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Abstract21

Using data from the Sumatran GPS Array in Indonesia–a hero network in22

tectonic and earthquake studies–we study the summer intra-seasonal vari-23

ability of precipitable water vapor (PWV) over Sumatra in years without24

strong inter-annual variability. Unlike most other studies that use external25

meteorological data to derive PWV from GPS (Global Positioning System)26

signal delays, we use the zenith wet delay (ZWD) time series estimated from27

a regular geodetic-quality processing routine as a proxy for PWV varia-28

tions without using auxiliary meteorological data. We decompose the ZWD29

space-time field into modes of variability using rotated Empirical Orthog-30

onal Function (EOF) analysis, and investigate the mechanisms behind the31

two most important modes using linear regression analysis both with and32

without lags. We show that the summer intra-seasonal variability of daily33

ZWD over Sumatra in 2008, 2016, and 2017 is dominated by the South34

Asian Summer Monsoon, and further influenced by dry-air intrusions asso-35

ciated with Rossby waves propagating in the Southern Hemisphere midlati-36

tudes. Both active South Asian monsoons and dry-air intrusions contribute37

to the dryness over Sumatra during northern summer. Our results indicate38

an intra-seasonal connection between the South Asian and western North39

Pacific Summer Monsoons: when the South Asian monsoon is strong, it40

pumps atmospheric water vapor over the eastern Indian Ocean to feed into41
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the western North Pacific monsoon. We also show a tropical-extratropical42

teleconnection where PWV over the southern Maritime Continent can be43

modulated by the activity of eastward-traveling Rossby waves in the south-44

ern midlatitudes. Our case study demonstrates the use of regional con-45

tinuously operating GPS (cGPS) networks for investigating atmospheric46

processes that govern intra-seasonal variability in atmospheric water vapor.47
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1. Introduction50

The Global Positioning System (GPS) was originally designed for the51

purposes of positioning, navigation, and timing, yet it has emerged as a52

powerful tool for atmospheric water vapor sensing in ground-based GPS53

meteorology (Bevis et al. 1992). When GPS radio signals travel from satel-54

lites to ground receivers, they are refracted by the Earth’s atmosphere,55

delaying their travel time. A significant portion of the delay is introduced56

by the permanent dipole moment of water vapor in the neutral atmosphere.57

This specific delay is referred to as the “wet delay” (Davis et al. 1985) or58

“tropospheric wet delay” as the troposphere contains nearly all atmospheric59

water vapor. The wet delay is determined primarily by the amount of wa-60

ter vapor integrated along the signal path (Askne and Nordius 1987), thus61

containing valuable information about the amount and distribution of at-62

mospheric water vapor. The wet delay along any arbitrary path is typically63

modeled as zenith wet delay (ZWD), combined with mapping functions that64

account for the dependence of the satellite elevation angle (Niell 1996) and65

horizontal gradients that account for the azimuthal variability of the at-66

mosphere (Davis et al. 1993). In order to achieve precise positioning that67
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requires millimeter accuracy, ZWD must be estimated along with station68

coordinates and other geodetic parameters of interest. Thus, ZWD time69

series have long been produced as by-products of GPS position time series;70

however, such information is often disregarded by geodesists as noise.71

Yet, a geodesist’s noise is an atmospheric scientist’s signal. Provided72

there is ancillary pressure and temperature information, ZWD can be con-73

verted to an estimate of precipitable water vapor (PWV), that is, the height74

of liquid water if all atmospheric water vapor in a vertical column were75

condensed to liquid (Bevis et al. 1994). Although the basic concept of76

GPS-PWV technique was introduced as early as 1992 (Bevis et al. 1992),77

its applications have continuously expanded since then, owing to the ex-78

ponential growth of national, regional, and local networks of continuously79

operating GPS (cGPS) stations over the past few decades. Published GPS-80

PWV studies have mostly focused on developing and refining the technique81

itself, comparing it with other techniques, calibrating other instruments,82

and improving numerical weather prediction and reanalysis models through83

validation or assimilation (Guerova et al. 2016). More recently, GPS-PWV84

has been applied in climate studies largely to two extreme ends of the broad85

time scale that GPS observes, either long-term trends (e.g., Nilsson and El-86

gered 2008; Wang et al. 2016) or diurnal and subdiurnal cycles (e.g., Dai87

et al. 2002; Pramualsakdikul et al. 2007). The intra-seasonal variability88
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of GPS-PWV has been tackled only in a few studies, either being analyzed89

among a broad range of temporal scales or used to support results from other90

PWV datasets (Bock et al. 2007, 2008; Poan et al. 2013). Such a bimodal91

distribution of GPS-PWV studies in time scale is not surprising as the most92

important advantages of the GPS-PWV technique, in comparison to other93

PWV-sensing techniques such as radiosondes and satellite-borne sensors,94

are high temporal resolution and long-term stability. However, in order to95

fully exploit the continuous records of high-resolution GPS-PWV data over96

long periods of time, the understanding and isolation of the intermediate-97

frequency signals such as intra-seasonal variability contained therein is also98

essential.99

Therefore, in this study, we present an approach of analyzing ZWD100

data from a regional cGPS network–the Sumatran GPS Array (SuGAr)–to101

demonstrate that such networks, with the help of reanalysis datasets, can be102

useful for investigating the intra-seasonal variability of PWV as well as its103

driving mechanisms. We use the ZWD time series that are by-products of a104

regular geodetic-quality processing routine as a proxy for PWV variations105

so that auxiliary meteorological data are not required to derive PWV from106

ZWD. Our approach is particularly cost effective if applied to the large107

number of existing cGPS networks that were not originally established for108

atmospheric purposes (Blewitt et al. 2018).109
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The SuGAr was initially established in 2002 for tectonic and earthquake110

studies, and thus has been well known and mostly used for studying defor-111

mation related to a series of recent great earthquakes along the Sumatran112

subduction zone (e.g., Feng et al. 2015). The network spans latitudinally113

from 5◦N to 6◦S, straddling the equator, with the majority of the GPS sta-114

tions located on the Sumatran forearc islands and the west coast of Sumatra115

(Fig. 1). Coincidentally, Sumatra and its forearc islands lie along the west-116

ern periphery of the Maritime Continent (Ramage 1968)–the “boiler box”117

of the atmosphere that produces the world’s largest regional rainfall (e.g.,118

Qian 2008; Yamanaka 2016; Yamanaka et al. 2018). Although the uneven119

spatial distribution of the SuGAr might not be optimal for atmospheric120

observations, the longitudinal location, long latitudinal span, and minute-121

scale high temporal resolution collectively make the SuGAr a valuable and122

cost-effective moisture-sensing network for investigating multi-scale atmo-123

sphere processes that impact the western Maritime Continent. Thus far,124

the SuGAr and other GPS stations in Sumatra and its forearc islands have125

been mainly used to study diurnal cycles (Wu et al. 2003, 2008; Fujita et al.126

2011; Torri et al. 2019); to the best of our knowledge, no one has yet used127

these stations to study the intra-seasonal variability. Both the global and128

regional lack of GPS-PWV intra-seasonal studies motivate us to focus on129

the intra-seasonal variability in this paper.130
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The climate over Sumatra exhibits seasonal variations due to the Asian-131

Australian monsoon (e.g., Chang et al. 2005). Monsoonal rainfall over132

southern Sumatra peaks during the Australian summer monsoon season133

(December to March), while northern Sumatra experiences a double-peak134

rainfall seasonality, in northern fall (October to November) and northern135

spring (March to May) (e.g., Hamada et al. 2002; Aldrian and Susanto136

2003). Despite differing annual peaks, both northern and southern Sumatra137

experience a concurrent dry season, when the Asian summer monsoon dom-138

inates during northern summer (June to September) (e.g., Hamada et al.139

2002; Aldrian and Susanto 2003). Here, we focus on the intra-seasonal vari-140

ability of this dry season over Sumatra, as droughts tend to occur in this141

dry season, leading to adverse socio-economic consequences such as water142

shortages, crop reduction, and increased risk of fires and transboundary143

haze. However, since intra-seasonal variability over Sumatra can be mod-144

ulated by inter-annual variability driven predominantly by the El Niño-145

Southern Oscillation (ENSO) (e.g., Hendon 2003) and Indian Ocean Dipole146

(IOD) (Saji et al. 1999), we choose for our case study 2008, when the dry147

season was not strongly influenced by either the ENSO or IOD.148

In the rest of the paper, we first document the details of our methods149

including GPS processing, ZWD estimation, PWV derivation and compar-150

ison, rotated EOF analysis, and linear regression analysis in Section 2. We151
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then present and discuss our results for the 2008 northern summer in Sec-152

tions 3 and 4. In Section 3, we show that the first mode of the intra-seasonal153

ZWD variability is driven by the South Asian Summer Monsoon, confirming154

that active South Asian monsoon spells lead to dry conditions over Suma-155

tra. In Section 4, we show that the second mode is caused by extratropical156

dry-air intrusions associated with eastward-traveling extratropical Rossby157

waves, providing the first in-situ evidence for extratropical dry-air intru-158

sions reaching equatorial latitudes within 5◦ south of the equator over the159

Maritime Continent. In Section 5, we present our additional results for the160

2016 and 2017 northern summers, which support our main conclusions for161

2008.162

2. Methods163

2.1 GPS data and processing for estimating ZWD164

We processed the daily GPS Receiver Independent Exchange Format165

(RINEX) files using the GPS-Inferred Positioning System and Orbit Anal-166

ysis Simulation Software (GIPSY-OASIS) version 6.2 developed at the Jet167

Propulsion Laboratory (JPL) (Zumberge et al. 1997). GIPSY implements168

the precise point positioning (PPP) approach in which carrier phase and169

pseudorange data from a single receiver are used to estimate the parame-170
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ters specific for this receiver, while satellite orbit and clock parameters are171

held fixed at their values determined in a global solution. We used the JPL172

final precise satellite orbit and clock products, which are routinely gener-173

ated by the JPL as part of their International GNSS Service (IGS) global174

network analysis. GIPSY uses undifferenced data so that absolute ZWD175

values can be obtained for individual stations.176

As full details of the GPS processing strategy have been provided in Feng177

et al. (2015), here we outline and highlight only the procedures central to178

the ZWD estimation, which are essentially described by Eq. (1) (Bar-Sever179

et al. 1998)180

STD = Mh(e)ZHD +Mw(e)[ZWD + cot e(Gn cos γ +Ge sin γ)] (1)181

where STD is the slant total delay in the neutral atmosphere, ZHD is the182

zenith hydrostatic delay, e is the elevation angle measured from the local183

horizon to the line of sight, Mh(e) and Mw(e) are hydrostatic and wet184

mapping functions, Gn and Ge are north and east tropospheric horizontal185

gradients, and γ is the azimuth angle measured clockwise from north.186

GIPSY uses a model that does not require any surface meteorological187

data to calculate an a priori ZHD. We held this nominal ZHD fixed dur-188

ing the processing while estimating the time-varying ZWD as a stochastic189

random walk process with a sigma of 5 × 10−8km sec−
1
2 (= 3 mm h−

1
2 )190

using a Kalman filter technique (Tralli and Lichten 1990). To account191
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for the azimuthal variability of the atmosphere, we estimated tropospheric192

horizontal gradients as random-walk parameters with their sigma as 5 ×193

10−9km sec−
1
2 (= 0.3 mm h−

1
2 ) (Bar-Sever et al. 1998). To minimise the194

effects of multipath and atmospheric propagation errors at low elevation an-195

gles, we used the updated Vienna mapping functions in a grid file database196

(VMF1GRID) (Boehm et al. 2006) to relate ZHD, ZWD, and horizontal197

gradients in the zenith direction to slant delays at elevation angles down to198

7◦ (Bar-Sever et al. 1998).199

We estimated the time-varying ZWD every 5 or 10 minutes depending200

on whether the GPS data were collected at a sampling rate of 15 seconds or201

2 minutes. So the resulting ZWD time series have a temporal resolution of202

either 5 or 10 minutes. With focus on intra-seasonal variabilities that have203

a period longer than one day, we calculated daily averages, and removed204

time-mean for all the ZWD time series. We disregarded stations that had205

>20% missing data. For stations that missed a small number of values at206

discrete times, we filled their gaps using linear interpolation.207

2.2 ZWD as a proxy for PWV208

As the utility of ground-based GPS stations for PWV studies is partially209

hampered by the need for auxiliary meteorological data to convert from210

ZWD to PWV, many efforts have been spent on developing optimal methods211
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of incorporating meteorological data to derive more accurate PWV (e.g.,212

Wang et al. 2007). As opposed to these efforts, we use ZWD directly for213

our analysis since our objective is to investigate the variability (not absolute214

value) of PWV. We show in this section that the GIPSY-estimated ZWD215

time series for SuGAr stations on a daily time scale are linearly related to the216

PWV time series converted from ZWD using more sophisticated approaches217

that incorporate auxiliary meteorological data.218

ZWD typically accounts for ∼10% of the zenith total delay (ZTD) in the219

neutral atmosphere, so the accurate estimation of ZWD requires the precise220

determination of the remaining delay–ZHD, which is caused by the induced221

dipole moments of dry gases and water vapor (Davis et al. 1985). ZHD can222

be accurately inferred from surface air pressure (Ps) measured with well-223

calibrated barometers (Hopfield 1971), but pressure gauges collocated with224

GPS stations are rare. In most cases, Ps has to be interpolated from nearby225

meteorological measurements or model calculations with lower, albeit ade-226

quate, accuracy. In practice, most GPS processing packages simply utilize227

empirical models without Ps measurements to calculate an a priori ZHD so228

that ZWD is estimated as a correction to this nominal value.229

For the case of GIPSY, the a priori ZHD was computed using Eq.230

(2) (Tralli et al. 1988)231

ZHD = 2.27Ps = 2.27× 1.013e−0.000116h (2)232

11



where ZHD (in meters) is a linear function of surface atmospheric pressure233

Ps (in bars), and Ps is approximated as an exponential function of station234

height h (in meters). Because 1.013 bars is sea level pressure, h ideally235

should be the height above mean sea level or the geoid; however, in practice236

the height above the GRS80 ellipsoid is adopted for h. The GIPSY ZHD237

equation requires no surface pressure data and assumes the same gravity238

(thus the same linear slope) everywhere, so it is easy to implement and well239

suited for precise positioning, but meanwhile such simplification inevitably240

sacrifices some degree of accuracy. Any error in the a priori ZHD is absorbed241

into ZWD estimations.242

In order to assess the impact of the a priori ZHD value, we calculated243

daily ZHD time series for our study period using the more involved Saas-244

tamoinen model (Saastamoinen 1972) that accounts for the slight variation245

in gravity with station latitude φ (in degrees) and height h (in meters)246

ZHD =
2.2768Ps

1− 0.00266 cos 2φ− 2.8× 10−7h
(3)247

Because no pressure measurements were made at the SuGAr stations, we248

obtained daily averaged Ps for each station using the nearest grid point249

from the National Centers for Environmental Prediction (NCEP) Climate250

Forecast System Reanalysis (CFSR) 6-hourly 0.5◦ × 0.5◦ reanalysis prod-251

ucts (Saha et al. 2010), and the European Centre for Medium-Range252

Weather Forecasts (ECMWF) ERA-Interim 6-hourly 0.5◦ × 0.5◦ reanaly-253
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sis products (Dee et al. 2011). The differences between the GIPSY a priori254

ZHD value and the CFSR or ERA-Interim ZHD time series were then used255

to correct the GIPSY ZWD estimations to obtain the CFSR-corrected or256

ERA-Interim-corrected ZWD time series.257

ZWD can be converted to PWV via a dimensionless conversion factor258

Π (Bevis et al. 1994)259

PWV = Π× ZWD (4)260

where PWV and ZWD are in the same unit of length, and Π is given by261

Askne and Nordius (1987)262

Π =
106

ρlRv( k3
Tm

+ k′2)
(5)263

where ρl (= 1000 kg m−3) is the density of liquid water, Rv (= 461.5 J kg−1 K−1)264

is the specific gas constant for water vapor, k3 (= 3739±12 K2 Pa−1) and k′2265

(= 0.221± 0.022 K Pa−1) are the refractivity constants (Bevis et al. 1994),266

and Tm is the water-vapor-weighted mean temperature of the atmosphere,267

which is defined based on the mean value theorem in Davis et al. (1985) as268

Tm =

∫∞
h

pv
T
dz∫∞

h
pv
T 2dz

(6)269

where h is the station height, pv is the partial pressure of water vapor and270

T (in degrees Kelvin) is the absolute temperature.271

With the values of ρl, Rv, k3 and k′2 given as constants, Tm becomes272

the only changing parameter that affects the value of Π. We calculated273
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daily Tm for each station through direct integration of Eq. (6) using the274

daily averaged humidity and temperature profiles of the nearest grid point275

obtained from the same CFSR and ERA-Interim products that were used276

for obtaining Ps. We made no adjustments to correct the distance or height277

difference between GPS stations and their corresponding grid points. We278

then combined the CFSR-derived or ERA-Interim-derived Tm time series279

with the CFSR-corrected or ERA-Interim-corrected ZWD time series that280

were obtained earlier to compute the corresponding PWV time series.281

As Π values for tropical stations stay almost constant throughout all282

years (Manandhar et al. 2017), we also multiplied the GIPSY ZWD es-283

timations by a constant Π of 0.163 to derive PWV directly without any284

additional corrections. These GIPSY-derived PWV time series show the285

same variations as the CFSR-corrected and ERA-Interim-corrected PWV286

time series, despite their differences in magnitude (Fig. 2). The correlations287

of the GIPSY-estimated ZWD time series with either the CFSR-corrected288

or ERA-Interim-corrected PWV time series are >0.99 for all our stations,289

suggesting that the ZWD we estimated with GIPSY can be directly used290

as a proxy for PWV.291
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2.3 Comparisons of PWV with other datasets292

Besides the ground-based GPS approach, many other techniques have293

been developed to determine PWV, either in situ using balloon-borne ra-294

diosondes or remotely from both ground and space using various types of295

passive or active sensors (e.g., Kämpfer 2013; Wulfmeyer et al. 2015). In296

order to validate our GIPSY-derived PWV time series, we compared them297

with daily PWV from two other datasets that are available. The first dataset298

is the Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3299

Atmosphere Daily 1◦ × 1◦ Global Gridded Product Collection 6.1 for Terra300

and Aqua satellites (King et al. 2003). We averaged the Terra-MODIS301

and Aqua-MODIS PWV thermal infrared retrievals at grid points closest302

to the SuGAr stations to obtain the MODIS-derived PWV for comparison.303

The second dataset is the Remote Sensing Systems (RSS) Version 7 daily304

0.25◦ × 0.25◦ binary products retrieved from a series of satellite passive305

microwave radiometers using a unified, physically based algorithm (Wentz306

1997, 2013). We used the products of three radiometers that were in orbit307

during our study period in 2008, including the Special Sensor Microwave308

Imager (SSM/I) onboard the United States Air Force Defense Meteorolog-309

ical Satellite Program (DMSP) satellite F13, and the Special Sensor Mi-310

crowave Imager Sounder (SSMIS) onboard DMSP satellites F16 and F17.311

We averaged the F13-SSM/I, F16-SSMIS, and F17-SSMIS PWV microwave312
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retrievals at grid points closest to the SuGAr stations to obtain the RSS-313

derived PWV for comparison.314

While thermal infrared retrievals are affected by the presence of clouds (e.g.,315

Susskind et al. 2003), passive microwave retrievals work under almost all316

weather conditions except for heavy precipitation, but their accuracy is high317

only over ice-free oceans, and degrades appreciably over land due to larger318

and more variable surface emissivities (e.g., Mears et al. 2015). In contrast,319

ground-based GPS is a 24-hour all-weather system because GPS satellites320

transmit L-band microwave signals that pass through the atmosphere with-321

out much signal attenuation (Spilker 1996). Therefore, land-based GPS322

networks complement perfectly satellite-borne passive microwave sensors323

that perform well only over the oceans.324

Our GIPSY-derived PWV time series show general agreement in large-325

amplitude variations with both the MODIS-derived and RSS-derived PWV;326

however, they have differences in small fluctuations (Fig. 3). Because clouds327

are the norm in the tropics, the MODIS thermal infrared technique missed328

more days than the two microwave-based techniques, except for an inland329

SuGAr station JMBI (Fig. 1) where the RSS-derived PWV had more data330

gaps than the MODIS-derived PWV (Fig. 3). The RSS grid points used for331

JMBI were located east of Sumatra in a sea area partially surrounded by332

islands. The land contamination degraded the accuracy of the RSS retrieval333
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algorithm (Mears et al. 2015), likely causing the many missing data of the334

RSS-derived PWV for JMBI. The MODIS thermal infrared retrievals seem335

to overestimate high values compared to the GIPSY-derived PWV (Fig.336

S1), while the RSS-derived retrievals show no clear bias relative to the337

GIPSY-derived PWV (Fig. S2). For all the stations, the GIPSY-derived338

PWV are more consistent with the RSS-derived PWV than the MODIS-339

derived PWV (Figs 3, S1 and S2), suggesting that the two microwave-based340

techniques are relatively consistent in coastal areas. The overall agreement341

between GPS-PWV and microwave PWV retrievals has also been shown for342

small islands in the open ocean (Mears et al. 2015). Note that the absolute343

values of our GIPSY-derived PWV may contain biases as we did not apply344

any height and distance adjustments, and MODIS-derived and RSS-derived345

PWV may also have their own biases (e.g., Prasad and Singh 2009; Mears346

et al. 2015). A careful comparison of PWV datasets over Sumatra is a347

subject of a future paper.348

2.4 Spatiotemporal analysis using EOF and rotated EOF349

We used EOF analysis, also known as Principal Component Analysis,350

to decompose the ZWD space-time field into a set of mutually orthogonal351

spatial patterns along with their associated mutually uncorrelated temporal352

variations. While the spatial patterns and temporal variations have many353
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alternative names in various literatures, we refer to them as EOFs and354

Expansion Coefficients (ECs), respectively. The elements of EOFs are called355

loadings that represent the covariances between each GPS station and each356

EOF (Richman 1986), whereas the elements of ECs indicate the strength357

of the corresponding EOF on a given day. Because of the orthogonality358

condition of EOFs, each pair of EOF and EC is regarded as a mode of359

variability that explains a fraction of the total variance in the ZWD field.360

We sorted the modes in descending order of their contribution so that the361

lower the mode is the more variance it explains. We find that the first two362

modes explain 66% and 19% of the total variance, respectively, totalling363

85%, in contrast with 6% explained by the third mode, so we focus on364

interpreting only the first two modes (Fig. 4). We further rotated the EOFs365

using the Varimax criterion (Kaiser 1958), which finds a new orthonormal366

basis that maximizes the spread of the variances along the axes of the basis367

to achieve a simple structure (Richman 1986). The resulting rotated EOFs368

(REOFs) remain orthogonal, but the corresponding rotated ECs (RECs)369

have non-zero correlation. Note that flipping the signs of both EOF and370

EC for a mode results in an alternative expression of the mode that also371

satisfies the EOF solution. To be consistent with common sense, we used the372

expression in which positive/negative (+/−) loadings represent wetter/drier373

conditions.374

18



The EOF1 is of one sign (−) across the whole network, while the EOF2375

depicts a network-wide northwest-southeast (+−) dipole pattern (Fig. 5a,b).376

In comparison to the network-wide patterns obtained from the EOF analy-377

sis, the rotated EOF analysis yields more localized patterns with the REOF1378

and REOF2 influencing primarily the northern and southern stations, re-379

spectively (Fig. 5). The REC1 (Fig. 6a) and REC2 (Fig. 6b) also seem380

to separately capture the temporal evolution of ZWD at the northern and381

southern stations (Fig. S3). Localized patterns are often more physically382

meaningful than network-wide patterns (e.g., Hannachi et al. 2007); thus,383

the rotated EOF results are used in the rest of the paper for the physical384

interpretation of the ZWD variability, which in turn justifies the necessity385

of rotation for our case.386

2.5 Linear regression analysis387

The rotated EOF analysis is a purely mathematical method without a388

physical basis; therefore it does not provide direct insight into the physical389

processes that drive the ZWD variability. In order to gain more insight, we390

applied linear regression analysis both with and without lags to investigate391

the relationships of our obtained RECs with various atmospheric quantities392

in the NCEP CFSR 6-hourly 0.5◦ × 0.5◦ products (Saha et al. 2010).393

We first calculated daily averages for each quantity of interest at each394
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grid point within a domain of interest, which is either a much wider re-395

gion than the SuGAr network at a certain depth or a vertical profile. We396

then constructed the linear regression between the time series of a physical397

quantity Y (t) and the REC1 or REC2 at any grid point i in the domain as398

follows:399

Yi(t) = ai + bi REC(t) (7)400

where ai is the regression constant and bi is the regression coefficient. We401

performed this linear regression for all grid points within the domain; how-402

ever, we only retained the results for those with sufficiently low p-values403

(<0.05) as only low p-values indicate statistically significant correlation of404

Y (t) with REC. If statistically significant linear correlations are found be-405

tween a REC and a physical quantity at many locations within the domain,406

we plotted values of bi as regression maps or profiles to show the pattern407

of anomalies in Y associated with a standard REOF event that has a unit408

strength (REC=1).409

3. The first mode REOF1: Monsoon variations410

The obvious candidate responsible for the first mode is the monsoon.411

The Asian-Australian monsoon system has been traditionally divided into412

four interlinked subsystems including the East Asian monsoon, the South413

Asian monsoon, the western North Pacific monsoon, and the Australian414
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monsoon (Wang and LinHo 2002; Yim et al. 2014). The last three monsoon415

subsystems intersect at Sumatra; the ZWD variability over Sumatra is thus416

more likely influenced by those three subsystems.417

To quantify the large-scale variability of the South Asian monsoon,418

the western North Pacific monsoon, and the Australian monsoon, we con-419

structed monsoon circulation indices that measure low-level monsoon trough420

vorticity in a unified approach (Yim et al. 2014). This approach uses the dif-421

ference of 850-hPa zonal winds (U850) averaged over a domain equatorward422

and another domain polarward of the monsoon trough to express a north-423

south gradient of low-level zonal winds. We adopted U850 (5◦N−15◦N,424

40◦E−80◦E) minus U850 (20◦N−30◦N, 70◦E−90◦E) as the South Asian425

monsoon index (Wang et al. 2001), U850 (5◦N−15◦N, 100◦E−130◦E) mi-426

nus U850 (20◦N−35◦N, 110◦E−140◦E) as the western North Pacific mon-427

soon index (Yim et al. 2014), and U850 (0◦S−15◦S, 90◦E−130◦E) minus428

U850 (20◦S−30◦S, 100◦E−140◦E) as the Australian monsoon index (Yim429

et al. 2014). We obtained the zonal winds from the NCEP CFSR 6-hourly430

0.5◦ × 0.5◦ products to compute the three regional monsoon indices.431

To determine which subsystem best explains the first mode, we smoothed432

the REC1 and the three monsoon indices with a 5-day running mean,433

and calculated Pearson product-moment correlation coefficients between434

the REC1 and the indices for lags ranging from -30 to 30 days. We ob-435
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tain the highest correlation coefficient of 0.75 when the South Asia mon-436

soon index leads the REC1 by three days (red curve in Fig. 6e). Slightly437

lower peak correlations of 0.53 and -0.64 are achieved when the REC1 leads438

the western North Pacific monsoon index by 3 and 19 days, respectively439

(blue curve in Fig. 6e). The lowest peak correlations are found between the440

Australian monsoon index and the REC1, with their lead-lag correlations441

without strong peaks (grey curve in Fig. 6e), showing an expected weaker442

association between the Australian monsoon, inactive during northern sum-443

mer, and the REC1. In contrast, high peak correlations of the REC1 with444

the South Asia monsoon index and western North Pacific monsoon index445

suggest a strong association between the first mode and the Asian summer446

monsoon (Fig. 6f), though not necessarily implying immediate cause and447

effect relations. We thus conducted linear regression analysis for the REC1448

derived from our ZWD data with the PWV, specific humidity, and winds449

taken from the CFSR to further investigate the relationships between the450

REC1 and the South Asian Summer Monsoon and western North Pacific451

Summer Monsoon.452

The resulting PWV regression map shows that Sumatra and its forearc453

islands experience drier-than-usual conditions during a standard REOF1454

event (Fig. 7a), consistent with the network-wide negative loadings of the455

REOF1 (Fig. 5c). Centered over Sumatra, the dry anomaly extends west-456
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ward to 80◦E in the equatorial Indian Ocean and eastward to western Borneo457

(Fig. 7a). Vertically, as shown by the specific humidity regression profiles458

that cut through the center of the dry anomaly, it is mostly concentrated459

within the middle troposphere between 750 hPa and 450 hPa, not penetrat-460

ing down to the atmospheric boundary layer (Fig. 7b,c). This equatorial461

dry anomaly is coupled with a wet anomaly located in the northern part of462

the Arabian Sea, Indian subcontinent, and Bay of Bengal (Fig. 7a). The463

coupled wet-dry anomalies closely resemble previously-identified key fea-464

tures of composite outgoing longwave radiation (OLR) anomalies obtained465

for active spells of the South Asian Summer Monsoon (Rajeevan et al.466

2010; Pai et al. 2016)–OLR is often taken as a proxy for deep convection467

and the associated rainfall because deep convective clouds have cold tops468

that emit low OLR. Specifically, the wet anomaly coincides approximately469

with negative OLR (positive rainfall) anomalies along the South Asian Sum-470

mer Monsoon trough, whereas the dry anomaly overlaps a large portion of471

positive OLR (negative rainfall) anomalies that extend along the equator472

roughly from 60◦E in the Indian Ocean to 140◦E in the western Pacific (Ra-473

jeevan et al. 2010; Pai et al. 2016). The close resemblance of the coupled474

wet-dry anomalies to the composite OLR anomalies of active spells leads475

us to suggest that these anomalies are a feature associated with an active476

South Asian Summer Monsoon. When the South Asian Summer Monsoon477
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is strong, abundant moisture converges into its action center, producing478

intense convection, while at the same time, dry conditions are brought to479

Sumatra, suppressing convection. A reverse pattern in which the South480

Asian Summer Monsoon convective region and Sumatra experience dry and481

wet condition, respectively, dominates monsoon breaks, as suggested by the482

OLR break composites (Rajeevan et al. 2010; Pai et al. 2016). Thus, during483

northern summer, the moisture conditions over Sumatra are always opposite484

to those over the South Asian Summer Monsoon convection center. This485

locked inverse relationship explains why the lead-lag correlations between486

the REC1 and South Asia monsoon index have only one single strong peak487

(red curve in Fig. 6e). Because the lead-lag correlations between the REC1488

and western North Pacific monsoon index show two strong peaks instead489

of one (blue curve in Fig. 6e), we speculate that the western North Pacific490

Summer Monsoon convective region and Sumatra do not always behave op-491

positely; unfortunately, no similar composite studies have been conducted492

for active spells and breaks of the western North Pacific Summer Monsoon493

to corroborate our speculation.494

Geographically between the dry and wet anomalies, a narrow belt of495

high-speed wind anomalies at 850 hPa blows eastward from the Arabian496

Sea via peninsular India to the Bay of Bengal (Fig. 8e). This belt of fast-497

moving westerlies is part of a strong cross-equatorial low-level jet stream498

24



(LLJ) (Findlater 1969a,b) that attains its maximum speed of 10-25 m s−1499

at 850-925 hPa (Wilson et al. 2019). Developing only during the months of500

the South Asian Summer Monsoon (Joseph et al. 2006), the LLJ picks up a501

large amount of moisture over the Indian Ocean from both hemispheres to502

feed the monsoon rainfall over South Asia (Saha 1970; Cadet and Reverdin503

1981). The maximum winds of the LLJ lie along different latitudes at504

different phases of the South Asian Summer Monsoon: during the monsoon505

onset, they flow east between the equator and peninsular India; during506

active monsoon periods, they pass through peninsular India near 15◦N; and507

during monsoon breaks, they split into two branches, with one blowing508

south of peninsular India near 5◦N and the other through north India near509

25◦N (Joseph and Sijikumar 2004). The fact that the belt of high-speed510

wind anomalies enters peninsular India between 10◦N and 20◦N (Fig. 8e)511

strongly suggests the wind anomalies to be another manifestation of an512

active South Asian Summer Monsoon.513

The coupled wet-dry anomalies and in-between belt of high-speed wind514

anomalies, together with our derivation that the highest correlation is ob-515

tained when lagging the REC1 behind the South Asia monsoon index by516

three days, lead us to conclude that the first mode is driven by the South517

Asian Summer Monsoon with a delay response of a few days. To examine518

how the wet, dry, and wind anomalies evolve during the life cycle of one519
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standard REOF1 event, we additionally lagged the REC1 by -10 to 10 days520

for lead-lag linear regression analysis with the CFSR PWV and winds at 850521

hPa (Fig. 8) and 600 hPa (Fig. 9). Note that we use the wet anomaly as an522

indicator of the convective activity of the South Asian Summer Monsoon.523

On day -8, the wet anomaly emerges before other anomalies appear524

(Fig. 8b), suggesting that the convective heating of the South Asian Sum-525

mer Monsoon is the main engine that drives other processes. As the wet526

anomaly grows bigger and stronger, the LLJ intensifies, with its core shifting527

northward from south of peninsular India to over peninsular India within528

the next 2-3 days (Fig. 8c). A similar lag of 2-3 days has been found be-529

tween the convection over the Bay of Bengal and 850-hPa zonal winds over530

both the Arabian Sea (Srinivasan and Nanjundiah 2002) and peninsular531

India (Joseph and Sijikumar 2004), with more intense convection leading532

to stronger westerlies. The intensification of the LLJ can be understood533

as a transient response to the sudden switch-on of an off-equatorial heat534

source (Heckley and Gill 1984), which is, in this case, the increased convec-535

tive activity over the wet anomaly. The intensified LLJ in turn enhances536

the advection of moisture into the Indian subcontinent, and increases the537

cyclonic vorticity and consequent low-level moisture convergence north of538

the LLJ, both giving rise to further increased convection (Srinivasan and539

Nanjundiah 2002; Joseph and Sijikumar 2004). Therefore, the convection540
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and LLJ grow together in a positive feedback that takes the South Asian541

Summer Monsoon to an active spell (Joseph and Sijikumar 2004). Further542

east, monsoon westerlies, although weaker than the LLJ, remain dominant543

in the lower troposphere over the Indochina peninsular and South China544

Sea during northern summer (Okamoto et al. 2003), and could extend545

over to the western Pacific as far east as 150◦E (Ueda et al. 1995). In re-546

sponse to the enhancement of the South Asian Summer Monsoon convection547

and LLJ, the westerlies in the east also strengthen, carrying an increas-548

ing amount of moisture over the dry anomaly eastward into the western549

North Pacific Summer Monsoon region (Figs 8c-e, 9c-e). These enhanced550

westerlies, particularly those near 600 hPa (Fig. 9c-e), are likely responsi-551

ble for the development of the dry anomaly that centers around 600 hPa552

(Fig. 7b,c). After both the wet and dry anomalies reach their maxima, a553

small elongated wet anomaly emerges in the western North Pacific Summer554

Monsoon region, extending from the South China Sea to the Philippine555

Sea on both sides of the Philippines (Fig. 8f). The weakening of the South556

Asian Summer Monsoon is accompanied by the strengthening of the western557

North Pacific Summer Monsoon: the main wet anomaly gradually retreats558

to the foothills of the Himalayas, and the LLJ progressively relaxes and559

curves clockwise, both consistent with rainfall and circulation patterns dur-560

ing monsoon breaks (Joseph and Sijikumar 2004; Pai et al. 2016); the small561
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wet anomaly and associated westerlies to the south develop in a positive562

feedback loop similar to the South Asian Summer Monsoon, reaching their563

peak on day 5 (Fig. 8g). By day 10, almost all the anomalies have faded564

away (Fig. 8i).565

The development of the equatorial dry anomaly cannot be explained566

by air-sea interactions associated with sea surface temperature fluctua-567

tions (Lindzen and Nigam 1987) as the dry anomaly does not extend to568

the sea surface (Fig. 7b,c). Based on the anomaly evolution revealed in the569

lead-lag regression analysis, we suggest that the dry anomaly over Suma-570

tra and the eastern Indian Ocean acts as a moisture reservoir that can be571

pumped by the South Asian Summer Monsoon through the monsoon west-572

erlies over the northern Indian Ocean and northern Maritime Continent573

to feed fresh moisture into the western North Pacific Summer Monsoon574

(Fig. 9c-g). The westerly moisture flux has been recognized as one of the575

major moisture sources for the rainfall in the western North Pacific Summer576

Monsoon region, in addition to the easterly moisture flux originating from577

the eastern North Pacific and the cross-equatorial southerly flux from the578

southern Indian Ocean (e.g., Murakami et al. 1999; Ninomiya 1999; Hattori579

et al. 2005). Although the primary source could be either the westerly580

or easterly moisture flux depending on the stage of the western North Pa-581

cific Summer Monsoon (Murakami et al. 1999; Ninomiya 1999; Hattori582
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et al. 2005), we suggest that when the South Asian Summer Monsoon is583

strong enough to sustain the eastward propagation of the convection into584

the western North Pacific Summer Monsoon, the majority of the moisture585

feeding into the western North Pacific Summer Monsoon comes from the586

eastern Indian Ocean west of Sumatra. The South Asian Summer Monsoon587

and western North Pacific Summer Monsoon have been shown to be poorly588

correlated on the inter-annual scale; however, the weak correlation does not589

imply that the two monsoon subsystems are completely independent (Wang590

and Fan 1999; Wang et al. 2001). Our results illustrate how the two sub-591

systems could be connected on the intra-seasonal scale through monsoon592

circulation and moisture transport during a strong South Asian Summer593

Monsoon spell.594

4. The second mode REOF2: Extratropical dry-air595

intrusions596

The mechanism for the second mode is less clear. The influence of the597

second mode is confined mainly to stations south of 2◦S, with large negative598

loadings at these southern stations and small positive or negligible loadings599

at other stations (Fig. 5d). So the second mode causes a dry anomaly600

over the southern part of the SuGAr. Linear regression analysis of the601
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REC2 with the CFSR PWV reveals that this dry anomaly covers not only602

southern Sumatra but also Java, part of Borneo, and their surrounding603

seas, centered around 100.5◦E, 6◦S (Fig. 7d). Regression profiles of the604

CFSR specific humidity that cut through the center of the dry anomaly605

indicate that the dry anomaly extends vertically from 400 hPa down to at606

least 900 hPa, and may well penetrate into the atmospheric boundary layer607

(Fig. 7e,f). Spectrum analysis of the REC2 exhibits a pronounced spectral608

peak at 15.25 days (Fig. 6d), in contrast to the spectrum of the REC1 that609

has a comparable power spanning a wide range of frequencies without one610

dominant frequency (Fig. 6c).611

To examine the origin of the REOF2 dry anomaly, we employed three-612

dimensional (3D) trajectory analysis for two strongest REOF2 events on 21613

June and 23 July 2008, identified by the two highest peaks of the REC2614

(Fig. 6b). We used the READY (Real-time Environmental Applications615

and Display sYstem) (Rolph et al. 2017) web version of the HYbrid Single-616

Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al.617

2015) provided by the National Oceanic and Atmospheric Administration618

(NOAA) Air Resources Laboratory (ARL) for the back trajectory analysis.619

We selected a 5×5 array of endpoints (black stars in Fig. 10a,d) at three620

different pressure levels (620 hPa, 600 hPa, and 580 hPa) near the center621

of the dry anomaly (red star in Fig. 7d,e,f) to represent the central air622
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parcels of both events. For both events starting from their respective date,623

we calculated the trajectories of all 75 endpoints backward for five days to624

identify their source regions and understand the relative role of advection625

and subsidence over the life cycle of these events.626

For both events, the dry-air parcels were traced back to the Southern627

Hemisphere between 20◦S and 30◦S, where the parcels first moved east-628

ward with midlatitude westerlies, and later turned anticlockwise, advecting629

equatorward (Fig. 10a,d). When moving from midlatitudes to the tropics,630

the air parcels meanwhile subsided from the upper to middle troposphere631

(Fig. 10b,e). During the whole process, the potential temperature of the632

air parcels stayed relatively constant within 320−330 K, indicating a quasi-633

adiabatic process (Fig. 10c,f). For the air parcels to conserve their potential634

temperature, they naturally descended from the drier upper troposphere in635

midlatitudes to the wetter mid-troposphere in the tropics. The trajectory636

results suggest that the REOF2 dry anomaly over southern Sumatra is a637

result of dry-air intrusions from the subtropics and extratropics into the638

tropics along the downward sloping isentropes.639

To investigate what dynamical mechanism causes the observed dry-air640

intrusions, we applied various lags to the REC2, and regressed it with the641

CFSR potential vorticity (PV) and winds on the 330 K isentropic surface.642

The results show the characteristic pattern of a Rossby wave train, with al-643
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ternating areas of positive and negative PV anomalies, and strong rotational644

winds (Wirth et al. 2018) (Figs 11 and 12). The Rossby wave train is a645

continuous around-globe zonal wavenumber-6 feature that moves eastward646

at a phase speed of ∼4◦ longitude/day relative to the ground, with its lati-647

tudinal location and propagation path guided by the Southern Hemisphere648

westerly jet in the upper troposphere (Hoskins and Ambrizzi 1993) (Fig. 12).649

The vertical structure of this extratropical Rossby wave train is equivalent650

barotropic, as shown by in-phase anomalies throughout the troposphere651

(Fig. 13). The mechanism we find here for dry-air intrusions differs from652

the mechanism that Fukutomi and Yasunari (2005) proposed to explain the653

low-level submonthly southerly surges and related dry-air intrusions over654

the eastern Indian Ocean, i.e., baroclinic development of midlatitude Rossby655

waves in the subtropical jet entrance region west of Australia. Moreover, our656

mechanism and the mechanism proposed by Fukutomi and Yasunari (2005)657

are also different from Rossby wave breaking and subtropical anticyclones658

that have been used to explain dry-air intrusions over the tropical west-659

ern Pacific (Yoneyama and Parsons 1999) and western Africa (Roca et al.660

2005), respectively. In addition, dry-air intrusions have also been observed661

over Sumatra near the equator following eastward-propagating synoptic-662

scale cloud systems; however, these cloud systems were associated with663

equatorial Kelvin waves rather than extratropical Rossby waves (Murata664
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et al. 2006).665

On day -15, a strong southeasterly airflow on the eastern flank of the666

positive PV anomaly west of Australia blows directly to southern Sumatra667

and Java, brings extratropical dry air, and thus causes a dry anomaly in668

these tropical regions (Fig. 11a). As this positive PV anomaly propagates669

eastward, the associated southeasterlies introduce another dry anomaly in670

northern Australia and the southeastern part of the Maritime Continent;671

meanwhile, the dry anomaly over southern Sumatra and Java moves west-672

ward and disappears gradually (Fig. 11b-e). When the next positive PV673

anomaly approaches the west coast of Australia, southeasterlies blow to-674

ward southern Sumatra and Java again (Fig. 11f,g). On day 0, the positive675

and negative PV anomalies return to their locations on day -15, although the676

positive anomaly west of Australia was weaker due to weakened westerlies677

(Figs 11g and 12c). The 15-day return period is consistent with the spectral678

peak of 15.25 days that we find in the REC2. Similar quasi-biweekly vari-679

ability has been observed in strong 850-hPa meridional surges over an ocean680

area (purple box in Fig. 12) southwest of Sumatra (Fukutomi and Yasunari681

2005). The strong low-level meridional surges are likely the manifestation of682

midlatitude Rossby waves in the tropical lower troposphere. Note that the683

nature of the quasi-biweekly variability we observe here is distinct from the684

commonly-referred quasi-biweekly mode driven by westward-propagating685
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equatorial Rossby waves (e.g., Chatterjee and Goswami 2004).686

We conclude that the second mode of the ZWD variability over Sumatra687

during the northern summer 2008 is controlled by the eastward-propagating688

quasi-biweekly fluctuation of barotropic Rossby waves originating along the689

Southern Hemisphere midlatitudes. When the southerlies or southeaster-690

lies associated with positive PV anomalies are strengthened and directed691

to Sumatra, the SuGAr records an intense dry-air intrusion event. Our692

regional study also suggests that similar dry-air intrusions (shown as cop-693

perish contours in Fig. 12) can be expected to occur in other Southern694

Hemisphere tropical regions such as southern Maritime Continent, Aus-695

tralia, South America, and South Africa as long as midlatitude Rossby696

waves provide favourable meridional airflows. Conversely, tropical wet-air697

intrusions (shown as light bluish contours in Fig. 12) can be brought by the698

same midlatitude Rossby waves to extratropical regions.699

5. How unique is the northern summer 2008?700

To test whether the South Asian Summer Monsoon and extratropi-701

cal dry-air intrusions can explain the summer intra-seasonal variability of702

SuGAr ZWD in other years, we applied the same procedures to years rang-703

ing from 2005 to 2018. Most of the years show characteristics different from704

2008, because they were strongly affected by inter-annual variabilities such705
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as ENSO and IOD (not shown or discussed in this paper). However, we706

find that the summertime ZWD variations over Sumatra in 2016 and 2017707

were also controlled by the South Asian Summer Monsoon, and addition-708

ally influenced by extratropical dry-air intrusions due to midlatitude Rossby709

waves, despite the difference in station availability (Figs 5, S4 and S5).710

The 2008, 2016, and 2017 northern summers share a similar horizon-711

tal and vertical extent of the REOF1 dry anomaly (Figs 7a,b,c, 14a,b,c,712

and 15a,b,c). The spatial extent of the two REOF1 wet anomalies over the713

monsoon regions, however, are different: for the primary wet anomaly, the714

2016 one covers more oceanic region in the Arabian Sea, while the 2017 one715

shrinks to the northern Arabian Sea and northwestern India (Figs 7a, 14a716

and 15a); for the secondary wet anomaly, the 2016 one is concentrated over717

the East Asian Summer Monsoon region rather than the western North Pa-718

cific Summer Monsoon region, while the 2017 one is mostly over the South719

China Sea (Figs 9, 16 and 17). In addition, the lag days for peak corre-720

lations between the REC1 and the South Asia monsoon index or western721

North Pacific monsoon index differ slightly; however, the sequence that the722

South Asia monsoon index leads the REC1 and the REC1 leads the western723

North Pacific monsoon index does not change (Figs 6e, 18e and 19e). The724

spatial and peak lag differences do not impact much the evolution of the725

wet, dry, and wind anomalies during a REOF1 event in which the increased726
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activity of the South Asian Summer Monsoon likely drives more moisture727

over Sumatra and the eastern Indian Ocean into the western North Pacific728

Summer Monsoon system or even further north into the East Asian Summer729

Monsoon system (Figs 9, 16 and 17). The tropical western North Pacific730

Summer Monsoon and the subtropical and extratropical East Asian Sum-731

mer Monsoon are closely linked and behave relatively coherently, with the732

negative western North Pacific monsoon index representing well the main733

variability of the East Asian Summer Monsoon (Wang et al. 2008).734

The REOF2 dry anomaly is also spatially similar for the three summers735

(Figs 7d,e,f, 14d,e,f and 15d,e,f). Back trajectory results for four strong736

REOF2 events, two each in 2016 and 2017, show a consistent origin of the737

dry air in the subtropical and extratropical upper troposphere (Figs 10, 20738

and 21). Interestingly, the REOF2 event on 26 July 2016 shows that the739

dry air could also come from northern Australia where extratropical dry-740

air intrusions occur likely even more frequently than those we observe over741

southern Sumatra (Fig. 20a). Lead-lag regression analysis shows that the742

REOF2 dry events in 2016 and 2017 were also caused by Rossby waves743

propagating in the southern midlatitudes; however, how the REOF2 dry744

anomaly and Rossby waves evolve during a REOF2 event are considerably745

different for the three summers (Figs 11-13 and S6-S11). While the quasi-746

biweekly oscillation of the REC2 was extremely strong in 2008, it was non-747
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existent in 2016 and 2017, and replaced by a broader and weaker spectral748

peak near the period of 10-15 days (Figs 6d, 18d and 19d). We suspect749

that the Southern Hemisphere Rossby waves were so strong in 2008 that750

brought frequent dry-air intrusion events to southern Sumatra, while they751

were weaker in both 2016 and 2017 so that there were not enough events to752

establish the periodicity in our SuGAr data.753

6. Conclusions754

In this study, we use ZWD time series estimated from a regular geodetic-755

quality processing routine as a direct proxy for PWV to track the summer756

intra-seasonal variability of PWV over Sumatra, and to probe the under-757

lying atmospheric processes that control the variability. We apply rotated758

EOF analysis to decompose the summertime spatiotemporal field of ZWD,759

and investigate the mechanisms behind the two most important modes. We760

find that the SuGAr ZWD observations during the northern summers of761

2008, 2016, and 2017 share similar features, with the variability primarily762

controlled by variations of the South Asian Summer Monsoon, and addition-763

ally influenced by dry-air intrusions caused by Rossby waves propagating in764

the Southern Hemisphere midlatitudes.765

Both active South Asian Summer Monsoon spells and extratropical dry-766

air intrusions impose intra-seasonal synoptic-scale dry anomalies over Suma-767
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tra, therefore contributing to the dryness that Sumatra experiences during768

its dry season in northern summer. If these events are intense and either769

long-lived or frequent, they can cause droughts to develop and potentially770

persist in Sumatra. In Sumatra and its vicinity, droughts, particularly the771

severe ones, are commonly associated with modes of inter-annual variability,772

including the warm phase of the ENSO (El Niño), when the convection cen-773

ter migrates from the Maritime Continent eastward into the Pacific, and the774

positive phase of the IOD, when the convection center shifts westward from775

the eastern to western Indian Ocean (e.g., Hamada et al. 2008, 2012; Su-776

pari et al. 2018). However, our results suggest that droughts in Sumatra777

could also result from intra-seasonal variability induced by the active South778

Asian Summer Monsoon and extratropical dry-air intrusions, though more779

research is required to confirm the causal relationship.780

Extratropical dry-air intrusions have been most extensively studied in781

the equatorial western Pacific (e.g., Numaguti et al. 1995; Yoneyama and782

Parsons 1999; Yoneyama 2003; Cau et al. 2005; Randel et al. 2016; Rieckh783

et al. 2017). However, extratropical dry-air intrusions in the eastern Indian784

Ocean and the Maritime Continent have received relatively little attention785

to date. Using five-year relative humidity (RH) observations from the At-786

mospheric Infrared Sounder (AIRS) onboard the Aqua satellite, Casey et787

al. (2009) provided the global climatology on the occurrence, frequency,788
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and source of dry layers (RH<20%) between 600 to 400 hPa over warm789

tropical oceans. They found high occurrence (20-40%) of dry layers over790

the eastern Indian Ocean southwest of Sumatra during JJA and SON. This791

high-occurrence region coincides with the location of the dry anomaly of our792

second mode (Fig. 7d). Casey et al. (2009) also conducted back trajectory793

models and traced the source of midlevel dry layers over the eastern Indian794

Ocean back to the subtropics, but they did not provide a mechanism. Using795

reanalysis and OLR data, Fukutomi and Yasunari (2005) associated extra-796

tropical dry-air intrusions with low-level submonthly southerly surges over797

the eastern Indian Ocean, and suggested baroclinic development of midlati-798

tude Rossby waves as a mechanism. In contrast, our study with the SuGAr799

data suggests barotropic Rossby waves traveling in the Southern Hemisphere800

midlatitudes to be a possible mechanism for transporting extratropical dry801

air to the tropics. As the first ground-based GPS data used for studying802

dry-air intrusions, the local SuGAr data provide new in-situ evidence that803

extratropical dry-air intrusions reach the deep tropics within 5◦ south of the804

equator over the Maritime Continent. More modelling, analysis and obser-805

vation studies are required to reveal the extent, frequency and mechanism806

of dry-air intrusions from the Southern Hemisphere into Southeast Asia,807

and their impact on tropical convections.808
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Supplement810

Supplement 1 contains additional figures to support the main text.811
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Fig. 1. Map of the SuGAr network. The SuGAr was first established in
2002 with only six stations installed at and south of the equator. The
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and 2009) until 2014. More information about the SuGAr and its
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Fig. 2. A comparison of PWV derived from three different approaches that
are all based on the GIPSY ZWD estimations for the 2008 case study.
The simplest approach multiplies the GIPSY ZWD estimations directly
by a constant Π of 0.163. The results of this linear approach are labeled
as “GIPSY-derived PWV”. The two other approaches are more sophis-
ticated with a correction to ZHD using the Saastamoinen model and
surface atmospheric pressure from reanalysis data, and calculation of
the water-vapor-weighted mean temperature of the atmosphere (Tm)
using reanalysis data. The results of the reanalysis approaches are la-
beled as “CFSR-corrected PWV” or “ERA-Interim-corrected PWV”
based on whether the NCEP CFSR or ECMWF ERA-Interim reanaly-
sis products are used. The PWV derived from these three approaches
may all have some biases because no collocated surface pressure mea-
surements are available.
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Fig. 3. A comparison of the GIPSY-derived PWV with two other datasets
for the 2008 case study. The GIPSY-derived PWV time series are the
same as those shown in Fig. 2. The MODIS-derived PWV time series
are the daily averages of daily PWV from Terra-MODIS and Aqua-
MODIS. The RSS-derived PWV time series are the daily averages of
daily PWV from F13-SSM/I, F16-SSMIS, and F17-SSMIS. Note that
all the three types of PWV may be subject to biases.

68



0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8
EOF Mode

V
a
ri
a
n
c
e
 e

x
p
la

in
e
d
 (

%
)

Fig. 4. Fractional variance explained by the first eight EOF modes of the
2008 case study. The first, second, third, and firth modes explain 66%,
19%, 6%, and 2% of the total variance, respectively.
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Fig. 6. Analyses for the REC1 and REC2 of the northern summer 2008.
(a) The normalized but unsmoothed REC1 time series. (b) The nor-
malized but unsmoothed REC2 time series. Two red stars indicate the
strongest dry events on 21 June 2008 and 23 July 2008, respectively.
(c) and (d) Power spectra of the smoothed REC1 and REC2. The
REC1 and REC2 were first smoothed with a 5-day running mean. The
power spectra were then calculated using the fast Fourier transform
algorithm, and plotted in an area-conserving format in which the area
under the curve in any frequency band equals the variance over this
frequency band (Zangvil 1977). The power spectrum of the REC1 has
strong power across a wide range of frequencies, while the power spec-
trum of the REC2 shows a pronounced peak at 15.25 days. Dashed
curves represent the red noise spectra calculated from the lag-1 auto-
correlation of either the REC1 or the REC2 (Gilman et al. 1963). (e)
Lead-lag correlation coefficients between the REC1 and three monsoon
circulation indices, including the South Asia monsoon index, western
North Pacific monsoon index, and Australian monsoon index. The cor-
relation coefficients were calculated after both the REC1 and monsoon
indices were smoothed with a 5-day running mean. (f) The REC1 time
series, South Asia monsoon index lagged by three days, and western
North Pacific monsoon index lead by three days. All three have been
normalized by their corresponding standard deviation, and smoothed
with a 5-day running mean.
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Fig. 7. Linear regression results for both the REOF1 and REOF2 of the
northern summer 2008. Anomalies are the regression coefficients ob-
tained in the linear regression analysis between the REC and the CFSR
PWV or specific humidity. Dry anomalies are in red, while wet anoma-
lies are in blue. Black stars show the approximate locations of the cen-
ter of the main dry anomalies. Purple dashed lines represent the loca-
tions of specific humidity profiles. Only grid points with p-values <0.05
are plotted. (a) PWV anomalies associated with a standard REOF1
event that has a unit strength. (b) Specific humidity anomalies along
94◦E associated with a standard REOF1 event. (c) Specific humidity
anomalies along 0.5◦S associated with a standard REOF1 event. (d)
PWV anomalies associated with a standard REOF2 event. (e) Specific
humidity anomalies along 100.5◦E associated with a standard REOF2
event. (f) Specific humidity anomalies along 6◦S associated with a
standard REOF2 event.
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Fig. 8. Lead-lag linear regression maps for the REOF1 of the northern
summer 2008 based on the CFSR reanalysis data. These maps show
PWV anomalies and 850-hPa wind when the REC1 is lagged by dif-
ferent numbers of days, indicating the evolution of wet, dry, and wind
anomalies during the life cycle of a standard REOF1 event. Only grid
points with p-values <0.05 are plotted for PWV anomalies, but all grid
points are plotted for wind anomalies in order to show the full picture
of circulation pattern.
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Fig. 9. The same as Fig. 8, except for the winds at 600 hPa.
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Fig. 10. Back trajectory results show that dry-air intrusions originate from
the subtropics in the Southern Hemisphere. (a), (b) and (c) The
REOF2 dry event on 21 June 2008. (d), (e) and (f) The REOF2 dry
event on 23 July 2008.
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Fig. 11. Lead-lag linear regression regional maps for the REOF2 of the
northern summer 2008 based on the CFSR reanalysis data. These maps
show potential vorticity anomalies and wind anomalies on the 330 K
isentropic surface, and PWV anomalies when the REC2 is lagged by
different numbers of days, indicating how the REOF2 dry anomaly over
southern Sumatra and Java evolves due to the eastward propagation
of Rossby waves during a standard REOF2 event. Copperish con-
tours represent negative PWV anomalies, similar to reddish contours
in Fig. 7d.
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Fig. 12. Lead-lag linear regression global maps for the REOF2 of the north-
ern summer 2008 based on the CFSR reanalysis data. These maps
show potential vorticity anomalies and wind anomalies on the 330 K
isentropic surface, and PWV anomalies when the REC2 is lagged by dif-
ferent numbers of days, indicating the evolution of Rossby waves during
two quasi-biweekly life cycles of a standard REOF2 event. Copperish
contours represent negative PWV anomalies, similar to reddish con-
tours in Fig. 7d. Light bluish contours represent positive PWV anoma-
lies, similar to bluish contours in Fig. 7d. Purple box (17.5◦S−2.5◦S,
87.5◦E−97.5◦E) over the tropical eastern Indian Ocean southwest of
Sumatra outlines a key region that has local maximum meridional wind
variance at 850 hPa on submonthly time scales during northern summer
(Fukutomi and Yasunari 2005).
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Fig. 13. Lead-lag linear regression global profiles for the REOF2 of the
northern summer 2008 based on the CFSR reanalysis data. These
maps show potential vorticity anomalies along a global profile of 35◦

when the REC2 is lagged by different numbers of days, indicating the
evolution of the vertical structure of midlatitude Rossby waves during
two quasi-biweekly life cycles of a standard REOF2 event.
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Fig. 14. Linear regression results for both the REOF1 and REOF2 of the
northern summer 2016. Similar to Fig. 7.
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Fig. 15. Linear regression results for both the REOF1 and REOF2 of the
northern summer 2017. Similar to Fig. 7.
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Fig. 16. Lead-lag linear regression maps for the REOF1 of the northern
summer 2016. Similar to Fig. 9 but with different lags.
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Fig. 17. Lead-lag linear regression maps for the REOF1 of the northern
summer 2017. Similar to Fig. 9 but with different lags.
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Fig. 18. Analysis of the REC1 and REC2 for the northern summer 2016.
Similar to Fig. 6.
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Fig. 19. Analysis of the REC1 and REC2 for the northern summer 2017.
Similar to Fig. 6.
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Fig. 20. Back trajectory results for the REOF2 dry events on 26 July 2016
and 3 August 2016 (Fig. 18). Similar to Fig. 10, except that the July
event was traced backward for eight days, and the August event for
four days.
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Fig. 21. Back trajectory results for the REOF2 dry events on 3 August 2017
and 12 September 2017 (Fig. 19). Similar to Fig. 10, except that both
events were traced backward for eight days.
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