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Abstract 22 

 23 

Accurate rainfall estimation during Indian summer monsoon (ISM) is one of the most 24 

crucial activities in and around the Indian Sub-continent. Japan Aerospace Exploration 25 

Agency (JAXA) provides a couple of Global Satellite Mapping of Precipitation (GSMaP) 26 

rainfall products viz. the GSMaP_MVK, which is a satellite based product calculated with 27 

ancillary data including global objective analysis data, and the GSMaP_Gauge, which is 28 

adjusted by global rain gauges. In this study, the daily rainfall amount from the GSMaP 29 

rainfall product (version 7) is validated against a dense rain gauge network over 30 

Karnataka, one of southwestern states of India, during ISM 2016—2018. Further, as the 31 

primary objective, these dense rain gauge observations are assimilated in the GSMaP 32 

rainfall product using hybrid assimilation method to improve the final rainfall estimate. The 33 

hybrid assimilation method is a combination of two-dimensional variational (2D-Var) 34 

method and Kalman filter, in which 2D-Var method is used to merge rain gauge 35 

observations and Kalman filter is used to update background error in the 2D-Var method. 36 

Preliminary verification results suggest that GSMaP_Gauge rainfall has sufficient skill 37 

over north interior Karnataka (NIK) and south interior Karnataka (SIK) regions, with large 38 

errors over the orographic heavy rainfall region of the Western Ghats. These errors are 39 

larger in the GSMaP_MVK rainfall product over orographic heavy rainfall regions. Hybrid 40 

assimilation results of randomly selected rain gauge observations improve the skill of 41 

GSMaP_Gauge and GSMaP_MVK rainfall products, when compared with independent 42 

rain gauges observations. These improvements in daily rainfall are more prominent over 43 

orographic heavy rainfall regions. GSMaP_MVK rainfall product shows larger 44 
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improvement due to absence of the gauge adjustment in the JAXA operational 45 

processing. The superiority of hybrid assimilation method against Cressman and optimal 46 

interpolation methods for impacts of utilized rain gauge numbers are also presented in 47 

this study. 48 

 49 

Keywords: GSMaP rainfall; Karnataka State Natural Disaster Monitoring Centre rain 50 

gauge network; Two-dimensional variational method; Orography, Kalman Filter.  51 
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1. Introduction 66 

Reliable rainfall estimation is vital for Indian agriculture industry mainly during the 67 

Indian summer monsoon (ISM) season that has a large socio-economic impact (Turner 68 

et al. 2019). Accurate rainfall estimates are also important for weather forecasting 69 

applications, prediction of water-related natural hazards such as floods, droughts, 70 

landslides, etc. (Kumar et al. 2014; Chen et al. 2015). Despite the fact that rainfall is one 71 

of the most crucial parameters for various applications, availability of accurate and reliable 72 

rainfall data on finer spatial and temporal scales is still a challenge (Wang, W. et al. 2017; 73 

Wang, Z. et al. 2017; Anjum et al. 2018). Furthermore, rainfall is highly varying in space 74 

and time-scale, and its estimation is complex both with ground observations (rain gauges 75 

and weather radar) and with satellite data. The sparse distribution of rain gauges and 76 

weather radars mainly in mountainous and deeper oceanic regions limits various 77 

applications on global and regional scale. On the other hand, space-borne sensors 78 

provide homogeneous spatial and temporal distribution of rainfall (Gairola et al. 2015). 79 

However, the accuracy of satellite-retrieved rainfall should be assessed with ground 80 

observations due to inherent limitations of retrieval algorithms (Chiaravalloti et al. 2018). 81 

As space-borne sensors provide instantaneous global scanning of rainfall and rain 82 

gauges give accurate but point measurements of rainfall, the verification of satellite-83 

retrieved rainfall against ground observations itself is a major challenge. The problem is 84 

even more stimulating under complex topographic conditions, dense vegetation areas 85 

and coastal regions (e.g., Brocca et al. 2014; Maggioni et al. 2016; Chiaravalloti et al. 86 

2018). Another major problem for the accurate rainfall estimation is merging ground 87 

observations with satellite-estimates of rainfall. 88 

Sun et al. (2018) presented the comprehensive review of the 30 global rainfall 89 

datasets (viz. gauge-based GPCC (Global Precipitation Climatology Centre), CPC 90 

(Climate Prediction Center), satellite-retrieved Global Satellite Mapping of Precipitation 91 
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(GSMaP), TRMM (Tropical Rainfall Measuring Mission), and reported large differences 92 

over complex mountain regions including tropics. Authors also pointed out the issues of 93 

the number and spatial coverage of the gauge observations, rainfall retrieval algorithms 94 

and data assimilation procedures to generate realistic rainfall reanalysis and merge-95 

rainfall product. Kubota et al. (2009) also compared six satellite derived rainfall products 96 

including Japan Aerospace Exploration Agency (JAXA) GSMaP rainfall against ground 97 

radar dataset calibrated by rain gauges around Japan. Authors found best validation 98 

results over the ocean, and reported relatively poor results over mountain regions. Shige 99 

et al. (2013) demonstrated that the GSMaP estimates in a case shown by Kubota et al. 100 

(2009) could be improved by utilization of more representative profiles in the orographic 101 

rainfall. Further, Taniguchi et al. (2013) modified GSMaP rainfall product using an 102 

orographic/non-orographic rainfall classification scheme based upon orographically 103 

forced upward motion and moisture flux convergence. Trinh-Tuan et al. (2019) showed a 104 

clear dependence of biases in the GSMaP estimates over Central Vietnam on elevation 105 

and zonal wind speed, suggesting the need to improve orographic rainfall estimations. 106 

Nodzu et al. (2019) also examined the effect of interaction between wind and topography 107 

on the GSMaP performance over northern Vietnam and suggested that consideration of 108 

the orographic effects with wind information may further improve the accuracy of rainfall. 109 

Various studies are performed to evaluate the quality of satellite-retrieved rainfall 110 

against rain gauge networks over India (Sharifi et al. 2018; Singh et al. 2019 and 111 

references therein). Singh et al. (2019) compared diverse rainfall products against India 112 

Meteorological Department (IMD) rain gauges during summer monsoon 2016 and found 113 

large differences between satellites derived rainfall products and rain gauges over 114 

Karnataka, southwestern India. Prakash et al. (2018) found relatively smaller error in 115 

gauge adjusted GSMaP as compared to IMERG (Integrated Multi-satellite Retrievals for 116 

Global Precipitation Measurement (GPM)) and TMPA (TRMM multisatellite precipitation 117 
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analysis) mainly over the regions of low rainfall and the western coast of India. Earlier 118 

studies (Palazzi et al. 2013; Hu et al. 2016; Shah and Mishra 2016) also suggested 119 

drawbacks of gauge-based estimates and satellite retrievals over mountainous regions, 120 

particularly in the Western Ghats mountain range, northeast India, and in the foothills 121 

Himalaya. In general, these studies over different parts of the globe and target location of 122 

the Western Ghats in southwestern India suggest that the gauge-adjusted rainfall better 123 

represents the intrinsic variability of rainfall with more reliability. 124 

The synergy of rain gauge observations with satellite based rainfall estimates in 125 

case of gauge-adjusted rainfall estimation are attempted in several previous studies 126 

(Gairola and Krishnamurti 1992; Adler et al. 2003; Mitra et al. 2003; Huffman et al. 2007; 127 

Roy Bhowmik and Das 2007; Krishnamurti et al. 2009; Gairola et al. 2012). To merge rain 128 

gauge observations with INSAT (Indian National SATellite) satellite retrieved rainfall at 1° 129 

× 1° spatial resolution, Roy Bhowmik and Das (2007) used an objective analysis method 130 

over the Indian landmass for ISM rainfall. Gairola et al. (2015) developed a merged rainfall 131 

method by blending rain gauge observations with geostationary Kalpana-1 satellite-132 

derived IMSRA (INSAT retrieved Multi-Spectral Rainfall Algorithm) rainfall estimates 133 

using an objective criterion of successive correction method. Authors found considerable 134 

improvements in terms of correlation, bias and root-mean-square error after objective 135 

analysis, especially over the regions where density of rain gauge was better. Mitra et al. 136 

(2009) used a similar approach for blending rain gauge data with the near-real time TMPA 137 

rainfall product over India for monsoon rainfall monitoring. The major drawback of the 138 

objective analysis techniques is that it does not consider the uncertainties (or errors) in 139 

first guess (here satellite rainfall) and observation (here rain gauge) inputs. Thus, the 140 

effective merging technique is still required to improve rainfall estimation in terms of both 141 

better resolution and accuracy taking into the consideration of errors in both satellite and 142 

ground rainfall together. 143 
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In this context, the variational method is popularly known for considering 144 

inconsistencies (or errors) in input parameters and provides its optimal estimation. The 145 

optimal state is achieved by iterative method in variational method and it is less 146 

computationally intensive as compared to sequential assimilation methods like optimal 147 

interpolation. Earlier, Bianchi et al. (2013) used variational method to combine rain gauge, 148 

weather radar and microwave observations with associated uncertainties to retrieve rain 149 

rate. Li et al. (2015) implemented variational method to prepare high-resolution hourly 150 

rainfall using China Meteorological Administration gauges and CMORPH (Climate 151 

Prediction Center Morphing; Joyce et al. 2004) rainfall products. In general, variational 152 

method does not consider evolution (or flow) of uncertainties in satellite rainfall (also 153 

called as background error), which are considered as a fixed diagonal matrix in earlier 154 

studies. These deficiencies in variational method can be resolved to some extent with the 155 

implementation of Kalman filter that can simulate the flow of background error. Thus, a 156 

hybrid assimilation method, combination of two-dimensional variational (2D-Var) method 157 

and flow dependent background error from Kalman filter, is required to prepare gauge-158 

adjusted rainfall product (Cheng et al. 2010; Daley 1997). This hybrid method combines 159 

the advantages of excellent spatial coverage from satellite measurement and accurate 160 

rainfall estimates from rain gauge data with their uncertainties, and has the potential for 161 

optimal combination of rainfall estimation from both the sources simultaneously. 162 

Thus, the objective of this study is to develop a hybrid assimilation method for 163 

merge rainfall product over a unique-site that is well represented by sufficient ground 164 

observations (around 6502 stations). In this study, first the GSMaP rainfall products are 165 

compared with dense rain gauge observations over Karnataka, India during ISM 2016—166 

2018 for evaluating the daily rainfall amount. Around half of the randomly selected rain 167 

gauges are merged with GSMaP rainfall products using hybrid assimilation method. 168 

These new daily rainfall estimates are verified against the rest of the independent gauges 169 
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and IMERG final rainfall product. Section 2 discussed the various rainfall data used in this 170 

study, followed by results and discussions in section 3. These findings are concluded in 171 

section 4.  172 

 173 

2. Data Used 174 

2.1. KSNDMC Rain Gauge Network 175 

The Indian state of Karnataka is located within 11°50' N and 18°50' N latitudes and 176 

74° E and 78°50' E longitudes (Fig. 1a). This state is situated on not only a tableland 177 

region, but also a coastal plains and mountain slopes in the western part of the Deccan 178 

Peninsular region of India (Figs. 1b,d). The dense rain gauge network (6502 stations in 179 

2018 with average rain gauge density of ~6100 stations during years 2016—2018) of the 180 

KSNDMC (Karnataka State Natural Disaster Monitoring Centre) is used in this study 181 

during ISM 2016—2018 (Fig. 1a). The rain gauge sensor used in this network is a tipping 182 

bucket with low tolerance using material of polycarbonate or industrial standard metal. 183 

The KSNDMC gauges consist of a funnel that collects and channels precipitation into a 184 

small container. Every day at 0830 Indian Standard Time (IST) (0300 UTC (Universal 185 

Time Coordinate)), the container tips and empties the collected water and produces a 186 

signal in an inbuilt electrical circuit. The tolerance is limited by the precision of the 187 

instrument that is 0.5 mm. The precision of the instrument is 1% of rainfall intensity up to 188 

50 mm per day, and 2% of rainfall intensity of 50 to 100 mm day-1 (Mohapatra et al. 2017). 189 

The original time resolution of the observations is every 15 minutes using a tipping count 190 

method (0.2/0.5 mm per tip) with an operating range up to 600 mm hour-1, but in this 191 

study, 24 hours (last day 0830 IST to today 0830 IST) accumulated rainfall observations 192 

(valid at 0830 IST) are used for verification and assimilation. In this study, Karnataka state 193 
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is divided into four meteorological zones by state boundaries defined as (1) Coastal 194 

Karnataka: a region of heavy rainfall that receives an average June to September 195 

(hereafter JJAS) rainfall of 2517 mm, far in excess of rest of state, (2) North Interior 196 

Karnataka (NIK): an arid zone that receives 526 mm of average rainfall in JJAS, (3) 197 

South Interior Karnataka (SIK): This zone receives 518 mm of average rainfall in JJAS, 198 

and (4) Malnad (Malenadu) Region: that comprises of Western Ghats, a mountain range 199 

inland from the Arabian Sea rising to about 900 meters average height, and with moderate 200 

to very high rainfall with 1390 mm of average normal rainfall in JJAS period. These 201 

average rainfall amounts for different regions are based on long-term ground based 202 

observations (from years 1960—2010) over Karnataka, India. Total 6502 rain gauges 203 

available in 2018 are distributed in these four regions viz. coastal (650 gauges), Malnad 204 

(901 gauges), NIK (2737 gauges) and SIK (2214 gauges) as shown in Fig. 1a. 205 

 Figure 1b shows the map of topography at 30-second spatial resolution from the 206 

United State Geological Survey (USGS) available with the Weather Research and 207 

Forecasting model (Attada et al. 2018) over the study region. Figure 1c shows mean JJAS 208 

rainfall at 0.1-degree spatial resolution from 16-years TRMM/PR data (TRMM-PR 209 

(Precipitation Radar) Precipitation System Dataset Version 2.2; Hirose et al. 2009, 210 

2017a,b; Hirose and Okada 2018). Similar to Fig. 1 in Shige et al. (2017), a climatological 211 

relationship between topography and rainfall around Karnataka is examined here using 212 

the TRMM/PR data. Figure 1d shows cross-shore distribution of rainfall and topography 213 

average across the rectangular box selected over the Western Ghats (Fig. 1c). The 214 

maximum value of rainfall is obtained mostly over the coastal and windward side of the 215 
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mountainous regions. Rainfall values are decreased noticeably in the NIK and SIK rain 216 

shadow regions that are also represented by the mean TRMM-PR rainfall (Fig. 1c). 217 

 218 

2.2 JAXA GSMaP Rainfall 219 

With the notable success of the TRMM, National Aeronautics and Space 220 

Administration (NASA) and JAXA have launched the GPM Core Observatory in early 221 

2014 to provide latest generation of satellite-based near real-time precipitation and 222 

snowfall estimates (Hou et al. 2014; Skofronick-Jackson et al. 2017). The GSMaP rainfall 223 

product has been developed by the JAXA as the Japanese GPM standard product 224 

(Kubota et al. 2020). Core algorithms of the GSMaP products are based on those 225 

provided by the GSMaP project: passive microwave (PMW) precipitation retrieval 226 

algorithm, PMW–IR (InfraRed) combined algorithm and gauge-adjustment algorithm. The 227 

GSMaP algorithm consists of the following steps: 1) calculating the rainfall rate from PMW 228 

sensors (Kubota et al. 2007; Aonashi et al. 2009; Shige et al. 2009) with ancillary data 229 

including global objective analysis data provided by the Japan Meteorological Agency; 2) 230 

using Morphing technique to propagate rainfall-affected area; 3) refining the estimated 231 

data using Kalman filter approach (Ushio et al. 2009); 4) adjusting rain rates using the 232 

National Oceanic and Atmospheric Administration (NOAA) CPC unified gauge-based 233 

analysis of global daily rainfall (Mega et al. 2019). The spatial distribution of NOAA/CPC 234 

gauges (Chen et al. 2008) over study region are shown in Fig. 1a (as black star). The 235 

rainfall retrieval algorithms of JAXA GSMaP have been upgraded further in the GPM-era 236 

as described in Kubota et al. (2020). Heavy rainfall associated with shallow orographic 237 

rainfall systems was underestimated by the GSMaP algorithms owing to weak ice 238 
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scattering signatures (Kubota et al. 2009, Shige et al. 2013). Therefore, orographic rainfall 239 

estimation method using the global objective analysis data was developed exclusively 240 

and installed in the GSMaP PMW algorithm (Shige et al. 2013, 2014; Yamamoto and 241 

Shige 2015; Yamamoto et al. 2017).  242 

The GSMaP rainfall estimates are available at three levels, known as near-real-243 

time, real-time, and standard products. The near-real-time and real-time GSMaP products 244 

are available to the public with 0 and 4 hours latency, respectively (Kubota et al. 2020). 245 

The GSMaP_MVK and the GSMaP_Gauge is categorized as the standard product with 246 

3 days latency. The GSMaP_Gauge (defined as GSMaP_G in figures) and GSMaP_MVK 247 

version 7 rainfall products are used in this study available from JAXA webpage 248 

(https://www.gportal.jaxa.jp/gp). In the version 7 algorithm, the orographic rainfall 249 

estimation method by Yamamoto et al. (2017) was used for all sensors (Kubota et al. 250 

2020). The GSMaP_Gauge is adjusted by the global rain gauges derived from the 251 

NOAA/CPC, while the GSMaP_MVK is without rain gauges adjustments. Both products 252 

have the same spatial and temporal resolution, which is 0.1 degree and 1 hour with 253 

coverage between 60°N and 60°S. The KSNDMC gauges are not part of NOAA/CPC 254 

gauges. 255 

 256 

2.3 IMERG Rainfall  257 

The IMERG rainfall product has been developed as the United States GPM 258 

standard product (Huffman et al. 2020), and the IMERG has several advantages over 259 

other satellite rainfall products, such as wide spatial representation (60°N – 60°S) of 260 

precipitation, fine spatio-temporal resolutions and additional snowfall observations 261 

https://www.gportal.jaxa.jp/gp
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(Anjum et al. 2018). The IMERG rainfall is the combination of features of three multi-262 

satellite precipitation products including (1) TMPA, (2) CMORPH, and (3) PERSIANN 263 

(Precipitation Estimation from Remotely Sensed Information using Artificial Neural 264 

Networks; Sorooshian et al. 2000). IMERG product used all constellations of microwave 265 

sensors, IR-based observations from geosynchronous satellites and monthly gauge 266 

precipitation data from GPCC rain-gauges (Schneider et al. 2014) to correct the bias of 267 

satellite retrievals over the land (Huffman et al. 2015, 2020; Sharifi et al. 2018). IMERG 268 

rainfall estimates are available at three levels, known as early, late and final stage IMERG 269 

products. Early and Late IMERG products provide near real-time rainfall estimates, and 270 

are available to the public with 6 and 18 hours latency, respectively (Tan and Duan 2017). 271 

The final product is calibrated with the GPCC monthly data, and provides post real-time 272 

rainfall estimates after around 4 months of data retrieval. All IMERG products are 273 

available at same spatial (0.1°) and temporal (half-hourly, daily and monthly temporal 274 

scales) resolutions. The IMERG final products with 30 minutes frequency are used in this 275 

study.  276 

 277 

3. Methodology 278 

 The data assimilation for most weather applications is usually an under-sampling 279 

problem in which numbers of grid points are higher on the analysis grid (e.g. satellite 280 

retrievals) than observations (here rain gauges) (Daley, 1997). In the direct assimilation 281 

systems, like Cressman analysis (Cressman, 1959) or successive correction methods 282 

(Bratseth, 1986) in objective analysis, observation information is simply spread to the 283 

analysis grid point through interpolation of observation within a radius of influence (ROI) 284 
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without considering inconsistencies (both observation and background errors) in input 285 

parameters. Whereas, the objective of the optimal interpolation and variational method 286 

are to minimize the cost function that measures the distance between background (here 287 

satellites derived rainfall) and observation (here rain gauge) (Daley, 1997). The variational 288 

method spreads observation information to analyze grid points using iterative 289 

minimization of the cost function and based upon the background and observation error. 290 

The background and observation errors are uncertainties in the satellite and rain gauge 291 

data, respectively. An optimal analysis can be prepared using 2D-Var assimilation method 292 

by an accurate specification of covariance matrices, due to strong dependence upon 293 

these error covariances (Xie et al. 2002; Tyndall 2008, 2010).  294 

The variational technique minimizes a cost function iteratively to compute analysis 295 

(𝑥𝑎) . In 2D-Var methodology, the cost (penalty) function 𝐽(𝑥𝑎)  is made up of two 296 

components: 297 

𝐽(𝑥𝑎) = 𝐽𝑏 + 𝐽𝑜                   (1) 298 

where, the term 𝐽𝑏 penalizes the analysis for differences between the analysis (𝑥𝑎) and 299 

the GSMaP rainfall considered here as a background field, and the term 𝐽𝑜 penalizes the 300 

analysis for the difference between the analysis (𝑥𝑎) and the rain gauge observations 301 

defined as:  302 

2 𝐽(𝑥𝑎) = (𝑥𝑎 − 𝑥𝑏)𝑇𝑃𝑏
−1(𝑥𝑎 − 𝑥𝑏) + (𝐻(𝑥𝑎) − 𝑦𝑜)𝑇𝑃𝑜

−1(𝐻(𝑥𝑎) − 𝑦𝑜)        (2) 303 

where, 𝑥𝑎 is the analysis variable, 𝑥𝑏 is the background field taken from GSMaP_Gauge 304 

or GSMaP_MVK rainfall product, 𝑃𝑏 and  𝑃𝑜 are the background and observation error 305 

covariances respectively, 𝑦𝑜  is the observation vector taken from rain gauge 306 

observations, and 𝐻 is the forward transform interpolation operator which interpolates 307 
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analysis grid points to the observation values. Initially, background and observation error 308 

covariance are considered as diagonal matrices with values of fixed diagonal elements 309 

as 4 mm day-1 and 1 mm day-1, respectively. The computational expense of the analysis 310 

can be reduced by reformulating the variational equation (2) in observation space using 311 

Shermon-Morrision-Woodbury Inversion formula (Lorenc 1986). Equation (2) should be 312 

minimized with respect to analysis (𝑥𝑎) to find the minimum penalty between the GSMaP 313 

rainfall and gauge observations: 314 

𝜕

𝜕𝑥𝑎
𝐽(𝑥𝑎) = 0                             (3) 315 

The analysis solution is given as 316 

  𝑥𝑎 = 𝑥𝑏 + 𝑃𝑏 𝐻𝑇𝜇 and 𝑦𝑜 − 𝐻(𝑥𝑏) = (𝐻𝑃𝑏 𝐻𝑇 + 𝑃𝑜 )𝜇                  (4)  317 

or equivalently, 𝑥𝑎 = 𝑥𝑏 + 𝐾𝑡(𝑦𝑜 − 𝐻(𝑥𝑏)) and 𝐾𝑡 = 𝑃𝑏 𝐻𝑇(𝐻𝑃𝑏 𝐻𝑇 + 𝑃𝑜 )
−1

           (5)     318 

Here, 𝐾𝑡 is known as Kalman gain at t time step. 319 

Further, in place of using fixed diagonal background error covariance, Kalman filter 320 

method is implemented to update background error at t time step.  321 

  𝑃𝑎
𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑏

𝑡              (6) 322 

Here, 𝑃𝑎
𝑡 and 𝑃𝑏

𝑡 are analysis and background error at t time step, 𝐻𝑡 is forward transform 323 

operator at time t. Initially at first time-step, 𝑃𝑏
𝑡 is considered as a fixed diagonal matrix. 324 

The estimated analysis error ( 𝑃𝑎
𝑡 ) obtained from equation (6) is used to compute 325 

background error for t+1 time-step using  326 

  𝑃𝑏
𝑡+1̂ = 𝑀𝑃𝑎

𝑡 𝑀𝑇 + 𝑄             (7) 327 

In this study, M is considered as an identity matrix and Q is considered as zero matrix for 328 

simplicity and complex behavior of rainfall prediction, and may be a scope for future 329 

research.  330 
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Further, a hybrid background error is used for 2D-Var assimilation in which updated 331 

background error is computed using     332 

  𝑃𝑏
𝑡+1 = 𝑤1 × 𝑃𝑏

𝑡=0 + 𝑤2 × 𝑃𝑏
𝑡+1̂    , 𝑤ℎ𝑒𝑟𝑒   𝑤1 = 0.3 , 𝑎𝑛𝑑   𝑤2 = 0.7       (8) 333 

Finally, the hybrid assimilation method is performed here to generate merge rainfall 334 

product using 2D-Var method with the flow dependent background error matrix using 335 

Kalman filter.  336 

 337 

3. Results and Discussions 338 

3.1. Comparison of GSMaP_MVK and GSMaP_Gauge rainfall against KSNDMC gauges 339 

 The spatial distribution of mean rainfall (in mm day-1) during JJAS from KSNDMC 340 

gauges, GSMaP_Gauge V7, and GSMaP_MVK V7 rainfall product for the year 2016—341 

2018 is shown in Fig. 2. The all India (southern peninsula) rainfall in 2016, 2017 and 2018 342 

was 97 (92), 95 (100) and 91 (98) percent of the long period average (LPA; the average 343 

rainfall recorded during the months from June to September in the past 50-year period) 344 

rainfall from IMD gauges, respectively (IMD Annual Report; www.imd.gov.in). The years 345 

of 2016-2018 represent varying rainfall distribution over the Western Ghats from deficit, 346 

normal and above normal in years 2016, 2017 and 2018, respectively (Figs. 2a-2c). Large 347 

differences are observed in spatial rainfall distribution during years 2017 and 2018 over 348 

the Western Ghats and NIK regions, whereas both years are normal rainfall years 349 

according to IMD LPA rainfall. Figures 2a-2c show that in general high rainfall observed 350 

in the Coastal and Malnad regions during JJAS. However, the mean rainfall is less over 351 

NIK and SIK regions due to their occurrence in rain shadow regions of the Western Ghats. 352 

The spatial distribution of the GSMaP_Gauge rainfall for the same JJAS period for 2016 353 

http://www.imd.gov.in/
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(Fig. 2d), 2017 (Fig. 2e) and 2018 (Fig. 2f) suggest that GSMaP_Gauge rainfall products 354 

have less error as compared to gauge observations. However, the large magnitudes of 355 

rainfall over the Western Ghats regions are underestimated in the GSMaP_Gauge rainfall 356 

product. It suggests a need of correction in GSMaP rainfall product over mountainous 357 

regions. Takido et al. (2016) also detected that GSMaP_Gauge still underestimated the 358 

precipitation intensity in high-elevation regions over Japan. Authors suggested 359 

improvements with higher resolution gauge-based network data than the NOAA/CPC 360 

gauge data. Similarly, inadequate distributions of the NOAA/CPC gauge data can lead to 361 

the underestimation of the rainfall over the Western Ghats regions (Fig. 1a). The spatial 362 

distribution of GSMaP_MVK rainfall (Figs. 2g-2i) suggests that this rainfall product has 363 

less skill over the orographic heavy rainfall regions. In comparison to GSMaP_Gauge 364 

rainfall product (Figs. 2d-2f) which has less error against KSNDMC gauges, 365 

GSMaP_MVK rainfall product has slightly higher error against KSNDMC gauges over the 366 

Malnad and coastal regions. Both GSMaP_Gauge and GSMaP_MVK rainfall products 367 

are able to capture low rainfall over the NIK and SIK regions. These analyses suggest 368 

that both rainfall products need further improvement in general and over the mountainous 369 

regions, in particular. As noted in Section 2.2, the rainfall estimates over the orographic 370 

heavy rainfall regions are inherently problematic and the orographic rainfall estimation 371 

methods have been developed and installed in the GSMaP PMW algorithm. Hirose et al. 372 

(2019) showed that the GSMaP PMW algorithm with the orographic rainfall estimation 373 

method were able to estimate the heavy rainfall band well, but the issue persists in the 374 

GSMaP due to unavailability of microwave satellite measurements. Nevertheless, the 375 
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current results suggest the methods need to be improved further through some more 376 

suitable data driven analysis such as hybrid assimilation method. 377 

 Further, the BIAS (mean difference), NBIAS (BIAS normalized by total rainfall) and 378 

RMSD (root-mean-square difference) statistics used for error estimations are defined as  379 

 𝐵𝐼𝐴𝑆 =
1

𝑁
∑ (𝑟𝑎𝑖𝑛 𝑖

  𝑠𝑎𝑡 − 𝑟𝑎𝑖𝑛 𝑖
  𝑔𝑎𝑢𝑔𝑒

)𝑁
𝑖=1                                          (9) 380 

 𝑁𝐵𝐼𝐴𝑆 =
1

𝑁
∑ (

𝑟𝑎𝑖𝑛 𝑖
  𝑠𝑎𝑡− 𝑟𝑎𝑖𝑛 𝑖

  𝑔𝑎𝑢𝑔𝑒

𝑟𝑎𝑖𝑛 𝑖
  𝑠𝑎𝑡+ 𝑟𝑎𝑖𝑛

 𝑖
  𝑔𝑎𝑢𝑔𝑒)𝑁

𝑖=1                     (10) 381 

 𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (𝑟𝑎𝑖𝑛 𝑖

  𝑠𝑎𝑡 − 𝑟𝑎𝑖𝑛 𝑖
  𝑔𝑎𝑢𝑔𝑒

)
2𝑁

𝑖=1           (11) 382 

where, 𝑟𝑎𝑖𝑛𝑖
𝑠𝑎𝑡  and 𝑟𝑎𝑖𝑛𝑖

𝑔𝑎𝑢𝑔𝑒
 represent rainfall from GSMaP rainfall product and 383 

KSNDMC gauge observations, respectively. The total number of data points represented 384 

by N. Figure 3 shows the scatter plot of GSMaP_Gauge (upper panel) and GSMaP_MVK 385 

(lower panel) rainfall product against KSNDMC rain gauges for JJAS 2016—2018. The 386 

blue and red lines represent the 45° reference line and best fit line using least square 387 

method, respectively. The value of RMSD is 9.5, 10.4 and 12.2 mm day-1 for 2016, 2017 388 

and 2018, respectively, when GSMaP_Gauge rainfall product is compared with KSNDMC 389 

gauge observations (Figs. 3a-3c). The value of BIAS is 0.5, -0.1, and -1.3 mm day-1 for 390 

these years, respectively, with correlation of around 0.7. The numbers of collocations are 391 

around 0.7 to 0.8 million for the years of 2016-2018. The value of RMSD (BIAS) is 12.1 392 

(-1.7), 12.8 (-1.6), and 16.2 (-1.9) mm day-1 for JJAS 2016, 2017, and 2018, respectively 393 

in GSMaP_MVK rainfall product (Figs. 3d-3f). Slightly less correlation (~ 0.51) is found in 394 

GSMaP_MVK rainfall product as compared to GSMaP_Gauge rainfall product that 395 

suggest the importance of gauge calibration in the GSMaP_Gauge rainfall product. 396 

Moreover, these statistics are almost similar for different monsoon years (varies from 397 
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deficit to above normal years) that suggest some inherent limitations of the both selected 398 

GSMaP rainfall product over the Karnataka region. The daily area average rainfall 399 

variation from KSNDMC rain gauges, and corresponding GSMaP_Gauge and 400 

GSMaP_MVK rainfall product for JJAS 2016—2018 suggests that slightly larger errors 401 

are found in the GSMaP_MVK rainfall product as compared to GSMaP_Gauge rainfall 402 

product. It is important to mention here that both operational GSMaP rainfall products are 403 

able to capture the active and break phase of diverse monsoon years (Figure not shown).      404 

To evaluate errors in both operational GSMaP rainfall products, comparison of 405 

GSMaP rainfall is extended for different IMD rainfall classification. These IMD rainfall 406 

classifications are majorly based on intensity of daily rainfall and it divides daily rainfall 407 

into eight different categories varying from no rain to extremely heavy rain (Table 1; IMD 408 

Glossary). Figure 4 shows RMSD and NBIAS in both operational GSMaP rainfall products 409 

during JJAS 2016—2018. Results suggest that RMSD varies from 2-13 mm day-1 for no 410 

rain, very light rain, light rain, and moderate rain classifications (Fig. 4a). A negative 411 

NBIAS is found for different rainfall classifications except no rain and very light rain 412 

classifications (Fig. 4b). The negative values of NBIAS suggests underestimation of 413 

rainfall in both operational GSMaP rainfall products as compared to KSNDMC gauge 414 

observations. For light, moderate, rather heavy and heavy rain classifications, 415 

GSMaP_Gauge product have less NBIAS as compared to GSMaP_MVK rainfall for all 416 

years of 2016-2018. It is important to mention that for few pixels, GSMaP rainfall products 417 

also incorrectly classify no rain regions as rainy pixels. The RMSD values are very high 418 

for rather heavy, heavy rain, very heavy rain, and extremely heavy rain classifications, 419 

and ranges from 50-250 mm day-1 with negative values of NBIAS (-0.4 to -0.7 for 420 



19 
 

GSMaP_MVK rainfall). It also suggests that both operational GSMaP rainfall products are 421 

erroneous mainly over orographic heavy rainfall regions, which are prone to heavy rainfall 422 

over Karnataka. Moreover, the GSMaP_Gauge rainfall product has less RMSD and 423 

NBIAS as compared to GSMaP_MVK rainfall product for different rainfall classifications, 424 

except very heavy and extremely heavy rainfall classifications. The density plot of both 425 

operational GSMaP rainfall product against KSNDMC gauges also suggest that 426 

GSMaP_Gauge rainfall is closer to observations for low rainfall threshold (< 20 mm day-1), 427 

whereas both operational GSMaP rainfall products have almost same distribution for high 428 

rainfall thresholds, far from gauges (Figure not shown). It suggests that sparse network 429 

of rain gauges over mountainous regions, reduces accuracy of GSMaP_Gauge over 430 

Western Ghats region.  431 

The error statistics of both operational GSMaP rainfall products for different 432 

regions are presented in Table 2. Results suggest that GSMaP_MVK rainfall has large 433 

negative BIAS (13 to 25 mm day-1) over the coastal region with the value of RMSD varying 434 

from 25 to 38 mm day-1. The correlation coefficient is around 0.58, 0.37, and 0.58 for 435 

years 2016, 2017, and 2018, respectively. The values of NBIAS are high for coastal 436 

regions in year 2018 as compared to year 2016. The large BIAS is corrected in 437 

GSMaP_Gauge rainfall product over the coastal region to some extent, and values of 438 

BIAS (1 to 8 mm day-1) and RMSD (18 to 25 mm day-1) are improved significantly for the 439 

years of 2016-2018. Similar to the coastal region, Malnad region (Fig. 1a) also shows 440 

large errors in both operational GSMaP rainfall products. The values of BIAS, NBIAS and 441 

RMSD are slightly less in Malnad region as compared to coastal region, but correlation 442 

coefficient is less for different years. Both NIK and SIK regions show less error in GSMaP 443 
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rainfall products. The value of RMSD (BIAS) is less than 10 (1) mm day-1 for different 444 

years and correlation coefficient is around 0.6. For the years of 2016-2018, 445 

GSMaP_Gauge data have better skill as compared to GSMaP_MVK rainfall in NIK and 446 

SIK regions, which confirms its superiority for all regions due to calibration of 447 

GSMaP_Gauge rainfall with the NOAA gauge analysis (Fig. 1a).  448 

These preliminary verification results suggest the need for further rain gauge 449 

adjustment of GSMaP rainfall over Malnad and coastal regions. The hybrid assimilation 450 

method is implemented here to generate new GSMaP rainfall product over Karnataka, 451 

southwestern India. The verification of new GSMaP rainfall products is presented in the 452 

next sub-section.        453 

         454 

3.2. Evaluation of GSMaP_MVK_NEW and GSMaP_Gauge_NEW rainfall  455 

The randomly selected 50% rain gauges (defined as training gauges) from the 456 

average network of around 6100 rain gauges over Karnataka are used to prepare new 457 

merge GSMaP rainfall product (defined as GSMaP_Gauge_NEW and 458 

GSMaP_MVK_NEW) using hybrid assimilation method. In this hybrid method, a 459 

variational method is used to prepare gauge-adjusted GSMaP rainfall and Kalman filter 460 

is used to estimate flow of background error in satellite rainfall (discussed in Section 3). 461 

The remaining 50% rain gauges (defined as verification gauges) are used for independent 462 

verification of different rainfall products. Figure 5 shows the scatter plot of 463 

GSMaP_Gauge, GSMaP_Gauge_NEW, GSMaP_MVK, GSMaP_MVK_NEW against 464 

training gauges, which are used to prepare GSMaP_Gauge_NEW (Figs. 5b,f,j) and 465 

GSMaP_MVK_NEW (Figs. 5d,h,l) rainfall product. The error statistics provide the sanity 466 
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check to recognize that after merging training gauges in both operational GSMaP rainfall 467 

products, the new rainfall products are closer to observations and demonstrate successful 468 

assimilation of the training gauges. Results suggest that GSMaP_Gauge rainfall has 469 

RMSD (BIAS) of 9.6 (0.4), 10.5 (-0.2), and 12.5 (-1.4) mm day-1 for JJAS 2016 (Fig. 5a), 470 

2017 (Fig. 5e), and 2018 (Fig. 5i), respectively. These error statistics are reduced to 3.9 471 

(0.1), 4.2 (-0.0), and 4.7 (-0.2) mm day-1, respectively for JJAS 2016 (Fig. 5b), 2017 (Fig. 472 

5f), and 2018 (Fig. 5j). The values of BIAS are close to zero after hybrid assimilation due 473 

to the bias correction step implemented in the variational assimilation method.  The value 474 

of correlation coefficient has increased from around 0.7 in GSMaP_Gauge to 0.96 in 475 

GSMaP_Gauge_NEW rainfall. The number of training gauges observations are almost 476 

0.35 million for different years. These statistics suggest that after merging of training 477 

gauges in GSMaP rainfall product by hybrid assimilation method, new rainfall products 478 

are closer to training gauges and supports successful ingestion of ground observations. 479 

Similar to GSMaP_Gauge rainfall product, error statistics for GSMaP_MVK rainfall 480 

product is also improved from 12.3 (-1.8), 13.0 (-1.6), and 16.5 (-2.1) mm day-1 for JJAS 481 

2016 (Fig. 5c), 2017 (Fig. 5g), and 2018 (Fig. 5k), respectively to 4.1 (-0.2), 4.4 (-0.2), 482 

and 4.9 (-0.3) mm day-1 in GSMaP_MVK_NEW (Figs. 5d,h,l) rainfall product. The value 483 

of correlation coefficient is also improved from around 0.52 in GSMaP_MVK rainfall 484 

product to 0.96 in GSMaP_MVK_NEW rainfall product. These statistics suggest that after 485 

merging of training gauges with GSMaP_MVK rainfall product, the new rainfall products 486 

are closer to assimilated observations (training gauges) and support successful 487 

assimilation of the ground observations.        488 
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After initial verification of operational and new GSMaP rainfall products, these 489 

rainfall products are also compared with verification gauges that can be considered as 490 

independent verification. Results suggest that GSMaP_Gauge rainfall has RMSD (BIAS) 491 

of 9.4 (0.5), 10.3 (-0.1), and 11.9 (-1.2) mm day-1 for JJAS 2016 (Fig. 6a), 2017 (Fig. 6e), 492 

and 2018 (Fig. 6i), respectively. These error statistics are changed to 6.8 (0.1), 7.4 (-0.1), 493 

and 8.1 (-0.4) mm day-1, respectively in GSMaP_Gauge_NEW rainfall product for JJAS 494 

2016 (Fig. 6b), 2017 (Fig. 6f), and 2018 (Fig. 6j). The value of correlation coefficient has 495 

increased from around 0.7 in GSMaP_Gauge to 0.86 in GSMaP_Gauge_NEW rainfall. 496 

The numbers of verification gauges are almost similar to the number of training gauges 497 

for different years. These results suggest that new rainfall products have less error as 498 

compared to operational GSMaP rainfall products when compared with verification 499 

gauges. Similar to GSMaP_Gauge rainfall product, error statistics for GSMaP_MVK 500 

rainfall product is also improved from 11.9 (-1.6), 12.7 (-1.5), and 15.6 (-1.8) mm day-1 for 501 

JJAS 2016 (Fig. 6c), 2017 (Fig. 6g), and 2018 (Fig. 6k), respectively to 7.4 (-0.4), 8.2 502 

(-0.5), and 8.9 (-0.5) mm day-1 in GSMaP_MVK_NEW (Figs. 6d,h,l) rainfall product. The 503 

values of correlation coefficient are also improved from around 0.53 in GSMaP_MVK 504 

rainfall product to around 0.82 in GSMaP_MVK_NEW rainfall product. These statistics 505 

suggest that new rainfall products have better statistics with verification gauges as 506 

compared to GSMaP_MVK operational rainfall product. It is also important to discuss here 507 

that the larger improvements are found in GSMaP_MVK rainfall product as compared to 508 

GSMaP_Gauge rainfall product that may be due to calibration of GSMaP_Gauge rainfall 509 

with the NOAA/CPC gauges in operational production.  510 
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Figure 7 shows the spatial distribution of the improvement parameter (IP) for 511 

GSMaP_Gauge_NEW and GSMaP_MVK_NEW rainfall product compared to operational 512 

GSMaP_Gauge and GSMaP_MVK rainfall product when compared with verification 513 

gauges. The IP is defined as  514 

𝐼𝑃 = |
1

𝑁
∑

𝑁

𝑖=1

(𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒𝑜𝑟𝑀𝑉𝐾 − 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟)| 515 

                                  − |
1

𝑁
∑𝑁

𝑖=1 (𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒_𝑁𝐸𝑊𝑜𝑟𝑀𝑉𝐾_𝑁𝐸𝑊 − 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟)|       (12) 516 

where, GSMaP_Gauge or GSMaP_MVK rainfall product is defined as 𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒𝑜𝑟𝑀𝑉𝐾, 517 

GSMaP_Gauge_NEW or GSMaP_MVK_NEW rainfall product is defined as  518 

𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒_𝑁𝐸𝑊𝑜𝑟𝑀𝑉𝐾_𝑁𝐸𝑊,  total number of collocations are defined as N, verification 519 

gauges are defined as 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟. The positive (negative) value of IP corresponds to 520 

improvement (degradation) of the GSMaP_Gauge_NEW or GSMaP_MVK_NEW rainfall 521 

product as compared to GSMaP_Gauge or GSMaP_MVK rainfall product. Figures 7a-7c 522 

show positive value of improvement parameters over Karnataka for the years of 2016-523 

2018. These improvements are more prominent over the Western Ghats region for 524 

GSMaP_Gauge rainfall with few pockets of degradation. The domain average value of IP 525 

is positive that suggests that quality of GSMaP rainfall products are improved with the 526 

ingestion of training gauges when compared with verification gauges. These positive 527 

improvements are more prominent for GSMaP_MVK rainfall products (Figs. 7d-7f) that 528 

may be due to absence of the NOAA gauge calibration in this rainfall product. The spatial 529 

distribution of IP for different years suggests that the maximum positive impact is 530 

observed over the Western Ghats regions. The values of IP for GSMaP_Gauge_NEW 531 

are largest for JJAS 2018 and smallest for JJAS 2016 over the Western Ghats. However, 532 
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the values of IP are almost similar for GSMaP_MVK_NEW rainfall for different years. 533 

Results also suggest that in addition to coastal and Western Ghats regions, NIK and SIK 534 

regions show improvement for different years.  535 

In addition to comparison of different rainfall products against verification gauges, 536 

these new rainfall products are also compared with IMERG final rainfall product. IMERG 537 

final rainfall product uses GPCC gauge analysis to calibrate merge rainfall products. As 538 

described in Schneider et al. (2014), the GPCC uses two rain gauge sources in addition 539 

to the NOAA CPC (used in the GSMaP). Dinku et al. (2008) found that the GPCC product 540 

has better overall statistics as compared to the NOAA CPC over a mountainous region of 541 

Africa. Earlier studies suggest that IMERG final products have sufficient skill over tropical 542 

regions and this dataset can be considered as an independent source for verification. The 543 

JAXA operational and new GSMaP rainfall products are also compared with IMERG final 544 

rainfall products for years 2016—2018. Results suggest that GSMaP_Gauge rainfall has 545 

RMSD (BIAS) of 9.8 (-0.6), 8.8 (0.0), and 8.8 (-0.5) mm day-1 for JJAS 2016 (Fig. 8a), 546 

2017 (Fig. 8e), and 2018 (Fig. 8i), respectively. These error statistics are changed to 9.9 547 

(-0.9), 9.3 (0.0), and 9.9 (0.4) mm day-1, respectively for JJAS 2016 (Fig. 8b), 2017 (Fig. 548 

8f), and 2018 (Fig. 8j). The value of correlation coefficient is slightly more for 549 

GSMaP_Gauge_NEW as compared to GSMaP_Gauge rainfall. However, slightly larger 550 

values of RMSD and BIAS are found in new rainfall products as compared to operational 551 

GSMaP rainfall products. These results suggest that new rainfall products have negligible 552 

to very small changes as compared to operational GSMaP rainfall products when 553 

compared with IMERG final rainfall. The error statistics for GSMaP_MVK rainfall product 554 

is improved from 10.9 (-2.7), 9.7 (-1.4), and 13.2 (-1.1) mm day-1 for JJAS 2016 (Fig. 8c), 555 
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2017 (Fig. 8g), and 2018 (Fig. 8k), respectively to 9.9 (-1.5), 9.2 (-0.4), and 10.3 (0.3) mm 556 

day-1 in GSMaP_MVK_NEW (Figs. 8d,h,l) rainfall product. The values of correlation 557 

coefficient are also improved from around 0.64 in GSMaP_MVK rainfall product to around 558 

0.71 in GSMaP_MVK_NEW rainfall product for JJAS 2016 and 2017, with larger 559 

improvements in JJAS 2018. These statistics suggest that new rainfall products have less 560 

error with IMERG final data as compared to GSMaP_MVK operational rainfall product. It 561 

is also important to discuss here that the large improvements are found in GSMaP_MVK 562 

rainfall when compared with IMERG final data, whereas, negligible to little changes are 563 

found for GSMaP_Gauge rainfall. It is important to mention here that the new GSMaP 564 

rainfall products have higher correlation with verification gauges as well as IMERG final 565 

data that supports the improved skill of rainfall product after hybrid assimilation of training 566 

gauges.  567 

To evaluate the skill of operational and new GSMaP rainfall products, these data 568 

are also compared with verification gauges for different IMD classifications. In addition to 569 

IP defined in equation (12), absolute NBIAS are also used to understand the quality of 570 

new rainfall products as compared to operational GSMaP rainfall products. The absolute 571 

NBIAS parameter is defined as 572 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑁𝐵𝐼𝐴𝑆 =  |
1

𝑁
∑

𝑁

𝑖=1

(
𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒𝑜𝑟𝑀𝑉𝐾 − 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟

𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒𝑜𝑟𝑀𝑉𝐾 + 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟
) | 573 

   − |
1

𝑁
∑𝑁

𝑖=1 (
𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒𝑁𝐸𝑊𝑜𝑟𝑀𝑉𝐾𝑁𝐸𝑊

 − 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟

𝐺𝑆𝑀𝑎𝑃𝐺𝑎𝑢𝑔𝑒𝑁𝐸𝑊𝑜𝑟𝑀𝑉𝐾𝑁𝐸𝑊
 + 𝐾𝑆𝑁𝐷𝑀𝐶𝑣𝑒𝑟

) |      (13) 574 

Positive (negative) values of absolute NBIAS show improvement (degradation) of new 575 

rainfall data against operational GSMaP rainfall. Figure 9 shows improvement parameter 576 

and absolute NBIAS in both GSMaP_Gauge_NEW and GSMaP_MVK_NEW rainfall 577 
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products during JJAS 2016—2018. Results suggest that the value of improvement varies 578 

from 2-60 mm day-1 for different rain classifications (Fig. 9a). Generally, GSMaP_Gauge 579 

rainfall has less improvement as compared to GSMaP_MVK rainfall product. It suggests 580 

that due to operational gauge calibration, GSMaP_Gauge rainfall product is closer to 581 

ground observations. It is also important to note that for all heavy rainfall classifications, 582 

both operational GSMaP rainfall products show large improvement (Fig. 9a). These large 583 

improvements are mainly over the Western Ghats regions, and more noteworthy for years 584 

2017 and 2018. The value of absolute NBIAS in GSMaP_Gauge is less as compared to 585 

GSMaP_MVK for different rainfall classifications except very heavy and extremely heavy 586 

rainfall classifications (Fig. 9b). These results suggest substantial improvement in 587 

operational GSMaP rainfall product after implementing hybrid assimilation. It is also 588 

important to note that the areas with higher precipitation show larger improvement. 589 

The density plot of rainfall deviation (defined as GSMaP minus rain gauge) for 590 

GSMaP_Gauge, GSMaP_Gauge_NEW, GSMaP_MVK, and GSMaP_MVK_NEW for 591 

years 2016—2018 are shown in Fig. 10. This figure suggests that for different rainfall 592 

thresholds GSMaP_Gauge_NEW and GSMaP_MVK_NEW rainfall have less error. The 593 

new product is closer to observations for all years as compared to operational GSMaP 594 

rainfall products. The density plot of deviation is shifted towards low rainfall values that 595 

suggest that more numbers of points are closer to observations after assimilation. 596 

However, for high rainfall thresholds both operational GSMaP rainfall products have large 597 

deviations. It suggests that a dense network of rain gauges over orographic heavy rainfall 598 

regions improves the quality of both operational GSMaP rainfall products. Results also 599 

present better performance of GSMaP_Gauge as compared to GSMaP_MVK rainfall 600 
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product for selected study period. Moreover, new rainfall products have better skill for 601 

high rainfall thresholds over Karnataka, India. The hybrid assimilation of additional gauge 602 

observations mainly over the Western Ghats regions are able to capture magnitude of the 603 

complete dynamical range of rainfall (mainly higher rainfall) accurately as compared to 604 

operational GSMaP rainfall products. 605 

 606 

3.3. Evaluation of different assimilation method for variable density of rain gauges  607 

 The Cressman (Cressman, 1959) and optimal interpolation (Daley, 1997) methods 608 

are also used in this study in addition to hybrid assimilation method to understand the 609 

importance of the hybrid assimilation method. To recognize the need of dense rain gauge 610 

network, total rain gauge stations in the year 2018 are randomly divided as training and 611 

validation gauge stations. Further, the training gauge stations used for data assimilation 612 

are divided in three cases viz. RG1 (all training rain gauge stations), RG2 (50% of training 613 

rain gauge stations), and RG3 (25% of training rain gauge stations). Merge rainfall 614 

product prepared from different assimilation methods (viz. Cressman, Optimal 615 

interpolation and hybrid method) and variable numbers of rain gauge stations (viz. RG1, 616 

RG2, and RG3) in addition to both operational GSMaP rainfall products are compared 617 

with independent validation rain gauge stations for ISM 2018. The radius of influence 618 

(ROI) is considered as 5 km for Cressman method. The fix observation and background 619 

error for optimal interpolation method is same as used for variational assimilation 620 

discussed in section 3. The RMSD values for RG1, RG2, and RG3 with different 621 

assimilation methods are shown in Table 3.  622 
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 Results show that in general merge rainfall products have less error as compared 623 

to both operational GSMaP products. Less RMSD values are noticed in optimal 624 

interpolation method as compared to Cressman method.  The reduction of RMSD is more 625 

in hybrid assimilation method as compared to other selected assimilation methods. It 626 

clearly shows the importance of considering flow of background error covariance in hybrid 627 

assimilation method that considered as fix in optimal interpolation method (i.e. B is 628 

considered as diagonal matrices with diagonal elements as 4 mm day-1 in optimal 629 

interpolation method).  Additionally, high-density rain gauge network has large impact on 630 

merge rainfall product. The RMSD values of 11.8 (15.3), 11.4 (14.6), and 10.7 (12.8) mm 631 

day-1
 are noticed in the Cressman method generated merge GSMaP_Gauge 632 

(GSMaP_MVK) product for RG3, RG2, and RG1 gauges, respectively. It is also important 633 

to mention here that both rain gauge density and assimilation methodology are important 634 

for preparing merge rainfall products. Cressman and optimal interpolation methods show 635 

more effect of dense gauge network for GSMaP_MVK rainfall products. The values of 636 

RMSD are reduced from 15.3 (13.1) to 12.8 (9.4) mm day-1 for Cressman (optimal 637 

interpolation) method in GSMaP_MVK rainfall for RG3 to RG1 gauges, respectively. 638 

However, the impact of the utilized rain gauge numbers is relatively less in hybrid 639 

assimilation method. The values of RMSD is changed from 10.6 to 8.3 mm day-1 for RG3 640 

to RG1 gauges in GSMaP_MVK merge rainfall for hybrid assimilation method. In general, 641 

the RMSD values are less in GSMaP_Gauge product, that signify the importance of 642 

operational gauge calibration used in this product. 643 

 644 

 645 
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4. Conclusions 646 

 A hybrid assimilation method for merging various rainfall products over a unique-647 

site with dense gauge observations network over Karnataka region of southwestern India 648 

has been developed and demonstrated. The verification results for four topographically 649 

different regions within study area suggest a large error in GSMaP rainfall over coastal 650 

and Malnad Western-Ghat area, a windward side of the mountainous regions, whereas 651 

GSMaP rainfall is able to capture rainfall patterns over NIK and SIK regions. The 652 

GSMaP_Gauge rainfall product has more skill as compared to GSMaP_MVK rainfall over 653 

orographic heavy rainfall regions, and the former has less RMSD and higher correlation. 654 

Present results reconfirm large errors for high rainfall threshold for different IMD rainfall 655 

classifications. These preliminary verifications at daily scale with an independent dense 656 

gauge network suggest that further plausible modifications are possible in operational 657 

GSMaP rainfall products using ground observations mainly over orographic heavy rainfall 658 

regions, the areas well known for their land inhomogeneity. A hybrid assimilation method 659 

is implemented as a combination of variational method and Kalman filter method, in which 660 

rain gauge observations are used to prepare analysis that is an optimal combination of 661 

ground observations and GSMaP rainfall product, and evolution of background error is 662 

simulated using Kalman filter. Results suggest that new GSMaP rainfall analyses are 663 

closer to gauge observations, which are used for optimally combining and show 664 

successful assimilation of gauge observations. Further, these new daily rainfall products 665 

are compared with independent gauge observations and IMERG final rainfall products 666 

calibrated by the GPCC. Results suggest that the new analyses are in better agreement 667 

with the independent observations. Moreover, the distributions of new rainfall products 668 
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match well with gauge observations. Results are also extended to understand the 669 

importance of dense rain gauge network and different data assimilation methods like 670 

Cressman method, optimal interpolation method in addition to hybrid assimilation method. 671 

These results suggest that both dense rain gauge network and assimilation methods are 672 

important for preparing merge rainfall products. The hybrid assimilation method shows 673 

less error as compared to Cressman and optimal interpolation methods for the impacts 674 

of the utilized rain gauge numbers. In all cases, GSMaP_Gauge has less error as 675 

compared to GSMaP_MVK rainfall product. These analyses suggest that an optimal 676 

number of ground-based observations with hybrid assimilation methods have greater 677 

potential to improve satellite-based rainfall estimates. Development of this new daily 678 

gridded rainfall product can be used for various agricultural, hydrological, and 679 

meteorological applications. Moreover, such a merged product is also useful for data 680 

assimilation in the weather models (Kumar 2020), verification of model skills, monitoring 681 

of the monsoon progress and its assessment (in terms of its active and break phases), 682 

calculation of fresh water fluxes over the oceans, etc. In the present hybrid assimilation 683 

method, variation of background error with model error is not considered that may be a 684 

scope for future research. Moreover, precise estimation of observation error is also a 685 

challenging issue that is considered here as a fixed diagonal matrix. The scope of this 686 

study can be further extended with the augmentation in terms of the finer temporal 687 

resolution from daily scale to hourly scale for various hydro-meteorological applications.  688 

 689 

 690 

 691 
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 1008 
Fig. 1: Spatial distribution of (a) KSNDMC rain gauge network and NOAA/CPC rain gauge 1009 

network over Karnataka, India. KSNDMC rain gauge stations over COASTAL (650), 1010 
MALNAD (901), NIK (2737) and SIK (2214) regions are shown in green, red, blue and 1011 

yellow dots, respectively. State boundaries of India and district boundaries of Karnataka 1012 
state are shown as black lines. The black star shows location of NOAA/CPC gauges.(b) 1013 
Spatial distribution of topography at 1 km spatial resolution, (c) mean JJAS rainfall at 0.1-1014 
degree spatial resolution from 13-years TRMM precipitation radar (PR) dataset and box 1015 

covering the Western Ghats and oceanic regions, and (d) the cross-shore distribution of 1016 
rainfall (blue line) and topography (black line) averaged across the red box (c) selected 1017 

over the Western Ghats. 1018 
 1019 
 1020 
 1021 
 1022 

 1023 
 1024 
 1025 
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 1026 

 1027 
 1028 
Fig.2: Spatial distribution of mean rainfall (mm day-1) from KSNDMC rain gauges for (a) 1029 
JJAS 2016, (b) JJAS 2017, (c) JJAS 2018;GSMaP_gauge (defined as GSMaP_G) rainfall 1030 
for (d) JJAS 2016, (e) JJAS 2017, (f) JJAS 2018; and GSMaP_MVK rainfall for (g) JJAS 1031 

2016, (h) JJAS 2017, (i) JJAS 2018 over Karnataka, India.    1032 
 1033 
 1034 

 1035 
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 1040 
 1041 
Fig.3: Scatter plot of GSMaP_Gauge daily rainfall against KSNDMC rain gauge 1042 

observation during (a) JJAS 2016, (b) JJAS 2017, and (c) JJAS 2018. Scatter plot of 1043 
GSMaP_MVK daily rainfall against KSNDMC rain gauge observation during (a) JJAS 1044 

2016, (b) JJAS 2017, and (c) JJAS 2018. The blue and red lines represent the 45° 1045 
reference line and best fit line using least square method, respectively. 1046 
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 1066 
Fig.4: (a) RMSD and (b) NBIAS statistics of GSMaP_Gauge and GSMaP_MVK product 1067 

for different IMD rainfall classifications as shown in Table 1. 1068 
 1069 
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 1086 
Fig.5: Scatter plot of GSMaP_Gauge daily rainfall during (a) JJAS 2016, (e) JJAS 2017, 1087 

and (i) JJAS 2018; GSMaP_Gauge_NEW daily rainfall during (b) JJAS 2016, (f) JJAS 1088 

2017, and (j) JJAS 2018; GSMaP_MVK daily rainfall during (c) JJAS 2016, (g) JJAS 2017, 1089 
and (k) JJAS 2018; GSMaP_MVK_NEW daily rainfall during (d) JJAS 2016, (h) JJAS 1090 
2017, and (l) JJAS 2018 against training gauges. Randomly selected 50 % rain gauges 1091 
from the dense KSNDMC network are used as training gauges to prepare new rainfall 1092 
products. The blue and red lines represent the 45° reference line and best fit line using 1093 
least square method, respectively. 1094 
 1095 
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 1097 

 1098 
Fig.6: As in Fig. 5 but against verification gauges. The verification gauges are 1099 
independent KSNDMC rain gauge observations. 1100 
 1101 
 1102 
 1103 
 1104 
 1105 
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 1110 
Fig.7: Spatial distribution of improvement parameter (IP) for GSMaP_Gauge_NEW during 1111 

(a) JJAS 2016, (b) JJAS 2017, and (c) JJAS 2018; and GSMaP_MVK_NEW rainfall 1112 
product during (d) JJAS2016, (e) JJAS2017, and (f) JJAS2018, respectively. 1113 
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 1126 
Fig.8: As in Fig. 5 but against IMERG final rainfall product.  1127 
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 1129 
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 1131 
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 1136 
Fig.9: Error statistics of (a) Improvement parameter and (b) absolute NBIAS for 1137 
GSMaP_Gauge_NEW (GSMaP_MVK_NEW) rainfall compared to GSMaP_Gauge 1138 

(GSMaP_MVK) rainfall for different IMD classifications as shown in Table 1. 1139 
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 1156 
Fig. 10: Distribution of rainfall deviation (defined as GSMaP minus gauge) during (a) JJAS 1157 
2016, (b) JJAS 2017, and (c) JJAS 2018.  1158 
 1159 

 1160 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 



55 
 

Table 1: IMD rainfall classification 1171 

Type Amount of Rainfall 

No rain Rainfall amount realised in a day is 0.0 mm 

Very light rain Rainfall amount realised in a day is between 0.1 to 2.4 mm 

Light rain Rainfall amount realised in a day is between 2.5 to 7.5 mm 

Moderate Rain Rainfall amount realised in a day is between 7.6 to 35.5 mm 

Rather Heavy Rainfall amount realised in a day is between 35.6 to 64.4 mm 

Heavy rain Rainfall amount realised in a day is between 64.5 to 124.4 mm 

Very Heavy rain Rainfall amount realised in a day is between 124.5 to 244.4 mm 

Extremely Heavy rain Rainfall amount realised in a day is more than or equal to 244.5 mm 

 1172 

 1173 

Table 2: Error statistics of GSMaP_Gauge and GSMaP_MVK rainfall against dense rain 1174 

gauge networks over Karnataka, India 1175 

Region Year 
Satellite 
Rainfall 

Data 
Points 

BIAS  
(mm day-1) 

NBIAS RMSD  
(mm day-1) 

Correlation 

COASTAL 

2016 
GSMaP_Gauge 70789 -0.8 0.04 17.5 0.74 

GSMaP_MVK 70789 -14.6 0.03 25.5 0.58 

2017 
GSMaP_Gauge 63556 -3.9 -0.07 19.9 0.71 

GSMaP_MVK 63556 -13.7 -0.65 34.9 0.37 

2018 
GSMaP_Gauge 78411 -7.8 -0.45 24.7 0.74 

GSMaP_MVK 78411 -11.6 -0.52 38.3 0.58 

MALNAD 

2016 
GSMaP_Gauge 105748 0.9 0.33 11.8 0.60 

GSMaP_MVK 105748 -4.4 0.28 13.3 0.46 

2017 
GSMaP_Gauge 95184 -0.4 0.04 11.7 0.65 

GSMaP_MVK 95184 -4.5 -0.40 15.0 0.39 

2018 
GSMaP_Gauge 108638 -5.2 -0.27 20.0 0.62 

GSMaP_MVK 108638 -7.8 -0.39 21.9 0.54 

NIK 

2016 
GSMaP_Gauge 300645 0.9 0.43 8.0 0.63 

GSMaP_MVK 300645 0.4 0.43 9.7 0.55 

2017 
GSMaP_Gauge 270460 0.4 0.40 7.8 0.57 

GSMaP_MVK 270460 0.3 0.11 8.8 0.57 

2018 
GSMaP_Gauge 326989 0.5 0.19 6.5 0.50 

GSMaP_MVK 326989 0.8 0.10 8.7 0.49 

SIK 

2016 
GSMaP_Gauge 256920 0.1 0.41 6.5 0.54 

GSMaP_MVK 256920 0.4 0.42 7.8 0.58 

2017 
GSMaP_Gauge 230988 0.5 0.33 8.4 0.55 

GSMaP_MVK 230988 0.6 0.07 8.9 0.59 

2018 
GSMaP_Gauge 266765 -0.1 0.23 6.4 0.54 

GSMaP_MVK 266765 0.1 0.07 7.5 0.50 
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Table 3: RMSD in daily GSMaP rainfall products using different assimilation methods and 1177 

utilized rain gauge numbers (RG1, RG2, RG3). 1178 

Data Training Rain 

Gauges 

Operational 

(mm day-1) 

Cressman 

Method 

(mm day-1) 

Optimal 

Interpolation 

(mm day-1) 

Hybrid 

method 

(mm day-1) 

GSMaP_MVK RG1  16.1 12.8 9.4 8.3 

RG2 16.1 14.6 11.2 9.2 

RG3 16.1 15.3 13.1 10.6 

GSMaP_Gauge RG1  12.1 10.7 8.4 7.6 

RG2 12.1 11.4 9.7 8.4 

RG3 12.1 11.8 10.7 9.1 

 1179 
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