century⁻¹

476	with an area average of 1.1°C century ⁻¹ except for the marine area off northern Hokkaido. SST
477	seasonal trends are also positive for all the seasons ranging from 0.5°C to 2°C century ⁻¹
478	(https://www.data.jma.go.jp/gmd/kaiyou/data/shindan/a_1/japan_warm/japan_warm.html).
479	These facts indicate that the positive trends in SST alone cannot explain the reason why negative
480	trends in the mixing ratio appear in Honshu, Shikoku, and the eastern Kyushu. This is because
481	the warmer SST brings about positive changes in the near-surface mixing ratio over ocean. On
482	the other hand, the spatial patterns in the mixing ratio linear trends are associated with changes
483	in large- and synoptic-scale atmospheric circulation, which are probably caused by the global
484	warming and with changes in micro-scale atmospheric circulation due to urbanization. However,
485	this paper focuses on the analysis of surface data, and thus, investigation of the mechanisms
486	responsible for these spatial patterns is a future work.
487	The linear trend from the 1880s or the 1890s to 2018 for the annual-mean mixing ratio
488	ranges from about -0.3 to $+0.4$ g kg ⁻¹ century ⁻¹ (Fig. 9). Aside from the negative value area, the
489	positive values of 0.2–0.4 g kg ^{-1} century ^{-1} over Hokkaido, Sea of Japan side of the western
490	Japan, the western Kyushu, and the remote islands (Fig. 9) are much less than those in the
491	continental and hemispheric scales for the absolute humidity data from the 1960s or the 1970s
492	(e.g., Gaffen and Ross, 1999; Dai, 2006; Willett et al., 2008, 2010). The cause for this
493	discrepancy may stem from not only geographical situations but also from the difference in the
494	starting years of the analyses. Hence, using similar recent data from 1960, an additional trend

495	analysis was carried out to investigate the trends in the recent years. Figure 14 displays the
496	spatial distributions of the linear trends in the annual-mean temperature, relative humidity, and
497	mixing ratio from 1960 to 2018. Comparison of these trends (Fig. 14) with those in the longer
498	period (1880s–2018) (Figs. 7–9) reveals that the mixing ratio trend and the temperature trend in
499	the recent period are very different from those in the longer period, while the relative humidity
500	trend shows a small difference between the two periods. Quantitatively describing the causes of
501	this conspicuous difference in the in the mixing ratio trends is currently very difficult because
502	global warming and local urbanization effects are intricately involved with this as shown later.
503	To be specific, the mixing ratio trend in the recent period is significantly positive in most
504	stations, being in stark contrast with clearly separated two areas of positive and negative values
505	in the longer period of the 1880s–2018. In addition, the magnitudes of the positive trends over
506	Hokkaido, Sea of Japan side of the western Japan, the western Kyushu, and the remote islands
507	are approximately two times or more as large as those in the longer period. Figure 15 presents a
508	quantitative comparison using scatter plots between the two periods for the linear trends in
509	annual-mean temperature, relative humidity, and mixing ratio, together with the average trends
510	during the two periods. The temperature trends in the recent period increase by 0.3°C to 1.3°C
511	century ⁻¹ in most stations with an average change of about $+1.1^{\circ}C$ century ⁻¹ from 1.47°C to
512	$2.52^{\circ}\text{C century}^{-1}$.

Similarly, the mixing ratio trends rise by $0.2-0.8 \text{ g kg}^{-1}$ century⁻¹ in most stations with an 513 average increase of about 0.5 g kg⁻¹ century⁻¹ from 0.0 to 0.5 g kg⁻¹ century⁻¹. At once, the ratio 514 515 of the station numbers of negative trend to those of positive trend decreases from about 1/2 to 516 as small as 1/6. This indicates that the increase in mixing ratio prevails over the Japanese 517 archipelago during the recent period after the 1960s, being in coincident with that in continental or hemispheric extent for similar recent periods (e.g., Schönwiese et al., 1994; Gaffen and Ross, 518 519 1999; Dai, 2006; Willett et al., 2008, 2010). Quantitatively, this average increase of about 0.5 g kg^{-1} century⁻¹ is also comparable with those in the continental or hemispheric scale (e.g., Gaffen 520 521 and Ross, 1999; Dai, 2006; Willett et al., 2008, 2010). 522 On the other hand, the relative humidity trends extend their bounds from a range of 0% to -15% century⁻¹ to a wider range (+5% - -20% century⁻¹), while the average value changes 523 about as small as -1% century⁻¹ from -6% to -7% century⁻¹. These nearly the same negative 524 525 averages of the relative humidity trends and Eq. (1) demonstrate that the dominance of drying 526 (decrease in relative humidity) due to the warming over moistening (increase in relative humidity) due to the mixing ratio increase, as a whole, has been continuing since the 1880s over 527 528 the Japanese archipelago.

530 and relative humidity over the recent period (Fig. 14) are very similar to their EOF–1 spatial

529

531 patterns (Figs. 11–13), it is investigated whether there exist similar corresponding relations

Since the spatial distributions of the linear trends in annual-mean temperature, mixing ratio,

532	between the changes in the linear trends and those in the EOF-1 scores around 1960. The
533	increased linear trend in the annual-mean temperature over the recent period agrees well with
534	the steeper gradient of the EOF-1 score after the 1960s than before (Fig. 11a). Also for the
535	annual-mean mixing ratio trend a similar close correlation holds true between the sharp
536	increases in the linear trend and the EOF-1 score (Fig. 12a). These sharp increases qualitatively
537	agree with the reference to the upper air absolute humidity by Ross and Elliott (2001) that most
538	of the overall increase in the Northern Hemisphere's 850-hPa specific humidity probably
539	occurred since 1973. This may indicate that the increased absolute humidity in recent years
540	occurs not only at or near the surface but also in the lower troposphere up to 850 hPa in the
541	Northern Hemisphere. It will be thus preferable to scrutinize not only precipitable water but also
542	absolute humidity at each pressure level in the historical aerological data. On the other hand, the
543	annual-mean relative humidity does not show substantial changes between the linear trends
544	(Figs. 8, 14b) nor in the EOF-1 score (Fig. 13a) after the 1960s. This also indicates a good
545	correspondence between them. These facts thereby demonstrate that the linear trend during the
546	recent period after 1960 is also mostly explained by the EOF-1 in the longer period from 1900
547	for the annual-mean temperature, mixing ratio, and relative humidity.
548	The long-term trends and variations obtained in this study include the effects of climate
549	forcings of various scales such as global greenhouse gas increase and local urbanization. The

550 effect of variations in micro-environment surrounding the observation site is also included. In

551 particular, the local urbanization effect on the temperature trend is substantially larger in Japan 552 (Fujibe, 2011) than that in China, Europe and North America, where its impact on the mean 553 temperature trend is very small, in spite of definite warming in urban areas (Jones et al., 2008; 554 Chrysanthou et al., 2014). Hence, the mixing ratio trend and the temperature trend should be 555 discussed with consideration to urbanization because most integrated observation stations are 556 located near the central urban area of capital city in each prefecture as stated before. 557 While it is well known that urbanization intensifies warming, i.e., urban heat island (UHI), 558 less is known on how urbanization influences absolute humidity. Observation studies 559 demonstrated that the loss of vegetation cover decreases the absolute humidity, i.e., urban dry 560 island (UDI), through the reduction of evapotranspiration (Hao et al., 2015; 2018). The 561 difference of surface latent heat flux between rural and urban areas is significantly positive in 562 daytime, synchronizing with the diurnal cycle of solar radiation (Moriwaki et al., 2013). Thereby, 563 absolute humidity difference is larger during daytime (Thapa Chhetri et al., 2017; Moriwaki et al., 2013) and summer season (Moriwaki et al., 2013) in the diurnal and seasonal cycles, 564 565 respectively. The reduction of humid sea breeze penetration accompanying with urbanization 566 (Fujibe, 2009) is also involved with the mixing ratio decreasing trend, particularly in Japanese major islands (regions), where many stations are located within the sea breeze range (Fig.1), 567 depending on local geographical configuration. 568

569	On the other hand, mesoscale model simulations also proved that land cover and land use
570	changes can induce UDI as well as UHI. By imposing land cover change due to an extensive
571	urban growth from a present-day (ca. 1990) to a future year (ca. 2050) in the New York City
572	metropolitan area, Civerolo et al. (2007) demonstrated that there occurs a substantial decrease
573	in the surface mixing ratio and increase in the planetary boundary layer (PBL) height in the
574	summer afternoon. A significant increase in surface temperature was also simulated with the
575	areal extent of all of these changes generally coinciding with the area of increased urbanization.
576	These indicate intensification of turbulent mixing in PBL stemming from destabilization due to
577	enhanced heating at the surface. Since mixing ratio generally decreases with altitudes, turbulent
578	mixing transports mixing ratio upward and thus decreases surface mixing ratio in PBL. Hence,
579	the simulation of Civerolo et al. (2007) suggests that the increase in PBL height (intensification
580	of turbulent mixing) is another factor for UDI.
581	The urbanization effect on the mixing ratio trend is much complicated, compared to that on
582	the ubiquitously positive temperature trend, because both negative and positive values are
583	analyzed for the mixing ratio trend (Fig. 9). Urbanization contributes partly to the mixing ratio
584	negative trend in the Pacific side of Honshu from the middle Tohoku through Shikoku to the
585	eastern Kyushu (Fig. 9). However, urbanization alone cannot explain why the magnitude of the
586	negative trend hardly correlates with the population and why there are positive or virtually-zero
587	values in big cities in northern, western, and southern regions such as Sapporo, Okayama,

588 Hiroshima, Fukuoka, and Kagoshima. Concerning mixing ratio trends in big cities, the present result agrees with the JMA urbanization monitoring report (JMA, 2013) that showed a 589 590 significant decreasing trend in the annual-mean vapor pressure of -0.9 to -0.6 hPa century⁻¹ (mixing ratio trend of -0.6 to -0.4 g kg⁻¹ century⁻¹ for 1000 hPa station pressure) in Nagoya, 591 592 Kyoto, and Tokyo for 1931–2012. These negative trends are in contrast to the small positive trends (0.3 hPa century⁻¹ ~ 0.2 g kg⁻¹ century⁻¹) in the other 15 cities which have undergone 593 594 small urbanization. On the other hand, warming trends in big cities are significantly larger by 0.5° C to 1.7° C century⁻¹ compared to an average of other 17 small urbanization cities (JMA, 595 596 2013).

597 In addition to the positive or virtually-zero values in some big cities in the trend from about 598 the 1880s, most stations exhibit significantly positive values in the mixing ratio trend during the 599 recent period from 1960 (Fig. 14c, 15c), indicating that the contribution of UDI seemingly almost 600 disappears after 1960, when the population in Tokyo Metropolis began to saturate and those in 601 neighboring prefectures as well as other big cities began to rapidly increase (Fujibe, 2011). Accordingly, not only urbanization but also other factors including global warming are thought 602 603 to be intricately entangled in the mixing ratio trend. Be that as it may, the density of the long-604 record integrated observation stations (Fig. 1) is too sparse to isolate the local urbanization effect and hence to scrutinize each factor is beyond the scope of this paper. 605

606

607 7. Conclusions

608	Surface meteorological data archived by JMA from about the 1880s to 2018 over the
609	Japanese archipelago are analyzed focusing on the long-term trends and variations in the water
610	vapor mixing ratio, temperature, and relative humidity. Since those historical data prior to about
611	1960 is provided only in monthly-mean format, the validity of the monthly-mean water vapor
612	mixing ratio calculated from monthly means of temperature, relative humidity, and surface
613	pressure was investigated through the comparison with that based on one-hour interval data in
614	recent years from 1990 to 2018. The comparison proved that the discrepancy between the two
615	annual-mean mixing ratios is within two percent, and the difference in the linear trends is mostly
616	less than ten percent.
617	The annual-mean temperature trends show positive values for all the stations with most
617 618	The annual-mean temperature trends show positive values for all the stations with most stations exhibiting statistically significant warming of $1.0^{\circ}C-2.5^{\circ}C$ century ⁻¹ , and similar
618	stations exhibiting statistically significant warming of $1.0^{\circ}C-2.5^{\circ}C$ century ⁻¹ , and similar
618 619	stations exhibiting statistically significant warming of $1.0^{\circ}C-2.5^{\circ}C$ century ⁻¹ , and similar feature can be seen for each season. The annual-mean relative humidity trend also shows
618 619 620	stations exhibiting statistically significant warming of $1.0^{\circ}C-2.5^{\circ}C$ century ⁻¹ , and similar feature can be seen for each season. The annual-mean relative humidity trend also shows negative values and significantly decreasing of -2% to -12% century ⁻¹ for most stations with
618619620621	stations exhibiting statistically significant warming of $1.0^{\circ}C-2.5^{\circ}C$ century ⁻¹ , and similar feature can be seen for each season. The annual-mean relative humidity trend also shows negative values and significantly decreasing of -2% to -12% century ⁻¹ for most stations with small seasonality. On the other hand, the annual-mean mixing ratio trend displays different
 618 619 620 621 622 	stations exhibiting statistically significant warming of $1.0^{\circ}C-2.5^{\circ}C$ century ⁻¹ , and similar feature can be seen for each season. The annual–mean relative humidity trend also shows negative values and significantly decreasing of -2% to -12% century ⁻¹ for most stations with small seasonality. On the other hand, the annual–mean mixing ratio trend displays different spatial distribution from temperature or relative humidity trend. There are three types of trends:

eastern Kyushu. Significantly positive trends of about 0.2–0.4 g kg⁻¹ century⁻¹ are over
Hokkaido, the western Japan along Sea of Japan, the western Kyushu, and the remote islands
including Okinawa. The overall spatial pattern with positive and negative areas is similar for
other seasons.
The EOF–1 spatial pattern of the annual–mean temperature is very similar to the linear trend
pattern and its score displays nearly persistently increasing characteristics with a major (91%)

fraction of the total variance. Also, with inverted sign, the EOF-1 of annual-mean relative 632 633 humidity has a similar spatial pattern to the linear trend distribution. Furthermore, its score 634 decreases almost persistently with a major (76%) contribution to the total variance. These facts 635 indicate that the linear trends in the annual-mean temperature and relative humidity are almost 636 explained by the nearly uniform persistent warming and drying of EOF-1 components and vice 637 versa. On the other hand, for the annual-mean mixing ratio, EOF-2 (14%) exhibits similar spatial pattern to the linear trend pattern and the EOF-2 score shows a nearly monotonically and 638 639 significantly increasing trend throughout the whole period. This indicates that EOF-2 is almost identical with the linear trend in the annual-mean mixing ratio. 640

In recent years from 1960 the mixing ratio trend and the temperature trend are both significantly higher than those in the longer period from the 1880s, while the relative humidity trend remains nearly the same. The mixing ratio trend in the recent period is significantly positive in most stations and the magnitudes of the positive trends over Hokkaido, Sea of Japan 645 side of the western Japan, the western Kyushu, and the remote islands are approximately two 646 times or more as large as those in the longer period. The spatially averaged trends of about 0.5 g kg⁻¹ century⁻¹ for mixing ratio and of about $+2.5^{\circ}$ C century⁻¹ for temperature are comparable 647 with those in the continental or hemispheric scale for the similar recent periods in other studies. 648 649 The spatial distributions of the trends in the annual-mean temperature, mixing ratio, and relative humidity over the recent period from 1960 are found to be very similar to their EOF-1 650 651 spatial patterns for the longer period from 1900. In line with this, a close relation between the 652 changes in the trends and those in their scores is observed around 1960. The increased linear 653 trend in the annual-mean temperature for the recent period agrees well with the steeper gradient 654 of the EOF-1 score after the 1960s than before. A similar close correlation holds true between 655 the sharp increases in the linear trend and the EOF-1 score for annual-mean mixing ratio. On 656 the other hand, the annual-mean relative humidity does not show substantial changes in the 657 linear trend nor in the EOF-1 score around 1960, which also indicates a good correspondence between them. 658

Urbanization affects the long-term trends and variations in the surface humidity and temperature in many stations that are located in the central urban area in respective prefectures. However, urbanization effects on humidity are not as simply evaluated as its warming effect on the temperature over the Japanese archipelago. This is because the magnitude of negative trend scarcely correlates with population and because the negative trend area and positive trend area are distinctly separated, indicating other factors such as global warming also play crucial role

on the surface humidity.

666

667

References

668

669	Beck, H. E., I	N. E. Zimmermann,	T. R. McVicar.	N. Vergopolan. A	A. Berg. and E. F	F. Wood. 2018:
00/	,,,,					

- 670 Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci.
- 671 *Data*. 5, 180214, doi:10.1038/sdata.2018.214.
- 672 Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Bretherton, J.-L. Dufresne, A. Hall, S.
- Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, and M.
- J. Webb, 2006: How well do we understand and evaluate climate change feedback
- 675 processes? J. Climate, **19**, 3445–3482.
- 676 Brazel, S. W. and R. C. Balling Jr., 1986: Temporal analysis of long-term atmospheric moisture

677 levels in Phoenix, Arizona. J. Climate Appl. Meteor., 25, 112–117.

- 678 Chrysanthou, A., G. van der Schrier, E. J. M. van den Besselaar, A. M. G. Klein Tank, and T.
- Brandsma, 2014: The effects of urbanization on the rise of the European temperature since
- 680 1960. *Geophys. Res. Lett.*, **41**, 7716–7722.
- 681 Civerolo, K., C. Hogrefe, B. Lynn, J. Rosenthal, J.-Y. Ku, W. Solecki, J. Cox, C. Small, C.
- 682 Rosenzweig, R. Goldberg, K. Knowlton, and P. Kinney, 2007: Estimating the effects of
- 683 increased urbanization on surface meteorology and ozone concentrations in the New York
- 684 City metropolitan region. *Atmos. Environ.*, **41**, 1803–1818.
- Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate,

- **19**, 3589–3606.
- 687 Elliott, W. P., 1995: On detecting long-term changes in atmospheric moisture. *Climatic Change*,
- **688 31**, 349–367.
- 689 Foscue, E. J., 1932: The climate of the Lower Rio Grande Valley of Texas. *Mon. Wea. Rev.*, **60**,
- 690 207–214.
- Fujibe F., 2009: Relation between long-term temperature and wind speed trends at surface
 observation stations in Japan. *SOLA*, 5, 81–84.
- Fujibe, F., 2011: Urban warming in Japanese cities and its relation to climate change monitoring.
- 694 Int. J. Climatol., **31**, 162–173.
- Fujibe, F., 2015: Relationship between interannual variations of extreme hourly precipitation
 and air/sea–surface temperature in Japan. *SOLA*, **11**, 5–9.
- 697 Fujita, M., and T. Sato, 2017: Observed behaviours of precipitable water vapour and
- 698 precipitation intensity in response to upper air profiles estimated from surface air
- 699 temperature. *Sci. Rep.* **7**, 4233, doi:10.1038/s41598-017-04443-9.
- 700 Gaffen, D. J., and R. J. Ross, 1999: Climatology and trends of U.S. surface humidity and
- 701 temperature. J. Climate, **12**, 811–828.
- Hao, L., G. Sun, Y. Liu, J. Wan, M. Qin, H. Qian, C. Liu, J. Zheng, R. John, P. Fan, and J. Chen,
- 703 2015: Urbanization dramatically altered the water balances of a paddy field–dominated
- basin in southern China. *Hydrol. Earth Syst. Sci.*, **19**, 3319–3331.

705	Hao, L., X. Huang, M. Qin, Y. Liu, W. Li, and G. Sun, 2018: Ecohydrological processes explain
706	urban dry island effects in a wet region, southern China. Water Resour. Res., 54, 6757-
707	6771.
708	Hadad, D., JL. Baray, N. Montoux, J. Van Baelen, P. Fréville, JM. Pichon, P. Bosser, M.
709	Ramonet, C. Yver Kwok, N. Bègue, and V. Duflot, 2018: Surface and tropospheric water
710	vapor variability and decadal trends at two supersites of CO-PDD (Cézeaux and Puy de
711	Dôme) in central France. Atmosphere, 9, 302, doi:10.3390/atmos9080302.
712	Hadano, K., T. Izumi, D. Nakayama, and H. Matsuyama, 2004: The spatial representativity of
713	temperature data of AMeDAS as revealed by the variogram. Theory and Application of
714	GIS. 12, 35–46 (in Japanese).
715	Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984:
716	Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate
717	Sensitivity. Hansen J. E. and T. Takahashi (eds.), AGU Geophysical Monograph 29,
718	Maurice Ewing Vol. 5. American Geophysical Union, 130–163.
719	Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface
720	temperature and marine meteorological variables for the 20th century using ICOADS and
721	the Kobe Collection. Int. J. Climatol., 25, 865–879.
722	IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group
723	I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

724	Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.
725	L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York,
726	NY, USA, 996 pp.
727	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group
728	I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
729	Stocker, T. F., D. Qin, GK. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y.
730	Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, United
731	Kingdom and New York, NY, USA, 1535 pp.
732	Jones P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records,
733	with an emphasis on China. J. Geophys. Res., 113, D16122, doi:10.1029/2008JD009916.
734	JMA, 2013: Report on monitoring of heat island in Japan: 2012. Japan Meteorological
735	Agency, 156 pp (in Japanese). [Available at http://www.data.jma.go.jp/cpdinfo/himr/
736	2013/index.html.]
737	JMA, 2019: Climate Change Monitoring Report 2018. Japan Meteorological Agency, 87
738	pp (in Japanese). [Available at https://www.data.jma.go.jp/cpdinfo/monitor/2018/p
739	df/ccmr2018_all.pdf.]
740	Karl, T. R., and C. N. Williams Jr., 1987: An approach to adjusting climatological time series
741	for discontinuous inhomogeneities. J. Appl. Meteor. Climatol., 26, 1744–1763.
742	Kiehl, J. T., and K. E. Trenberth, 1997: Earth's annual global mean energy budget. Bull. Amer.

- 743 *Meteor. Soc.*, **78**, 197–208.
- Kincer, J. B., 1922: Atlas of American Agriculture, Part II, Climate, Section A Precipitation and
 Humidity. U. S. Government Printing Office.
- 746 Kluft, L., S. Dacie, S. A. Buehler, H. Schmidt, and B. Stevens, 2019: Re-examining the first
- 747 climate models: climate sensitivity of a modern radiative–convective equilibrium model.
- 748 *J. Climate*, **32**, 8111–8125.
- 749 Koizumi, K., and H. Kato, 2012: Climatic division of Japan depending on the spatial variation
- 750 pattern of climatic elements. Proceedings of the Institute of Natural Sciences, Nihon
- 751 University, **47**, 185–197 (in Japanese). [Available at https://www.chs.nihon-
- v.ac.jp/institute/nature/kiyou/2012/pdf/2_6.pdf.]
- 753 Kusanagi, H., 2016: Proposal of nine climate regions for Japan using the cluster analysis of the
- daily-averaged water precipitation. Tenki, 63, 5-12. (in Japanese). [Available at
- 755 https://www.metsoc.jp/tenki/pdf/2016/2016_01_0005.pdf.]
- 756 Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of
- climate data: Theory and examples, including applications to historical radiosonde station
- 758 data. Int. J. Climatol., 16, 1197–1226.
- Lepage, Y., 1971: A combination of Wilcoxon's and Ansari–Bradley's statistics. *Biometrika*, 58,
 213–217.
- Lee, D. O., 1991: Urban–rural humidity differences in London. *Int. J. Climatol.*, **11**, 577–582.

- Liu, C., and R. P. Allan, 2013: Observed and simulated precipitation responses in wet and dry
- 763 regions 1850–2100. *Environ. Res. Lett.*, **8**, 034002, doi:10.1088/1748–9326/8/3/034002.
- 764 Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given
- 765 distribution of relative humidity. J. Atmos. Sci., 24, 241–259.
- 766 Moriwaki, R., K. Watanabe, and K. Morimoto, 2013: Urban dry island phenomenon and its
- 767 impact on cloud base level. J. Japan Soc. Civ. Eng., 1, 521–529.
- 768 Murray, F. W. 1967: On the computation of saturation vapor pressure. J. Applied Meteor., 6,
- 769 203–204.
- 770 Robinson, P. J., 1998: Monthly variations of dew point temperature in the coterminous United
- 771 States. Int. J. Climatol., 18, 1539–1556.
- Ross, R. J., and W. P. Elliott, 1996: Tropospheric water vapor climatology and trends over North
- 773 America: 1973–93. J. Climate, **9**, 3561–3574.
- 774 Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water
- 775 vapor trends. J. Climate, **14**, 1602–1612.
- Schönwiese, C.-D., J. Rapp, T. Fuchs, and M. Denhard, 1994: Observed climate trends in Europe
- 777 1891–1990. *Meteor. Zeitschrift*, **3**, 22–28.
- Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall's tau. J. Amer. Stat.
- 779 *Assoc.*, **63**, 1379–1389.
- 780 Siegel, A. F., 1982: Robust regression using repeated medians. *Biometrika*, **69**, 242–244.

- 781 Sun, D.-Z., and I. M. Held, 1996: A comparison of modeled and observed relationships between
- interannual variations of water vapor and temperature. J. Climate, 9, 665–675.
- 783 Tetens, O., 1930: Über einige meteorologische Begriffe. Z. Geophys., 6, 297–309.
- Thao, S., L. Eymard, E. Obligis, and B. Picard, 2014: Trend and variability of the atmospheric
- water vapor: A mean sea level issue. J. Atmos. Ocean. Technol., **31**, 1881–1901.
- 786 Thapa Chhetri, D. B., Y. Fujimori, and R. Moriwaki, 2017: Local climate classification and
- virban heat/dry island in Matsuyama plain. J. Japan Soc. Civ. Eng., Ser. B1 (Hydraulic
- 788 *Engineering*), **73**, I_487–I_492.
- Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column–integrated
 atmospheric water vapor. *Climate Dyn.*, 24, 741–758.
- 791 Visher, S. S., 1954: Climatic Atlas of the United States. Harvard University Press, 403 pp.
- 792 Willett, K. M., P. D. Jones, N. P. Gillett, and P. W. Thorne, 2008: Recent changes in surface
- humidity: Development of the HadCRUH dataset. J. Climate., **21**, 5364–5383.
- Willett, K. M., P. D. Jones, P. W. Thorne, and N. P. Gillett, 2010: A comparison of large scale
- changes in surface humidity over land in observations and CMIP3 general circulation
- 796 models. *Environ. Res. Lett.*, **5**. 025210, doi:10.1088/1748-9326/5/2/025210.
- 797 WMO, 2018: Guide to Instruments and Methods of Observation. Volume I Measurement of
- 798 *Meteorological Variables*. World Meteorological Organization, Geneva, Switzerland, 548
- 799

pp.

- 800 Yonetani, T., 1992a: Discontinuous changes of precipitation in Japan after 1900 detected by the
- 801 Lepage test. J. Meteor. Soc. Japan, **70**, 95–104.
- 802 Yonetani, T., 1992b: Discontinuous climate changes in Japan after 1900. J. Meteor. Soc. Japan,
- **70**, 1125–1135.
- 804 Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 2643–
- 805 2652.

806

Table and Figure Captions

808

809	Table 1. Station geographical locations [longitude (Lon) and latitude (Lat)] and total observation
810	years (Prd) in each region (Honshu, Hokkaido, Shikoku, Kyushu, and Okinawa). Total
811	observation years are the periods, during which annual-mean mixing ratio can be calculated
812	from observation starting years to 2018. The asterisk (*) represents remote island stations. Island
813	in Honshu/Kyushu means that its prefecture belongs to Honshu/Kyushu.
814	
815	Fig. 1. Geographical locations of the 63 stations used in this study over the Japanese archipelago
816	and five region names (Hokkaido, Honshu, Shikoku, Kyushu, and Okinawa). Letters N, G, and
817	I represent Nemuro, Gifu, and Ishigakijima stations, respectively.
818	Fig. 2. (a) Comparison of the annual-mean mixing ratios $(g kg^{-1})$ between rr_RH and rr during
819	1990 and 2018 in 10 stations from the subarctic northernmost area through the temperate middle
820	area to the subtropical southernmost remote islands area over the Japanese archipelago, and (b)
821	the corresponding relative errors (rr_RH – rr)/rr (%). Station names are listed in the left upper
822	place of (a).
823	Fig. 3. (a) Comparison of the annual-mean and four (spring, summer, autumn, and winter)

824 seasonal-mean mixing ratio trends (g kg⁻¹ century⁻¹) between rr_RH and rr during 1990 and

825 2018 in 10 stations from the subarctic northernmost area through the temperate middle area to

- 826 the subtropical southernmost remote islands area over the Japanese archipelago, and (b) the
- 827 corresponding relative errors (%). Station names are listed in the left upper place of (a).
- 828 Fig. 4. Time series of annual-mean and linear regression lines of (a) temperature (°C), (b)
- relative humidity (%), and (c) mixing ratio $(g kg^{-1})$ in the northeastern Japan, Nemuro. Numbers
- in the left upper place are the linear trends (per century), and those in the in the right upper place
- 831 represent the statistical significances and change rates in percentage.
- Fig. 5. Time series of annual-mean and linear regression lines of (a) temperature (°C), (b) relative humidity (%), and (c) mixing ratio ($g kg^{-1}$) in the central Japan, Gifu. Numbers in the left upper place are the linear trends (per century), and those in the in the right upper place
- 835 represent the statistical significances and change rates in percentage.
- 836 Fig. 6. Time series of annual-mean and linear regression lines of (a) temperature (°C), (b)
- relative humidity (%), and (c) mixing ratio (g kg⁻¹) in the southwestern Japan, Ishigakijima.
- 838 Numbers in the left upper place are the linear trends (per century), and those in the in the right
- upper place represent the statistical significances and change rates in percentage.
- Fig. 7. Spatial distribution of the annual-mean temperature trend ($^{\circ}C$ century⁻¹) from about the
- 841 1880s to 2018. Red (blue) color represents positive (negative) value, and the area of circles is
- 842 proportional to the values of trend. Triangles represent very small values, the magnitudes of

843 which are less than 1.0.

Fig. 8. Spatial distribution of the relative humidity trend (% century⁻¹) from about the 1880s to
2018. Red (blue) color represents positive (negative) value, and the area of circles is proportional
to the values of trend. Triangles represent very small values, the magnitudes of which are less
than 2.0.

Fig. 9. Spatial distribution of the annual–mean mixing ratio trend ($g kg^{-1} century^{-1}$) from about

the 1880s to 2018. Red (blue) color represents positive (negative) value, and the area of circles

850 is proportional to the values of trend. Triangles represent very small values, the magnitudes of

which are less than 0.1.

Fig. 10. Spatial distribution of the seasonal-mean mixing ratio trend (g kg⁻¹ century⁻¹) from about the 1880s to 2018 for (a) summer and (b) winter. Red (blue) color represents positive (negative) value, and the area of circles is proportional to the values of trend. Triangles represent very small values, the magnitudes of which are less than 0.1.

Fig. 11. Annual-mean temperature EOF-1 (a) score and (b) spatial pattern (regressed to the

857 score), and EOF-2 (c) score and (d) spatial pattern. Triangles represent very small values, the

- magnitudes of which are less than 0.05.
- 859 Fig. 12. Annual-mean mixing ratio EOF score and spatial for (a) (b) EOF–1, (c) (d) EOF–

860 2, and (e) – (f) EOF–3. Triangles represent very small values, the magnitudes of which are less

861 than 0.01.

Fig. 13. Annual-mean relative humidity EOF-1 (a) score and (b) spatial pattern, and EOF-2 (c)
score and (d) spatial pattern. Triangles represent very small values, the magnitudes of which are
less than 0.1.

Fig. 14. Annual-mean (a) temperature trend (°C century⁻¹), (b) relative humidity trend (% century⁻¹), and (c) mixing ratio trend ($g kg^{-1} century^{-1}$) in the recent period from 1960 to 2018. Triangles represent very small values, the magnitudes of which are less than 1.0 in (a), 2 in (b),

868 and 0.1 in (c).

Fig. 15. Comparison of the trends between the two periods, 1880s–2018 (ordinate) and 1960–

870 2018 (abscissa), for annual-mean (a) temperature, (b) relative humidity, and (c) mixing ratio.

Units are °C century⁻¹ for the temperature trend, % century⁻¹, for the relative humidity trend, and g kg⁻¹ century⁻¹ for the mixing ratio trend. Numbers in the graphs show the average values for the two periods.

Station	Lon	Lat	Prd	Station	Lon	Lat	Prd
Honshu		1		Hokkaido	I		
Aomori	140.7683	40.8217	133	Asahikawa	142.3717	43.7567	130
Akita	140.0983	39.7167	133	Sapporo	141.3283	43.0600	139
Miyako	141.9650	39.6467	135	Suttsu	140.2233	42.7950	131
Ishinomaki	141.2983	38. 4267	131	Abashiri	144. 2783	44.0167	129
Yamagata	140.3450	38. 2550	128	Nemuro	145. 5850	43.3300	130
Fukushima	140.4700	37.7583	129	Kushiro	144. 3767	42.9850	109
Onahama	140.9033	36.9467	105	Obihiro	143. 2117	42.9217	125
Mito	140.4667	36.3800	122	Hakodate	140.7533	41.8167	133
Utsunomiya	139.8683	36. 5483	128				
Maebashi	139.0600	36.4050	122	Shikoku			
Kumagaya	139.3800	36. 1500	122	Tokushima	134.5733	34.0667	127
Tokyo	139.7600	35. 6900	143	Tadotsu	133.7517	34.2750	126
Hachijojima*	139.7783	33. 1217	112	Matsuyama	132.7767	33.8433	129
Choshi	140.8567	35. 7383	132	Kochi	133. 5483	33.5667	133
Nagano	138.1917	36.6617	130				
Matsumoto	137.9700	36.2450	121	Kyushu			
Iida	137.8217	35. 5233	121	Fukuoka	130.3750	33.5817	129
Kofu	138.5533	35. 6667	123	Oita	131.6183	33.2350	131
Hamamatsu	137.7183	34. 7083	132	Izuhara*	129.2917	34.1967	131
Nagoya	136.9650	35. 1667	128	Nagasaki	129.8667	32.7333	139
Takayama	137.2533	36. 1550	119	Saga	130.3050	33.2650	128
Gifu	136.7617	35.4000	136	Kumamoto	130.7067	32.8133	128
Tsu	136.5183	34. 7333	129	Miyazaki	131. 4133	31. 9383	133
Aikawa*	138.2400	38.0283	107	Kagoshima	130.5467	31. 5533	133
Niigata	139.0467	37.9117	133	Naze*	129.4950	28.3783	122
Fushiki	137.0550	36. 7917	131				
Kanazawa	136.6333	36. 5883	133	0kinawa			
Fukui	136.2217	36. 0550	121	Ishigakijima*	124.1633	24.3367	122
Tsuruga	136.0617	35. 6533	121	Naha*	127.6850	26.2067	120
Kyoto	135.7317	35.0150	138				
0saka	135.5183	34. 6817	136				
Toyooka	134.8217	35. 5350	101				
Wakayama	135.1633	34. 2283	139				
Shionomisaki	135.7567	33. 4500	106				
Okayama	133.9167	34.6600	127				
Hiroshima	132.4617	34. 3983	140				
Kure	132.5500	34.2400	122				
Hamada	132.0700	34. 8967	126				
Sakai	133.2350	35. 5433	133				
Shimonoseki	130.9250	33. 9483	136				

Table 1. Station geographical locations [longitude (Lon) and latitude (Lat)] and total observation years (Prd) in each region (Honshu, Hokkaido, Shikoku, Kyushu, and Okinawa). Total observation years are the periods, during which annual-mean mixing ratio can be calculated from observation starting years to 2018. The asterisk (*) represents remote island stations. Island in Honshu/Kyushu means that its prefecture belongs to Honshu/Kyushu.

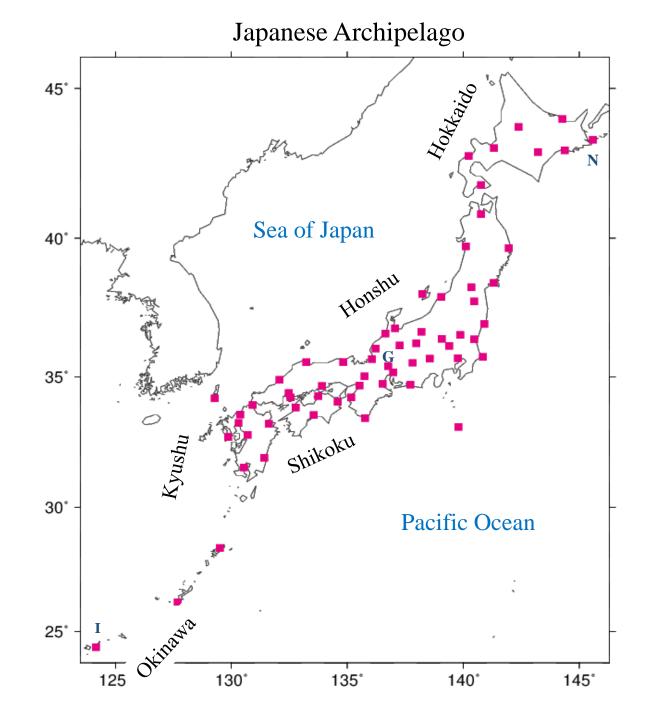


Fig. 1. Geographical locations of the 63 stations used in this study over the Japanese archipelago and five region names (Hokkaido, Honshu, Shikoku, Kyushu, and Okinawa). Letters N, G, and I represent Nemuro, Gifu, and Ishigakijima stations, respectively.

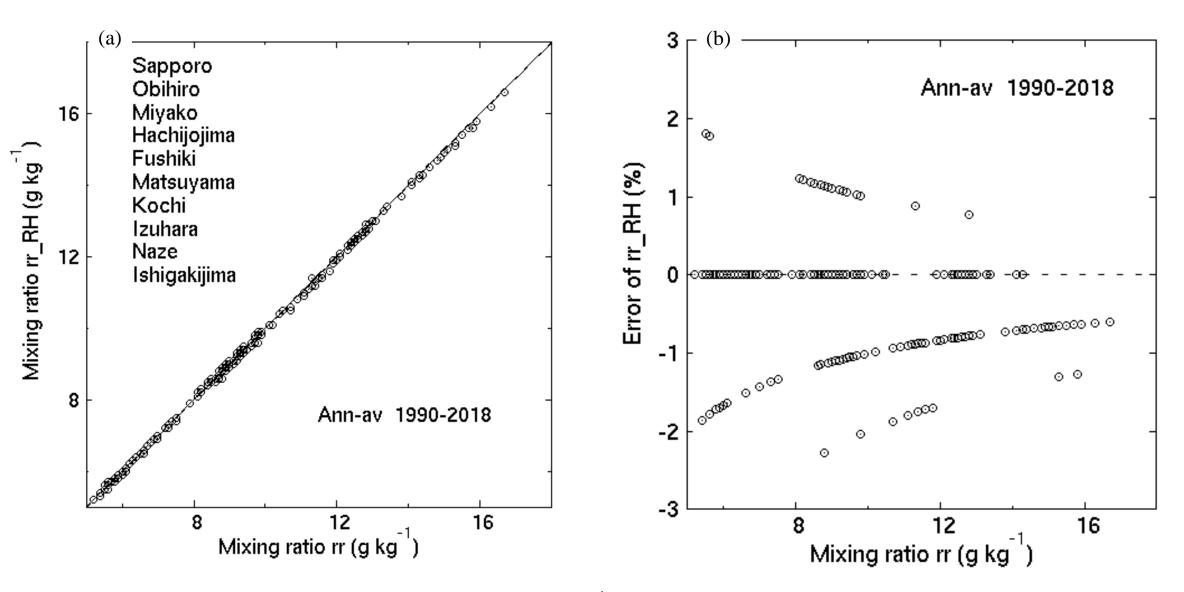


Fig. 2. (a) Comparison of the annual-mean mixing ratios (g kg⁻¹) between rr_RH and rr during 1990 and 2018 in 10 stations from the subarctic northernmost area through the temperate middle area to the subtropical southernmost remote islands area over the Japanese archipelago, and (b) the corresponding relative errors (rr_RH – rr)/rr (%). Station names are listed in the left upper place of panel (a).

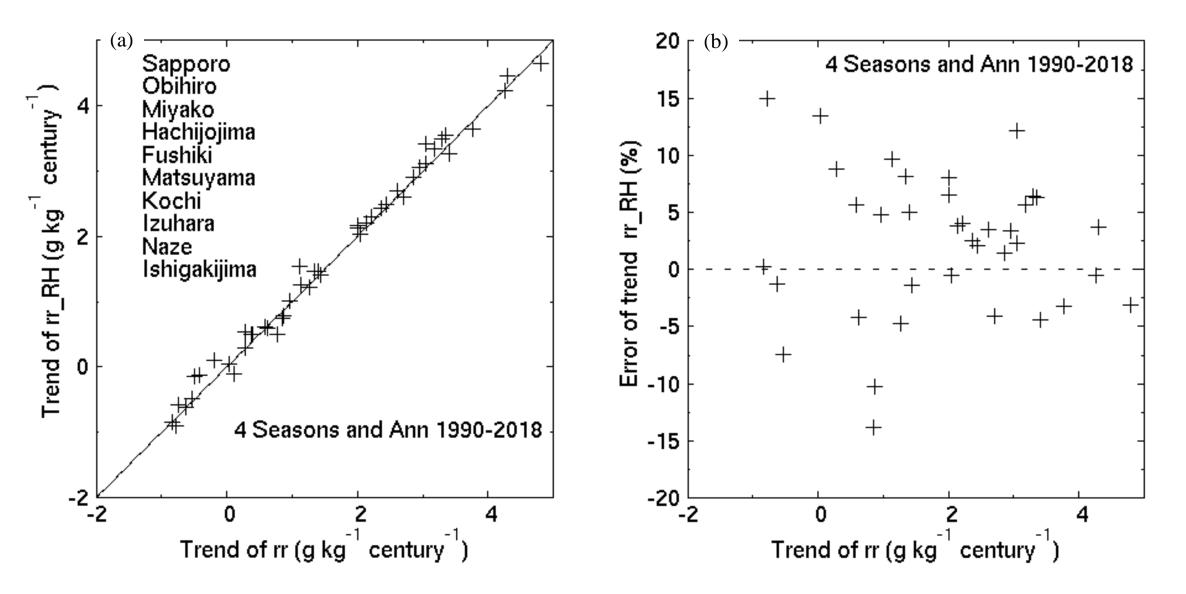


Fig.3. (a) Comparison of the annual-mean and four (spring, summer, autumn, and winter) seasonal-mean mixing ratio trends (g kg⁻¹ century⁻¹) between rr_RH and rr during 1990 and 2018 in 10 stations from the subarctic northernmost area through the temperate middle area to the subtropical southernmost remote islands area over the Japanese archipelago, and (b) the corresponding relative errors (%). Station names are listed in the left upper place of (a).

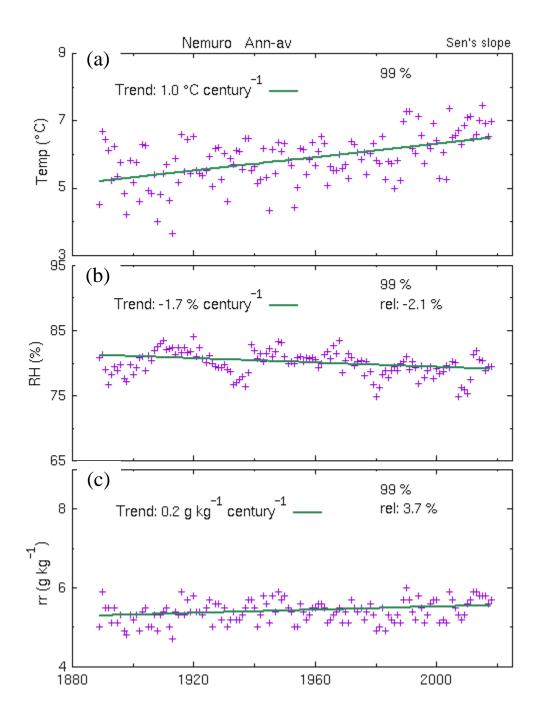


Fig. 4. Time series of annual-mean and linear regression lines of (a) temperature (°C), (b) relative humidity (%), and (c) mixing ratio (g kg⁻¹) in the northeastern Japan, Nemuro. Numbers in the left upper place are the linear trends (per century), and those in the in the right upper place represent the statistical significances and change rates in percentage.

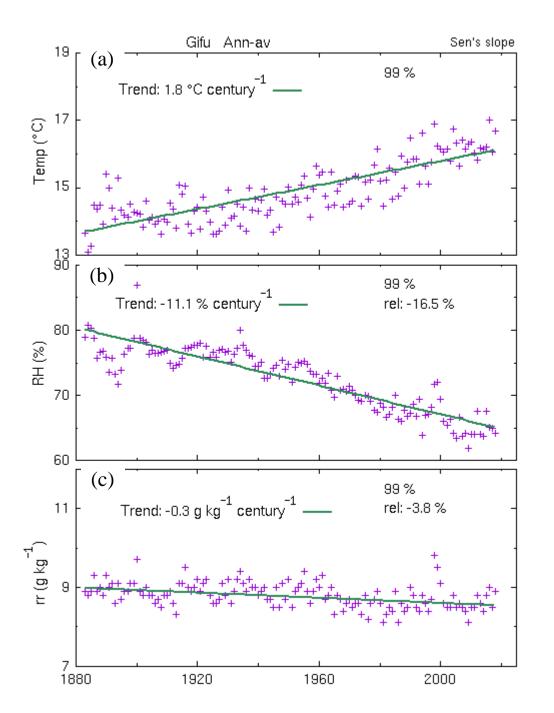


Fig. 5. Time series of annual-mean and linear regression lines of (a) temperature (°C), (b) relative humidity (%), and (c) mixing ratio (g kg⁻¹) in the central Japan, Gifu. Numbers in the left upper place are the linear trends (per century), and those in the in the right upper place represent the statistical significances and change rates in percentage.

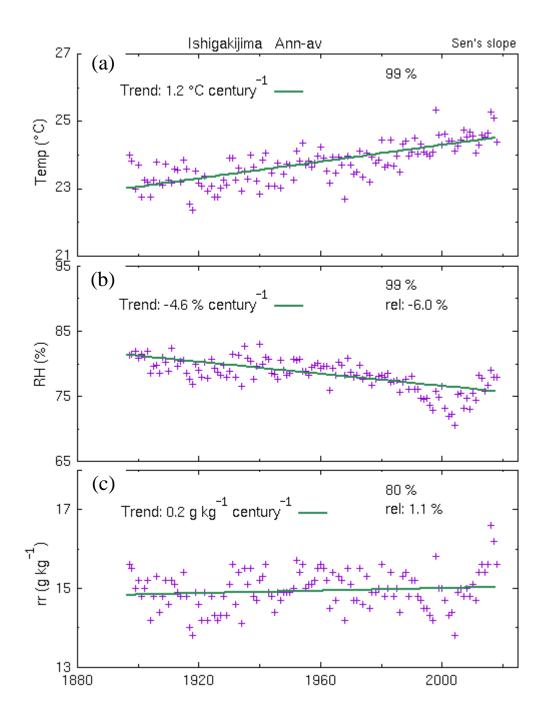


Fig. 6. Time series of annual-mean and linear regression lines of (a) temperature (°C), (b) relative humidity (%), and (c) mixing ratio (g kg⁻¹) in the southwestern Japan, Ishigakijima. Numbers in the left upper place are the linear trends (per century), and those in the in the right upper place represent the statistical significances and change rates in percentage.

Trend of temperature (°C century⁻¹)

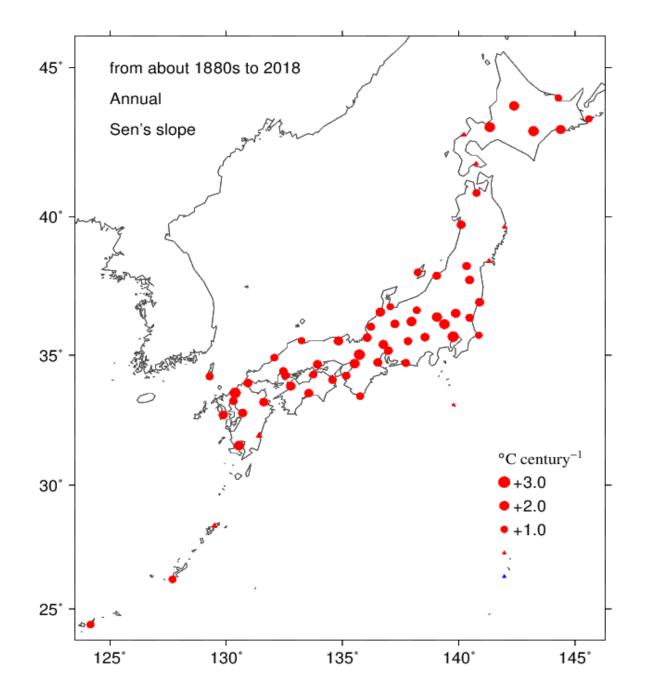
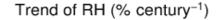



Fig. 7. Spatial distribution of the annual-mean temperature trend (°C century⁻¹) from about 1880s to 2018. Red (blue) color represents positive (negative) value, and the area of circles is proportional to the values of trend. Triangles represent very small values, the magnitudes of which are less than 1.0.

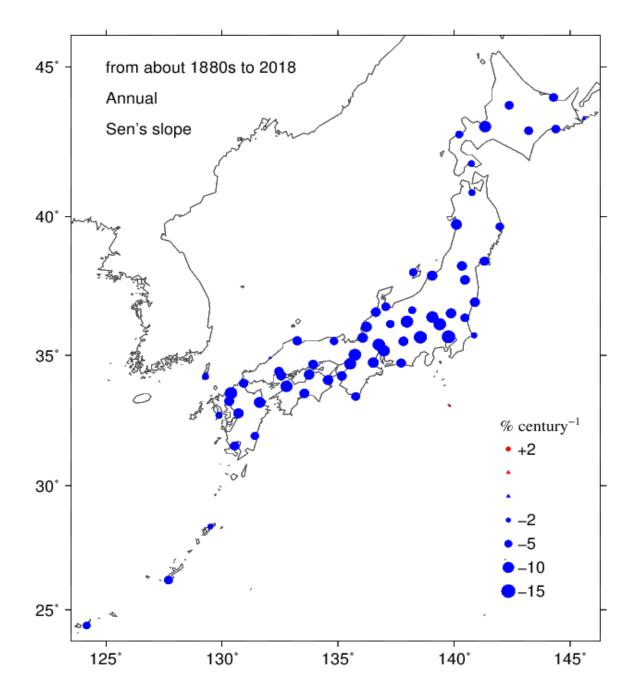


Fig. 8. Spatial distribution of the relative humidity trend (% century⁻¹) from about the 1880s to 2018. Red (blue) color represents positive (negative) value, and the area of circles is proportional to the values of trend. Triangles represent very small values, the magnitudes of which are less than 2.0.

Trend of mixing ratio (g kg⁻¹ century⁻¹)

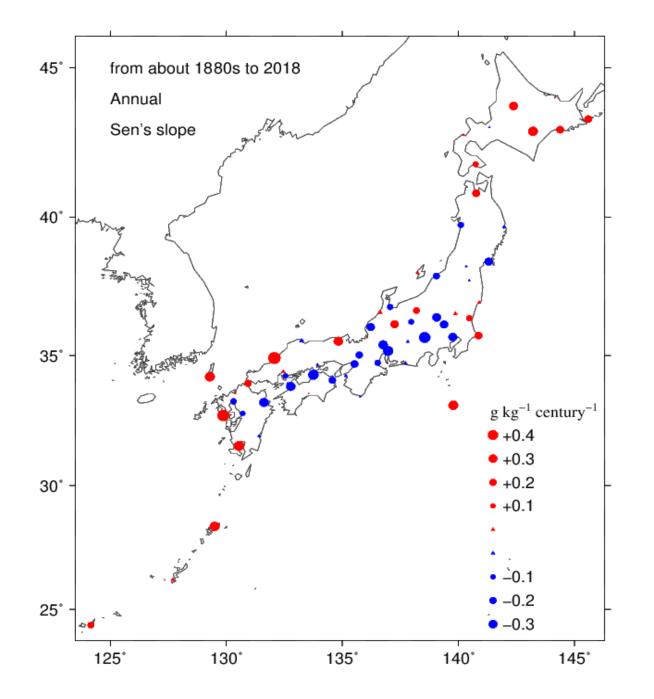


Fig. 9. Spatial distribution of the annual-mean mixing ratio trend (g kg⁻¹ century⁻¹) from about the 1880s to 2018. Red (blue) color represents positive (negative) value, and the area of circles is proportional to the values of trend. Triangles represent very small values, the magnitudes of which are less than 0.1.

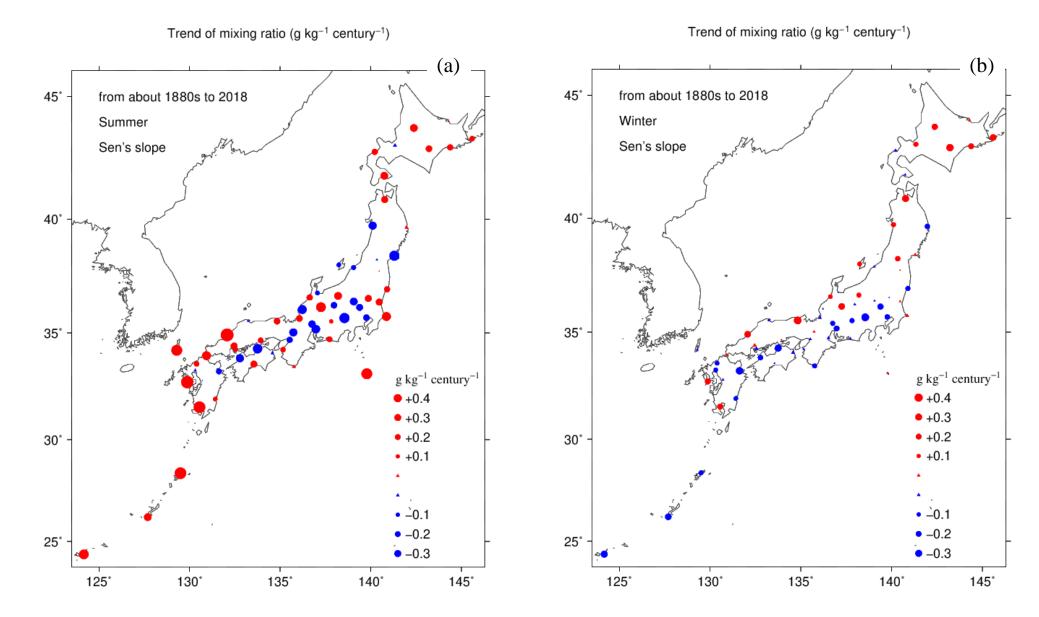


Fig. 10. Spatial distribution of the seasonal-mean mixing ratio trend (g kg⁻¹ century⁻¹) from about the 1880s to 2018 for (a) summer and (b) winter. Red (blue) color represents positive (negative) value, and the area of circles is proportional to the values of trend. Triangles represent very small values, the magnitudes of which are less than 0.1.

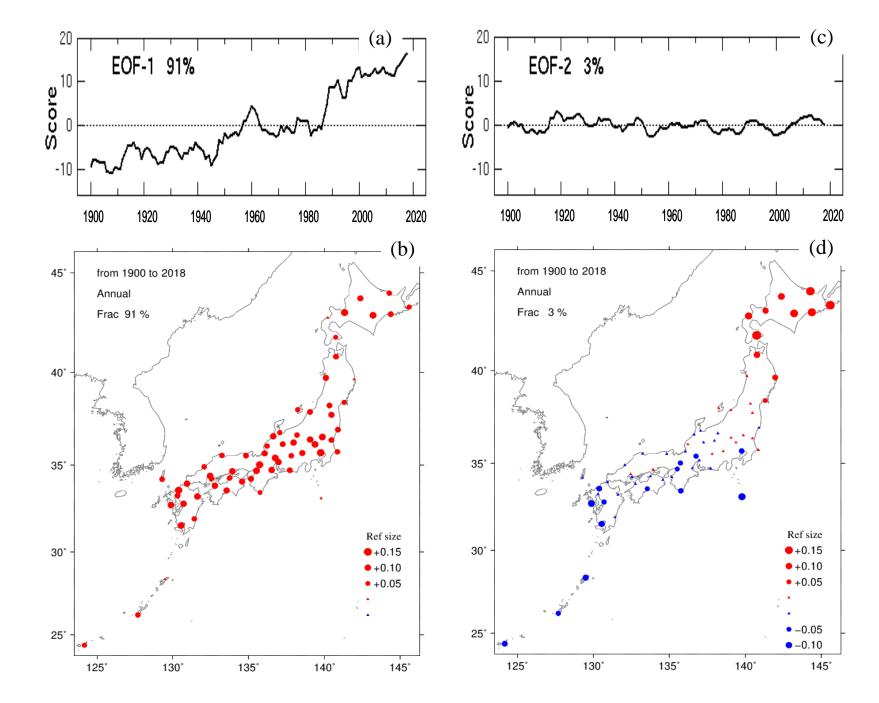


Fig. 11. Annual-mean temperature EOF-1 (a) score and (b) spatial pattern regressed to the score, and EOF-2 (c) score and (d) spatial pattern. Red (blue) color represents positive (negative) value, and the area of circles is proportional to the values. Triangles represent very small values, the magnitudes of which are less than 0.05.

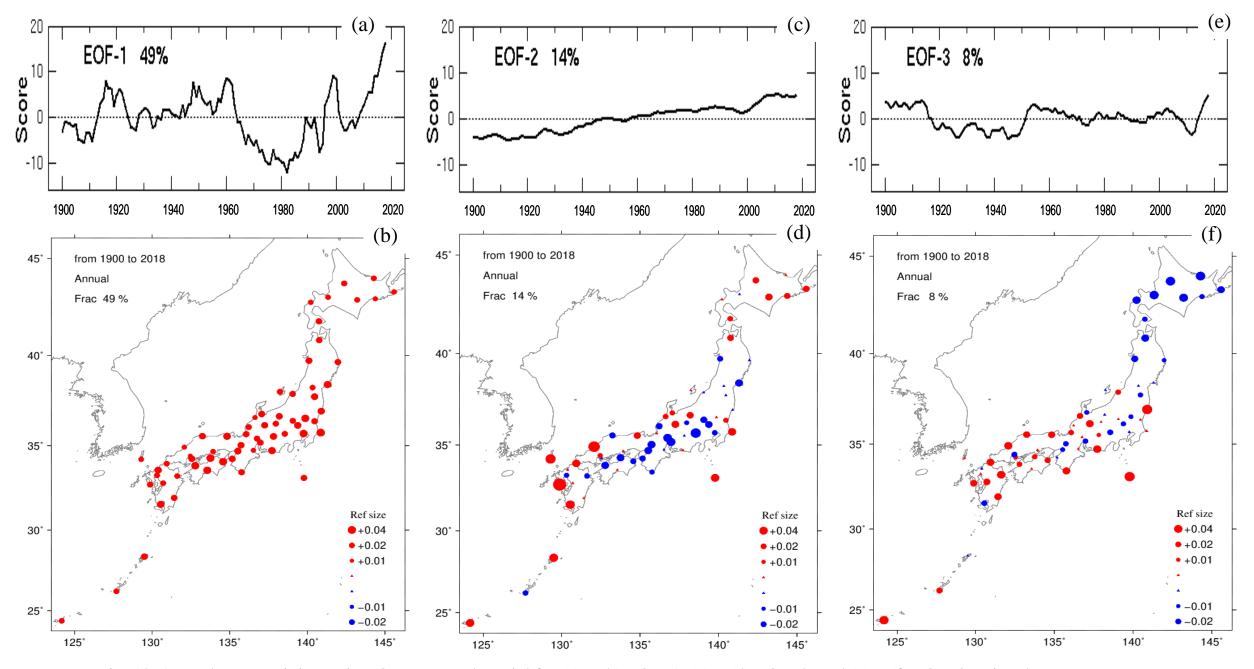


Fig. 12. Annual-mean mixing ratio EOF score and spatial for (a) – (b) EOF–1, (c) – (d) EOF–2, and (e) – (f) EOF–3. Triangles represent very small values, the magnitudes of which are less than 0.01.

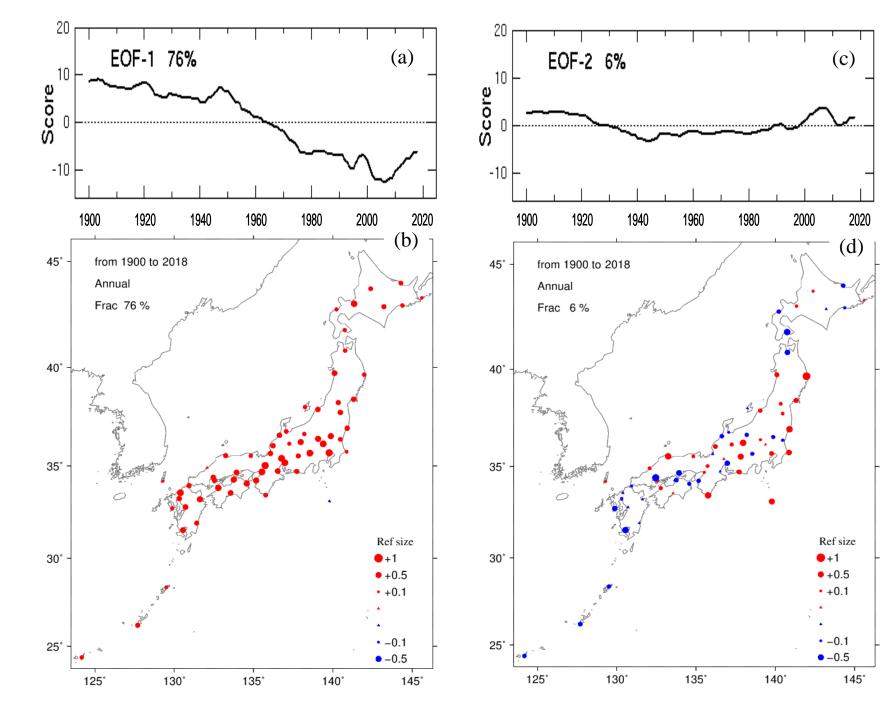


Fig. 13. Annual-mean relative humidity EOF-1 (a) score and (b) spatial pattern, and EOF-2 (c) score and (d) spatial pattern. Triangles represent very small values, the magnitudes of which are less than 0.1.

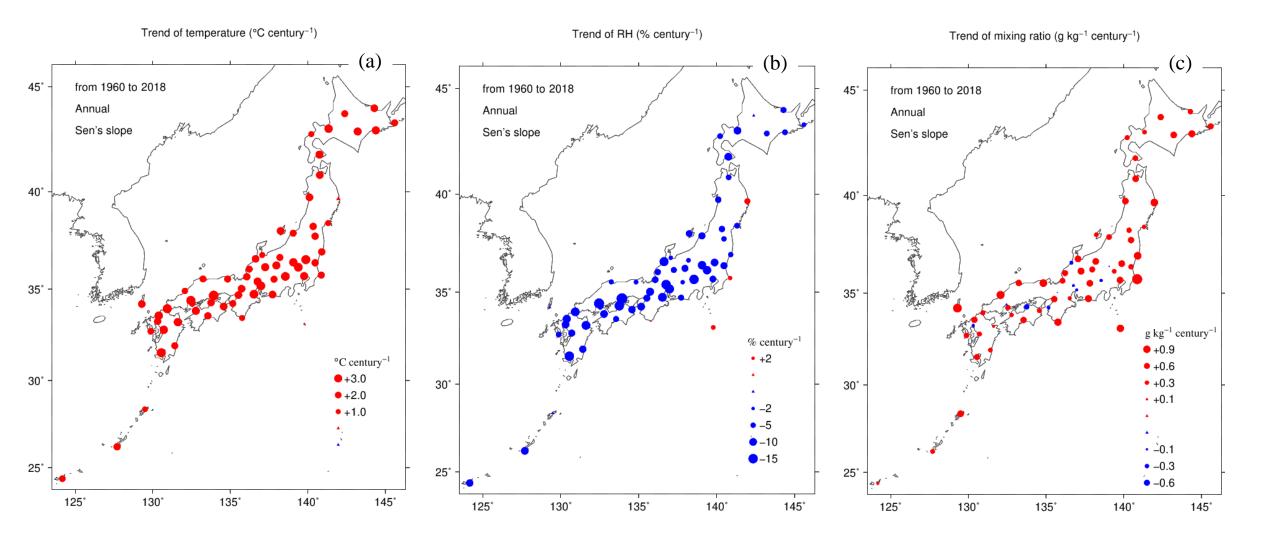


Fig. 14. Annual-mean (a) temperature trend (°C century⁻¹), (b) relative humidity trend (% century⁻¹), and (c) mixing ratio trend (g kg⁻¹ century⁻¹) in the recent period from 1960 to 2018. Triangles represent very small values, the magnitudes of which are less than 1.0 in (a), 2 in (b), and 0.1 in (c).

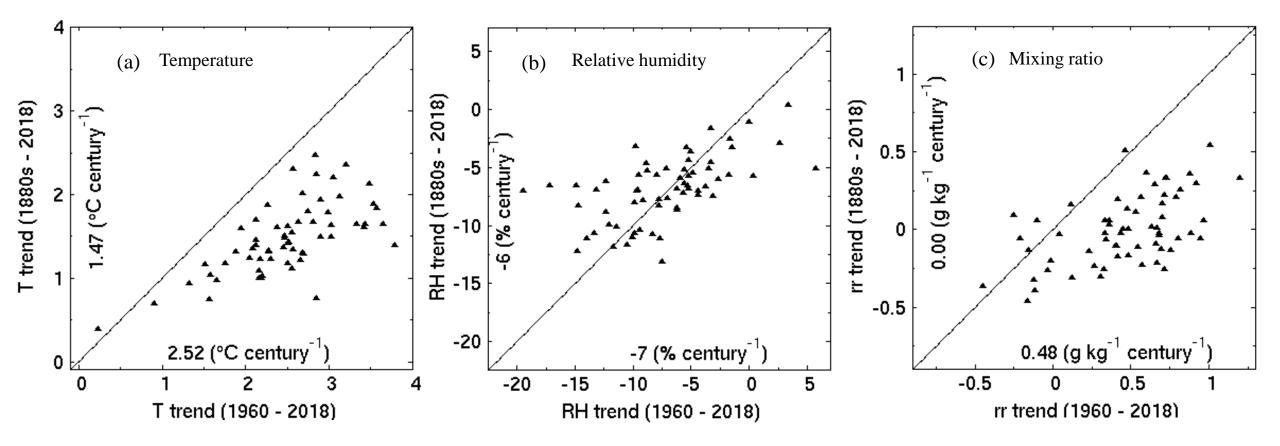


Fig. 15. Comparison of the trends between the two periods, 1880s-2018 (ordinate) and 1960-2018 (abscissa), for annual-mean (a) temperature, (b) relative humidity, and (c) mixing ratio. Units are °C century⁻¹ for the temperature trend, % century⁻¹, for the relative humidity trend, and g kg⁻¹ century⁻¹ for the mixing ratio trend. Numbers in the graphs show average values for the two periods.