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Abstract15

The regional data assimilation system at the Japan Meteorological Agency16

employs a variational data assimilation system on the basis of the non-17

hydrostatic model ASUCA (named ASUCA-Var). This paper reviews con-18

figurations and the current status of ASUCA-Var. To consider the consis-19

tency of analysis and prognostic variables, the control variables of ASUCA-20

Var include soil variables and basic atmospheric variables. The background-21

errors based on the control variables are calculated every three hours for22

land and sea grid points to better reflect the representative error covariance23

structure, taking into account daily variations and differences in structure24

on land and sea. Although the cost function is designed to be a perfect25

quadratic form, the basic field update method in the optimization process26

allows the nonlinearity of the observation operator and numerical weather27

prediction model to be incorporated into the solution of optimization prob-28

lem in the incremental four-dimensional variational (4D-Var) method. The29

outer/inner models used in the incremental 4D-Var method are based on30

ASUCA, with suitable configurations according to each resolution and ap-31

plied linearization. Observation operators are implemented for various kinds32

of observations used, with unified interfaces encapsulating external simula-33

tors. Variational quality control and variational bias correction are also in-34

troduced for advanced observation handling within the variational system.35
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Parallelization is introduced to enhance computational efficiency, includ-36

ing adjoint calculations. To assess the impact of assimilated observations,37

degrees of freedom for signal are also available. In addition, as a system38

for operational use, ASUCA-Var is designed for sustainable development.39

The meso-scale analysis and local analysis workflows are presented as oper-40

ational implementations of ASUCA-Var. ASUCA-Var improves forecasting41

in a wide range of validation indices. The major future improvements of42

ASUCA-Var include the introduction of the flow-dependent background-43

error and the extension of the control variable to hydrometeors, which are44

expected to enhance the prediction accuracy of the operational regional45

model.46
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1. Introduction49

The first study which used the variational method to generate initial50

conditions for numerical forecast models was conducted by Sasaki (1958).51

Thereafter, the adjoint method studied theoretically by Talagrand and Courtier52

(1987) paved the way for the practical application of four-dimensional vari-53

ational methods. Parrish and Derber (1992) documented the first success54

with the operational use of the three-dimensional variational (3D-Var) data55

assimilation method in numerical weather prediction (NWP) for finding an56

optimal solution in a three-dimensional atmosphere. The practical applica-57

tion of a four-dimensional variational (4D-Var) data assimilation method,58

which includes the time component in the cost function, was introduced59

through the advent of the incremental 4D-Var (Courtier et al., 1994), which60

had its first operational run at the European Centre for Medium-Range61

Weather Forecasts in 1997 (Rabier et al., 2000; Mahfouf and Rabier, 2000;62

Klinker et al., 2000). Since then, variational data assimilation has made63

rapid progress both in its methodology and its extensive use of observations64

at NWP centers, serving as a foundation of high-quality weather prediction65

across a wide range of forecast time periods and spatial resolution.66
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An important objective in NWP is to forecast severe weather events67

localized in time and space using a high-resolution limited-area model,68

and the enhancement of data assimilation systems is one of the key ele-69

ments to achieve this. Gustafsson et al. (2018) comprehensively reviewed70

convection-scale data assimilation systems for NWP centers worldwide, in-71

cluding Japan. Variational data assimilation methods are essential for re-72

gional NWP and have been used by Météo-France, the HIgh-Resolution73

Limited-Area Modeling (HIRLAM) consortium, the Aire Limitée Adapta-74

tion dynamique Développement InterNational (ALADIN) consortium, the75

Regional Cooperation for Limited-Area modeling in Central Europe (RC76

LACE) consortium, the National Oceanic and Atmospheric Administration77

of the USA (NOAA), the Met Office, and the Japan Meteorological Agency78

(JMA) in their operational systems to create initial conditions for regional79

models (Gustafsson et al., 2018).80

As of 2021, JMA has been operating two regional NWP models, one is81

the Meso-Scale Model (MSM) with a resolution of 5 km and the other is82

the Local Forecast Model (LFM) with a resolution of 2 km, both based on83

the non-hydrostatic model ASUCA (Ishida et al., 2009, 2010; Hara et al.,84

2012) and the recent updates are reported by the outline of NWP at JMA85

(Japan Meteorological Agency, 2019) and Ikuta et al. (2020). The opera-86

tional data assimilation (DA) systems for pre-processing and quality control87
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of observational data, known as meso-scale analysis (MA) for MSM and local88

analysis (LA) for LFM, have shared the core of the variational DA system89

based on ASUCA (ASUCA-Var).90

JMA started to use 4D-Var for regional NWP to initialize the hydro-91

static MSM in March 2002 (Ishikawa and Koizumi, 2002), called Meso-92

4DVar, which was the world’s first ‘regional’ 4D-Var system. Afterwards,93

the MSM forecast model was updated to the JMA Non-Hydrostatic Model94

(JMA-NHM; Saito et al., 2006, 2007) in 2004, followed by updating the DA95

system to the ‘JMA Non-hydrostatic model’-based four-dimensional Vari-96

ational data Assimilation system (JNoVA; Honda et al., 2005; Honda and97

Sawada, 2009, 2010) in April 2009. In January 2017, ASUCA was intro-98

duced to the MSM replacing JMA-NHM. In March 2020, ASUCA-4DVar99

was introduced for MA applying a consistent DA system to the forecast100

model (Ikuta et al., 2020).101

Besides operational usage, these systems have been beneficial for re-102

search purposes. For instance, the Meso-4DVar was used to investigate103

assimilation impacts of precipitable water vapor (PWV) data derived by104

Global Positioning System (GPS), radial wind vectors derived by Doppler105

radar (Seko et al., 2004), GPS-PWV data (Shoji et al., 2011), and GPS ra-106

dio occultation refractivity (Kunii et al., 2012). JNoVA was used to demon-107

strate a state-of-the-art NWP with the first regional reanalysis of Typhoon108
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Vera which occurred in 1959 (Kawabata et al., 2012) and also to demonstrate109

the improved forecasting accuracy of extreme event with hybrid-4DVar (Ito110

et al., 2016). Another research 4D-Var system closely related to JNoVA is111

NHM-4DVAR, which is a cloud-resolving non-hydrostatic 4D-Var used in112

several studies (e.g., Kawabata et al., 2007, 2011, 2014).113

Conversely, LFM has been operationally introduced in 2012, using JMA-114

NHM as the forecast model, and applying the 3D-Var version of JNoVA in115

LA. These were replaced by ASUCA and ASUCA-3DVar in January 2015116

(Aranami et al., 2015), followed by an upgrade of ASUCA-3DVar to begin117

assimilation of the clear sky radiance and the soil moisture from satellite118

data, and to introduce variational bias correction in January 2017 (Ikuta,119

2017a).120

ASUCA-Var was created from scratch following the update of the fore-121

cast model from JMA-NHM to ASUCA, and pre-processing also was re-122

constructed to adapt to this new assimilation system. In developing the123

DA system, coding rules and design strategies were reviewed by develop-124

ers to maintain a schedule to keep the system up to date, which is one125

of the main requisites in operating an adjoint-based method for a sustain-126

able development. Although there was no novelty in the light of science to127

the reconstruction with widely proven technology, it was conducted with128

careful design reviews and several refinements and the system has strongly129
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enhanced the efficiency of development leading to the improvement of pre-130

diction accuracy. Consequently, ASUCA-Var was brought into operation in131

the LA in 2015 as version LA1501 and then in the MA in 2020 as version132

MA2003. These systems are now mature and will proceed toward varia-133

tional data assimilation with ensemble method in the future. Thus, it is134

timely to review the current state of operational regional DA techniques at135

JMA.136

In this review paper, first, we describe the formulation of the ASUCA-137

Var variational data assimilation method, including cost function, back-138

ground error, observation operator, and model operator terms; the concept139

of design for sustainable development and parallelization are shown in Sec-140

tion 2. In Section 3, operational systems are introduced. In Section 4, the141

performance of ASUCA-Var is demonstrated. The conclusion and future142

plans are described in the last section.143

2. Variational data assimilation method144

ASUCA-Var is a core system of LA and MA that uses 3D-Var and 4D-145

Var, respectively. The fundamental formulation is common to both systems,146

and 3D-Var can be seen as a simplified method of 4D-Var. Hence, this147

section details the 4D-Var version of ASUCA-Var, and the configuration of148

MA and LA will be described in Section 3.149
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2.1 Cost function150

a. Formulation151

In the variational DA method, the analysis value is obtained by mini-152

mizing the cost function. The cost function of ASUCA-Var is defined as153

J = Jb + Jo + Jbc + Jdf , (1)

where Jb is a background term to measure the distance of the unknown154

model state from the background state, Jo is an observation term to measure155

the distance of the unknown model state from the observations, Jbc is a156

variational bias correction (VarBC; Dee, 2004; Cameron and Bell, 2018)157

term to estimate observation bias, and Jdf is a penalty term to reduce158

the gravity wave as noise using a digital filter (DF; e.g., Gustafsson, 1992;159

Lynch, 1997; Gauthier and Thépaut, 2001; Wee and Kuo, 2004).160

First, the background term Jb is given as161

Jb =
1

2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)
, (2)

where x0 is the state vector at time t0, x
b
0 is the state vector of the first162

guess at time t0, B0 is the background error covariance matrix, and t0 is163

the start time of assimilation window. B0 is constructed assuming that the164

error distribution is Gaussian, and is given as a positive definite symmetric165

matrix by prior statistics investigation (subsection 2.7). In this paper, we166

solve the problem under the assumption where B−1
0 exists following the167
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formulation of traditional variational methods, and refer to Ide et al. (1997)168

for notation.169

Second, the observation term Jo measures the distance of the unknown170

model state from observations yoi at observed time ti. An observation oper-171

ator Hi to compute the model state corresponding to observation state at172

ti is described as173

Hi (xi) = Hi (Mi,0 (x0)) , (3)

where Mi,0 is the nonlinear model operator based on ASUCA. The role of174

Mi,0 is the time propagation from x0 to xi as175

xi = Mi,0 (x0) . (4)

Using those operators, Jo is given as176

Jo =
n∑

i=0

1

2
(Hi (Mi,0 (x0))− yo

i + P (β))T R−1
i (Hi (Mi,0 (x0))− yo

i + P (β)) ,

(5)

where P (β) is observation bias, Ri is the observation error covariance ma-177

trix, and [t0, tn] is the range of the assimilation window.178

Third, the VarBC term Jbc to estimate the observation bias is given as179

Jbc =
1

2

(
β − βb

)T
B−1

bc

(
β − βb

)
, (6)

where β is a control variable for bias correction, βb is the first guess of β,180

and Bbc is the background error covariance matrix for VarBC. The VarBC181
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is only applied to satellite observations in our operational system (see sub-182

section 2.5).183

Finally, the penalty term Jdf is given as184

Jdf =
1

2

(
N∑
k=0

γkMk,0 (x0)

)T

B−1
df

(
N∑
k=0

γkMk,0 (x0)

)
, (7)

where γk and Bdf are weighting coefficients at the k-th timestep (k =185

0, · · · , N) and a diagonal matrix for DF, respectively; see subsection 2.6.186

b. Basic field update187

Solving the problem of minimizing the linearized cost function yields188

the analysis value. By expanding the cost function around the basic field,189

the problem to be solved is transformed into a complete quadratic form,190

allowing for stable numerical calculations. Here the basic field refers to the191

trajectory of the model variables given by the nonlinear model in the model192

space. Because optimization is based on linear theory, it was not possible193

to incorporate the effects of nonlinear processes, but the basic field update194

(Trémolet, 2008) alleviated this problem and allowed the effects of nonlinear195

processes to be included in optimization.196

For the basic field update, the basic field at the first iteration is equal197

to the trajectory of the first guess. After minimizing the cost function to198

obtain the analysis value (inner loop), the basic field is recalculated from199

the analysis value using a nonlinear NWP model. The newly calculated200
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basic field is used to re-linearize and minimize the cost function for the next201

iteration. This iterative updating and minimization of the basic field yields202

the final analysis value. Such cycles of the basic field computation and the203

inner loop are called the outer loop. The specific procedure of the basic field204

update in MA is explained in Section 3. Briefly, the outer loop is repeated205

three times in MA. The first inner loop has 20 iterations, and the second206

and third inner loops have 15 iterations each. The basic field is updated207

twice at the connection of inner loops.208

The cost function linearized around the j-th basic field based on Trémolet209

(2008) is defined as follows:210

Jb =
1

2

(
δx

(j)
0 − δx

b(j)
0

)T
B−1

0

(
δx

(j)
0 − δx

b(j)
0

)
, (8)

211

Jo =
1

2

n∑
i=0

(
H

(j)
i M

(j)
i,0δx

(j)
0 +P(j)δβ(j) − d

(j)
i

)T
R−1

i

(
H

(j)
i M

(j)
i,0δx

(j)
0 +P(j)δβ(j) − d

(j)
i

)
,

(9)212

Jbc =
1

2

(
δβ(j) − δβb(j)

)T
B−1

bc

(
δβ(j) − δβb(j)

)
, (10)

213

Jdf =
1

2

(
Γ(j)δx

(j)
0 − g(j)

)T
B−1

df

(
Γ(j)δx

(j)
0 − g(j)

)
, (11)

where j is the number of iterations of the basic field update, and the number214

of iterations in inner loop is omitted to avoid complexity. For example, the215

basic field update with j = 1 is conducted after the first 20 iterations. The216

details of the cost function will be described below. The j-th increment217
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δx
(j)
0 is given as218

δx
(j)
0 = x0 − x

(j−1)
0 , (12)

and the j-th difference of the background is given as219

δx
b(j)
0 = xb

0 − x
(j−1)
0 , (13)

where x
(j)
0 is the basic field at the j-th update. Similarly, the increments220

for VarBC are defined as221

δβ(j) = β − β(j−1), (14)
222

δβb(j) = βb − β(j−1). (15)

The basic field for the initial iteration j = 1 is the same as the first guess223

xg
0 and βg:224

x
(0)
0 = xg

0, (16)
225

β(0) = βg. (17)

xg
0 is given by the forecast from the previous analysis, and βg is succeeded226

from the previous analysis.227

The tangent-linear operators H
(j)
i , M

(j)
i,0 , and P(j) are obtained by tan-228

gent linearizing the nonlinear operators Hi, Mi,0, and P around the basic229

field x
(j−1)
0 and β(j−1). The relationships of nonlinear operators and tangent-230

linear operators are written as231

Hi

(
x
(j−1)
i + δx

(j)
i

)
= Hi

(
x
(j−1)
i

)
+H

(j)
i δx

(j)
i , (18)
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232

Mi,0

(
x
(j−1)
0 + δx

(j)
0

)
= Mi,0

(
x
(j−1)
0

)
+M

(j)
i,0δx

(j)
0 , (19)

233

P
(
β(j−1) + δβ(j)

)
= P

(
β(j−1)

)
+P(j)δβ(j), (20)

where we ignore the second order and higher order terms on the right-hand234

side. The matrix elements of the tangent-linear operators in Eqs. (18)–(20)235

are replaced by the basic field update. The j-th innovation is given as236

d
(j)
i = di+Hi (Mi,0 (x

g
0))−Hi

(
Mi,0

(
x
(j−1)
0

))
+P (βg)−P

(
β(j−1)

)
, (21)

using the nonlinear operators. In the incremental approach, the model op-237

erator used to calculate the cost function in the iteration is a low-resolution238

model Mi,0, and di

(
= yo

i −Hi

[
Mh

i,0 (x
g
0)
]
− P (βg)

)
is an innovation es-239

timated with a high-resolution model Mh
i,0 which is invariant in the op-240

timization and independent of basic field updates. Additionally, the first241

guess (·)g is used for the background state (·)b.242

The model operator in the DF term is linearized around the basic field.243

The weighted average of the basic field trajectory is given as244

g(j) =
N∑
k=0

γkMk,0

(
x
(j−1)
0

)
, (22)

and the perturbation around the basic field trajectory is given as245

N∑
k=0

γkMk,0

(
x
(j−1)
0 + δx

(j)
0

)
= g(j) + Γ(j)δx

(j)
0 , (23)

13



where the tangent-linear operator for the DF is defined as246

Γ(j) =
N∑
k=0

γkM
(j)
k,0. (24)

Because of the limitation of computation time in operational runs, as men-247

tioned earlier, the number of basic field updates in the MA was set to two,248

with the three-time inner loops (20, 15, and 15 iterations). For forecasting249

heavy rain events, which are greatly affected by nonlinear processes in NWP250

models, the accuracy can be improved if the number of basic field updates251

is increased.252

2.2 Analysis variables253

The elements selected for variational optimization are described as254

x0 = (u, v, Tg, Ps, θ,Wg, µp) , (25)

at assimilation window start time (t = t0). The descriptions of these ele-255

ments are given in the following list:256

• u (m s−1), x axis wind component;257

• v (m s−1), y axis wind component;258

• Tg (K), soil temperature;259

• Ps (Pa), surface pressure;260
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• θ (K), potential temperature;261

• Wg (unitless), soil volumetric water content;262

• µp (unitless), pseudo relative humidity.263

µp is defined as µp = qv/q
b
sat (Dee and da Silva, 2003), where qv (kg kg−1)264

is the mixing ratio of water vapor, qbsat (kg kg−1) is saturated water vapor265

fixed by the first guess value. µp has a greater benefit compared with qv,266

being closer to Gaussian-shaped error distributions. These elements are not267

the same as the prognostic variables in the forecast model. The prognostic268

variables of the model are derived from these analysis variables in Eq. (25).269

However, both hydrometeors and the vertical velociy are not included in270

the set of analysis variables and are initialized with the first guess values271

and zero, respectively, at the assimilation window start time.272

The space to be optimized by data assimilation is discretized into cubic273

cells using the finite volume method, the same as ASUCA. The vector vari-274

ables u and v are placed at the centers of the sides of the cell (u-point and275

v-point). Thus, they are staggered in the grid representation. The scalar276

variable is placed at the center of the cell (p-point), and its value is the cell277

average.278
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2.3 Background term279

The background term measures the distance between the unknown model280

state and the first guess as the background state. The distance is normal-281

ized by the background error covariance matrix B0, which is defined by the282

statistical error of the background state xb
0 from the true state xt

0 at t = t0.283

B0 is given as284

B0 =
〈(

xb
0 − xt

0

)
,
(
xb
0 − xt

0

)T〉
, (26)

where ⟨·⟩ indicates the expectation value (e.g., Bannister, 2008). The num-285

ber of dimensions of the fullB0 is huge, approximately 109×109 as estimated286

by the degrees of freedom of MSM, that it is difficult to practically calcu-287

late. By assuming that some variables are uncorrelated and making the288

background error covariance matrix sparse, the calculation cost can be sig-289

nificantly reduced. For simplicity, we omit the error correlations between290

some of the elements and divide B0 into four blocks as follows:291

B0 =



Bu 0 0 0

0 Bv 0 0

0 0 BTg,Ps,θ 0

0 0 0 BWg,µp


, (27)

where the background error of u and v are independent of other elements,292

the background errors of Tg, Ps, and θ are assumed to be correlated, and293

this is also the case for Wg and µp. In our system, the error correlation be-294
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tween the potential temperature and the wind velocities is ignored because295

it is statistically smaller than the other error correlations. This assumption296

facilitates the modeling of error covariance and can reduce the computa-297

tional cost of the optimization. The background error is estimated by the298

National Meteorological Center (NMC) method (Parrish and Derber, 1992).299

The NMC method estimates the background error using the difference be-300

tween the 6-hour forecast xf (t = 6h) and the 3-hour forecast xf (t = 3h) at301

the same valid time, as follows:302

B̂ = α
〈(

xf (t = 6h)− xf (t = 3h)
)
,
(
xf (t = 6h)− xf (t = 3h)

)T〉
, (28)

where α is a scaling factor. The 3 h difference is due to the 3 h data assimila-303

tion window. In the actual calculation, both xf (t = 6h) and xf (t = 3h) are304

calculated using the same lateral-boundary condition. This method is called305

the lagged NMC method (Široká et al., 2003) and eliminates the source of306

error which comes from the lateral-boundary condition. We assume that the307

vertical background error is independent of the horizontal background er-308

ror. Horizontal background error correlations are independent between the309

x and y directions. The shape of the horizontal background error correlation310

is given in Gaussian form. The statistics data are taken as the 10th–19th of311

each month from March 2018 to February 2019. The background error was312

calculated separately for land and sea grid points and classified by 3-hourly313

local time.314
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The scaling factor α was adjusted to match the new background error315

variance with the previous operational variance at about 500 hPa, keep-316

ing a balance between background error and observation error. Figure 1317

shows the variance profiles on land and sea grid points. Horizontal winds318

u and v have large variance inside the boundary layer at night on the land319

grid points and small variance during the daytime when vertical convection320

mixing is strong. Conversely, the variance of horizontal winds over the sea321

has negligible time dependency. The variance of ground temperature and322

potential temperature is large on the land grid point and small on the sea323

grid point. The bottom-level variances of Tg and Wg are zero because the324

climate values are given as boundary conditions in the forecast model. Fig-325

ure 2 shows the error correlation in the vertical direction corresponding to326

BTg,Ps,θ on land and sea. Since there is no Tg in the sea, the off-diagonal327

components of the vertical error correlation matrix associated with Tg are328

zero. Both on land and sea, Ps is negatively correlated with θ. Character-329

istically, in the lower atmosphere (e.g., the model levels from 1 to 5), the330

error correlation distance of θ in the vertical direction on land is larger than331

that on sea. The variance of pseudo relative humidity (RH) is smaller on332

the land grid point than on the sea grid point (e.g., Fig. 1d). The few layers333

near the model top are damping layers to merge the parent model, and then,334

the growth of forecast error in those layers is suppressed. Consequently, the335
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background error covariance around the model top reaches zero. Figure 3336

shows the horizontal autocorrelation length of background error for each337

analysis element calculated by the lagged NMC method. The horizontal338

autocorrelation lengths are taken to be different in the x and y directions339

but are not classified by land, sea, or local time. One of the reasons we did340

not classify the horizontal autocorrelations in local time was that it did not341

improve the forecast accuracy.342 Fig. 1

Fig. 2

Fig. 32.4 Observation term343

The observation term measures the distance between the observation344

and the model state. To compare the observation and the model, the NWP345

model is integrated to the observation time using the model operator and346

the observation is simulated using the observation operator. This section347

details the model operator and the observation operator.348

a. Model operator349

The 4D-Var method iteratively runs the time integration of the NWP350

model during variational optimization, accounting for most of the compu-351

tational cost. To reduce the calculation cost, an incremental method with352

the basic field updates (see subsection 2.1b) is used, and it also runs the353

time integration at low resolution. In the incremental method, the first354
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guess is calculated with a high-resolution model to obtain the misfit with355

observation. Conversely, a low-resolution model is used in the iteration of356

the optimization calculation for minimizing the cost function.357

ASUCA-Var uses the JMA non-hydrostatic model ASUCA as its non-358

linear model operator. Table 1 shows the ASUCA configuration as model359

operator for high and low resolution. The low-resolution model variants are360

classified as nonlinear (NL), tangent-linear (TL) which is a tangent form of361

the NL, and adjoint (AD) which is the transpose of the TL.362 Table 1

The high-resolution model is the same as the MSM. The grid spacing of363

the high-resolution model is 5 km, and the number of vertical layers is 76.364

The model’s top height is approximately 22 km. The ground temperature365

is divided into eight layers, and soil volumetric water content is divided into366

two layers. The prognostic variables are: ρ (kg m−3) is air density; ρu, ρv,367

and ρw (kg m−2 s−1) are the flux forms of (u, v, and w) wind components368

in Cartesian coordinates, respectively; ρθm (kg m−3 K) is the flux form of369

virtual moist potential temperature; ρqα (α = v, c, r, i, s, g) (kg m−3 kg kg−1)370

is the flux form of water vapor and hydrometeors; Tg is the soil temperature;371

and Wg is the soil volumetric water content.372

The NL model is basically the same as the high-resolution model except373

for its low resolution and the convective parameterization. The horizontal374

grid spacing of the low-resolution model is 15 km, and the number of ver-375
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tical layers is 38. The height of the model top is the same as that of the376

high-resolution model. The parameters of physics schemes (e.g., convective377

parameterization), which depend on the grid spacing, are modified to be378

suited for the 15 km grid spacing of the NL model.379

The grid spacing and the number of layers in the TL model are the380

same as in the NL. The dynamics in the TL model are linearized without381

simplifying the dynamics of the NL model. The physics schemes of the382

TL model are simplified to avoid severe linear approximation errors due383

to the strong nonlinearity of the NL model. Table 1 shows a summary of384

each scheme. The boundary layer scheme has a fixed diffusion coefficient385

of the background field. The surface process fixes the background bulk co-386

efficients. Radiation has a very simple implementation based on Mahfouf387

(1999). The cloud microphysics process converts water vapor perturbations388

into precipitation perturbations through tangent-linearized saturation ad-389

justment. Other elementary processes of cloud microphysics and convective390

parameterization are not linearized, and those perturbations are ignored.391

Figure 4 shows the comparison between NL perturbation,Mi,0 (x
g
0 + δx0)−392

Mi,0 (x
g
0), and TL perturbation, Mi,0δx0, in the initial condition of MSM393

at 0000 UTC 7 July 2018. Figure 4a shows the integrated qv in the vertical394

direction in the background field. To compare the NL and the TL pertur-395

bations, the pseudo initial perturbation of qv is set at the 10-th layer. The396
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shape of the initial perturbation is Gaussian with the standard deviation of397

7-grid/3-layer in horizontal/vertical direction, and the horizontal distribu-398

tion of it is shown in Fig. 4b. There is no significant difference between the399

NL and TL perturbations of the water vapor field after the time integration400

of 3 hours in the assimilation window [T−3h,T+0h] (Figs. 4c-d). However,401

the TL perturbations of precipitation are smaller than the NL perturba-402

tions, and in particular, the TL cannot predict well convective precipitation403

over the southern region of Japan (Figs. 4e-f). This difference in predicted404

perturbation is caused by the limitation of TL with simplified physical pro-405

cesses. This result also implies the necessity of the basic field update by406

NL.407 Fig. 4

The AD model is described by a code that is an exact transposition of408

the TL model code. The accuracy of the transposed code is required to409

satisfy the verification equation in a double-precision system as410

∥Mn,0δx0∥22 − δxT
0

(
MT

n,0Mn,0δx0

)
= O

(
10−15

)
, (29)

where the assimilation window tn is 3 h.411 Table 2

b. Observation operator412

The observation operator computes the model version of the observation,413

which is projected from the model state into the observation space. Table 2414

shows the acronyms related to observations. Wind speed, temperature, and415
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RH, as observed by radiosonde and SYNOP, are provided with spatial in-416

terpolation and diagnostic processes, transforming the model variables into417

observed variables. RH is given in the guide (World Meteorological Orga-418

nization, 2017, PART I Chapter 4), and is calculated as419

RH =
prv

(ε+ rv) esat
(30)

=
pqv

(ε+ (1− ε) qv) esat
, (31)

420

ε =
Rd

Rv

, (32)

where p (Pa) is the hydrostatic pressure, qv is the specific humidity, rv(=421

qv(1 − qv)
−1) is the mixing ratio, Rd (= 287.05 J kg−1 K−1) is the gas422

constant for dry air, Rv (= 461.5 J kg−1 K−1) is the gas constant for water423

vapor, and esat (Pa) is the water-saturated water vapor pressure from Tetens424

formula (Tetens, 1930).425

Surface observations (e.g., SYNOP, AMeDAS, and ASCAT) are assimi-426

lated using the observation operator based on the surface flux scheme (Bel-427

jaars and Holtslag, 1991). Wind speed at 10 m altitude is given as428

u10m =

√√√√ Cm (z1)

Cm (z10m)
u1, (33)

where z1 and u1 are the altitude and wind speed at the bottom layer of the429

model’s atmosphere, z10m and u10m are the altitude and wind speed at 10 m430

from the surface, and Cm(·) is the momentum bulk coefficient (Beljaars and431

Holtslag, 1991).432
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The temperature at 1.5 m is calculated from the potential temperature433

at 1.5 m and the surface pressure. The potential temperature and specific434

humidity at 1.5 m are given as435

θ1.5m = θs +
Ch (z1)

Ch (z1.5m)

√√√√ Cm (z1)

Cm (z1.5m)
(θ1 − θs) , (34)

436

θs =
Tg,skin

πs

, (35)

437

qv1.5m = qvs +
Cq (z1)

Cq (z1.5m)

√√√√ Cm (z1)

Cm (z1.5m)
(qv1 − qvs) , (36)

438

qvs = (1− β)qsat,s + βqv1, (37)
439

β =


Wg/0.3 Wg ≤ 0.3

1 Wg > 0.3

, (38)

where θ1 and qv1 are the potential temperature and specific humidity at the440

bottom layer of the model’s atmosphere. θs, Tg,skin, πs, qvs, qsat,s, β, and Wg441

are the potential temperature, ground temperature, Exner function, specific442

humidity, saturated specific humidity, evaporation rate, and volumetric soil443

moisture content at the model’s skin layer. Ch(·) and Cq(·) are the heating444

and latent heating bulk coefficient (Beljaars and Holtslag, 1991). The sur-445

face grid for calculating the meteorological elements of the earth’s surface446

has land tiles and sea tiles. The surface flux F depends on the type of those447

surfaces and is given by448

F = (1− Csea)Fland + CseaFsea, (39)
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where Csea is the covered rate of sea and Fland (Fsea) is surface flux from the449

land (sea) in the inner model. The effects from surface observations along450

the coastline are weighted by Csea in the adjoint operator.451

Doppler velocities observed by Doppler radar are simulated by only the452

horizontal wind component of air. As shown in Ishikawa and Koizumi453

(2006), only low elevation scans below 5.9◦ are used for assimilation, so454

the contributions of hydrometeors and vertical velocity of air to Doppler455

velocities are ignored for simplification. The Doppler velocity Vr (m s−1) at456

altitude z (m) is457

Vr (z) =

∑nz
k=1 (uk sin θ + vk cos θ) exp

[
−
(
zk−z
dδϕ

)2]
∑nz

k=1 exp
[
−
(
zk−z
dδϕ

)2] , (40)

where uk, vk, and zk are the x direction wind component, y direction wind458

component, and altitude at the model’s k-th layer; nz is the number of459

model layers; d (m) is the distance from the radar site, and δϕ (= 0.3◦)460

is the beam width of the antenna pattern. Additionally, radar reflectivity461

is assimilated as RH derived from it using the One-dimensional Maximum462

Likelihood Estimation (1D-MLE)+4D-Var method (Ikuta and Honda, 2011;463

Ikuta et al., 2021).464

Model precipitable water vapor (PWV) is obtained by integrating the465

mass of water vapor from the surface to the top model layer ztop as follows:466

PWV [mm] =
∫ ztop

0
ρqvdz, (41)
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where ρ is air density. Ground-based GNSS observations widely deployed467

in Japan have been assimilated for PWV (Ishikawa, 2010).468

The Radar/Raingauge-Analyzed Precipitation (R/A: Nagata, 2011) and469

precipitation retrievals from satellite data are assimilated as the amount of470

1 h accumulation in MA. Only precipitation observations above 0.5 mm h−1
471

are used, and no-precipitation information is not used. The observation472

error and the probability density function (PDF) for precipitation observa-473

tions are defined as in Koizumi et al. (2005), and the observation term for474

precipitation in the cost function is approximated in quadratic form as475

Jprc = −1

2

(
ŷprc − ŷoprc

r

)2

, (42)

476

r =


rinf max

(
ŷoprc, 1

) (
ŷprc ≤ ŷoprc

)
rinfrasy max

(
ŷoprc, 1

) (
ŷprc > ŷoprc

) . (43)

The R/A assimilation is used with the inflation factor rinf = 1 and the asym-477

metricity factor rasy = 3. The precipitation retrievals from satellite data is478

assimilated with rinf = 2 and rasy = 5. ŷprc and ŷoprc are variables modified479

from the 1 h accumulated precipitation from the forecast yprc (mm h−1)480

and observed yoprc (mm h−1) as described below. Originally, this formula-481

tion was applied to the original precipitation values yprc and yoprc, but it was482

very sensitive to rain intensity and PDF of the observation error remained483

non-Gaussian, which negatively affected the accuracy of the predictions.484

Therefore, yprc was converted to the new variable ŷprc in a manner similar485
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to the Box–Cox transformation (Box and Cox, 1964) method:486

ŷprc =


yλprc−1

λ
+ 1 (yprc > 1)

yprc (yprc ≤ 1)

, (44)

where λ = 1/3. This parameter was determined through trial and error to487

improve the forecast accuracy. ŷoprc is calculated from yoprc in the same way488

as ŷprc.489

Brightness temperatures of satellite observations are simulated using490

RTTOV (Radiative Transfer for TOVS: Saunders et al., 2018) and have been491

assimilated as clear sky radiance (Kazumori, 2014; Ikuta, 2017a). Refrac-492

tivity is simulated from GNSS radio occultation measurements by ROPP493

(Radio Occultation Processing Package: ROM SAF, 2019) and has been494

assimilated in MA (Hirahara et al., 2017). These external simulators are495

integrated in a common interface of ASUCA-Var’s observation operators.496

By packaging the external simulators in this way, their version dependence497

in the DA core is reduced and development efficiency is improved.498

c. Variational quality control499

Some observations are subject to variational quality control (VarQC:500

Anderson and Järvinen, 1999). In MA, the VarQC covers radiosonde, wind501

profiler (WPR), and aircraft observations (Yoshimoto, 2010). A VarQC502

PDF is defined as a mixture of normally distributed (N) and uniformly503
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distributed (F ) PDFs as follows. F derived from gross error is given by504

F =
1

2dσo

, (45)

where σo is the standard deviation of a single observation error that is the505

subject of VarQC. 2dσo is a range of possible observation values, and d is a506

parameter that determines the range. The mixed PDF pQC consisting of N507

and F is defined as508

pQC = (1− pg)N + pgF, (46)
509

N =
1√
2πσo

e−Jo

, (47)

where pg is the rate at which gross errors occur and Jo is an observation510

term of the cost function for a single observation. The observation term of511

the cost function based on pQC is written by512

JQC = − ln pQC = − ln
γ + e−Jo

γ + 1
, (48)

513

γ =
pg
√
2π

(1− pg) 2d
. (49)

The gradient of JQC is given as514

∇JQC = ∇Jo ·
(
1− γ

γ + e−Jo

)
, (50)

where
(
1− γ

γ+e−Jo

)
is called VarQC weight. Figure 5 shows Jo, JQC, ∇Jo,515

and ∇JQC. For large innovation values, ∇JQC approaches zero, and the516
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observation impact is lost. The observation term for wind observation is517

described as518

JQC
uv = − ln

γuv + e−Jo
u−Jo

v

γuv + 1
, (51)

519

γuv =
[1− (1− pug) (1− pvg)]

(1− pug) (1− pvg) 2du2dv
, (52)

where u is the x direction wind velocity, Jo
u is an observation term, pug is520

the gross error occurrence rate, and du is the coefficient that determines the521

observable range. Variables with the subscript v, which is y direction wind,522

are defined in the same way. The allocation of costs shared by u and v is523

given as524

JQC
u =

JQC
uv

Jo
u + Jo

v

Jo
u, (53)

525

JQC
v =

JQC
uv

Jo
u + Jo

v

Jo
v . (54)

VarQC is enabled from the first iteration in the optimization. Therefore,526

outliers are invalidated at the first iteration. However, since the current527

system assimilates a wide variety of observations, the analysis increment528

is calculated by assimilating observations other than outliers. Then, the529

cost function is minimized and the basic field is updated. The basic field530

update changes the VarQC weight in Eq. (50). If the VarQC weight of an531

observation that was an outlier in the first iteration is increased after the532

basic field updates, that observation has a chance of recovering to effective533

observation.534 Fig. 5
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2.5 Variational Bias Correction term535

The VarBC method in our system is used to correct for the satellite536

brightness temperature bias. The brightness temperature bias in the clear537

sky region is estimated by several predictor variables. The predictors are538

defined as follows:539

• p1, constant (=1);540

• p2, function of sea surface temperature Tsst (K) at scan position;541

• p3, function of satellite angle θsat (rad);542

• p4, function of orbit flag lorbit.543

These predictors are determined with reference to Sato (2007), and the544

form of the functions are shown below in Eqs. (56)–(58). To simplify the545

discussion, we consider the case where there is only k-th observation to546

which VarBC is applied. The bias in this case is given as547

[P (β)]k =
Np∑
i=1

[pi]k [β]l(k),i , (55)

where Np (= 4) is the number of predictors and the subscript l (k) indicates548

the subset to which the k-th observation belongs. Specifically, the subset is549

grouped by satellite, sensor, and channel. The predictors corresponding to550

k-th observation are defined as follows:551

[p2]k =
Tsst,k − 273.15

10.0
, (56)
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552

[p3]k = 1/max
(
2× 10−4, cos θsat,k

)
, (57)

553

[p4]k =


1 lorbit,k = ascending orbit (northwrad)

−1 lorbit,k = descending orbit (southward)

, (58)

where Tsst,k, θsat,k, and lorbit,k are the values corresponding to the k-th obser-554

vation. These predictors can only be derived from observation information555

and are independent of the forecast model because Tsst is fixed in the JMA556

regional forecast model. Thus, the bias corresponding to the predictors is557

corrected, even though TL and AD of the predictors are not required in the558

calculation of the cost function gradient.559

The VarBC background error is defined by the method of Cameron and560

Bell (2018) as follows:561

Bbc =
σ2
o

Nb

, (59)

562

Nb = max (mavg,mmin)×
(

1

2
1
n − 1

)
, (60)

563

mmin = 500, (61)

where σo is the observation error, mavg is the average number of observa-564

tions assimilated during the last 3 days, mmin is a lower limit of the number565

of observations, and n is a parameter that specifies the bias halving time566

for the convergence of coefficient learning. The halving time parameter of567

the MA was set as n = 8; that of the LA was set as n = 24. These halv-568

ing time parameters were determined based on the number of assimilations569
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per day for each system (Fig. 6). By setting these halving-times, the rapid570

fluctuation of the coefficients calms down in about 10 days in an experi-571

ment that starts with the VarBC coefficients of all satellites as zero. Such572

insensitivity is necessary to reduce the effects of sudden outliers of observa-573

tion. We can slow down the response of background error to the presence574

or absence of observations in the assimilation window by using the aver-575

age number of observations. This is especially useful for the assimilation576

of polar-orbiting satellites in a regional model where the forecast domain is577

limited. In a regional model, a polar-orbiting satellite is only available twice578

a day; therefore, it is not appropriate to determine Bbc depending only on579

the number of observations assimilated in a single previous analysis. How-580

ever, by using mavg, we can maintain a history of approximately 3 days581

to provide a stable bias correction for observations that are less frequently582

revisited.583 Fig. 6

The old MA that was in operation until March 25, 2020, did not use584

VarBC but instead used the VarBC coefficients of the Global DA System585

(Kazumori, 2014). The commonality of bias correction coefficients between586

models with completely different resolution and physical processes is not587

necessarily validated and cannot correct for bias well. For example, Benáček588

and Mile (2019) demonstrated the effectiveness of VarBC in a regional model589

by comparing bias correction with VarBC coefficients by global DA and590
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those by the limited-area model DA. At the JMA, the clear sky brightness591

temperature assimilation and VarBC for the LA were introduced simulta-592

neously (Ikuta, 2017a). In the MA, VarBC was introduced at the same593

time as the introduction of ASUCA-Var (Ikuta et al., 2020). It is shown594

in subsection 4.2 that bias correction accuracy is greatly improved by using595

the MA VarBC.596

2.6 Penalty term597

The predictions of the NWP model from initial conditions, comprising598

the first guess plus an increment, will cause high-frequency oscillations due599

to artificial gravity waves. We implemented a DF method (Lynch, 1997)600

with a low-pass filter as a constraint to remove these oscillations. In this601

DF method, noise in the center of the assimilation window is removed by602

a filter using the Chebyshev window function. DF using the Chebyshev603

window function has been applied in several 4D-Var systems (e.g., Gustafs-604

son, 1992; Polavarapu et al., 2000; Gauthier and Thépaut, 2001), including605

the previous MA based on JNoVA (Honda and Sawada, 2010; Sawada and606

Honda, 2008). The elements to be filtered, based on Wee and Kuo (2004),607

are the same as those of the background error variance. Bdf in Eq. (7) was608

given by the diagonal component of the background error B0 as609

Bdf = λdiag (B0) , (62)
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where λ is the weighting parameter. The time span for the low-pass filter610

is described as Ts = M∆t, with timestep ∆t of time integration and M611

related to the number of total steps as N = 2M + 1. The filtered state at612

N/2 is given as613

x̄N
2
=

N∑
k=0

αkxk, (63)

where αk is defined as follows:614

αk =
hkwk∑N

k′=0 hk′wk′
, (64)

615

hk =
sin (θck)

kπ
, (65)

and the Dolph–Chebyshev window function is given by616

wk =
1

N

[
1 + 2r

M∑
m=1

T2M

(
x0 cos

θm
2

)
cosmθm

]
, (66)

where 1/x0 = cos (θs/2), 1/r = cosh
(
2M cosh−1 x0

)
, θm = 2πm/N , θc is617

the cutoff frequency, θs is the stop-band edge, and T2M is the Chebyshev618

polynomial of degree 2M :619

T2M (x) =


cos (2M cos−1 x) |x| ≤ 1

cosh
(
2M cosh−1 x

)
|x| > 1

. (67)

The high-frequency oscillations that will be filtered out are defined as:620

xN
2
− x̄N

2
=

N∑
k=0

γkMk,0 (x0) , (68)
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where the coefficient γk is given as621

γk =


−αk k ̸= N

2

1− αk k = N
2

. (69)

In the operational system, the assimilated observations are used under strict622

quality control. Additionally, the density of the atmosphere at the begin-623

ning of the time integration is built based on the hydrostatic assumption.624

Therefore, noise caused by the large oscillation of artificial gravity waves625

is considerably suppressed. Particularly, in an ongoing assimilation cycle,626

the cost of the penalty term is kept small compared with the cost of other627

terms because ASUCA eliminates the generation of artificial noise as much628

as possible.629

2.7 Preconditioning630

a. Control variables631

A simplification is applied to the background term by transforming the632

analysis variables into control variables to solve the optimization problem633

efficiently. The analysis increment δx0 is described by the analysis variable634

x0 and background variable xb
0 as635

δx0 = x0 − xb
0. (70)
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The control variable χ is given as636

χ =

 χ0

χbc

 , (71)

637  δx0

δβ

 =

 B
1
2
0 0

0 B
1
2
bc


 χ0

χbc

 , (72)

where B
1/2
0 is the square root of the background error covariance matrix638

and χ0 is the control variable for the model state. B
1/2
bc and χbc are the639

square root of the covariance matrix and the control variable for VarBC.640

The transformed χ is a dimensionless quantity and each component is uncor-641

related. This transformation into control variables is called preconditioning,642

which makes it unnecessary to calculate the inverse of the background error643

covariance matrix.644

The calculation is further simplified by assuming that vertical and hor-645

izontal background errors are independent. We define B
1/2
0 , decomposed646

into horizontal and vertical directions, as follows:647

B
1
2
0 = VC

1
2
hB

1
2
v , (73)

where B1/2
v is the square root of the vertical error covariance matrix, C

1/2
h648

is the square root of the horizontal error correlation matrix, and V is a649

transformation matrix of the vertical coordinate.650
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C
1/2
h is an isotropic recursive filter (RF) (Purser et al., 2003) that acts651

as a self-adjoint quasi-Gaussian filter. The RF is applied in the x direction652

and then in the y direction. Defining the operations in the x direction as653

C
1/2
hx and the operations in the y direction as C

1/2
hy , C

1/2
h can be written as654

C
1
2
h = C

1
2
hyC

1
2
hx. (74)

First, we focus on the operations in the x direction. As the same operation is655

performed in the y direction, we do not describe it. Assuming the correlation656

distance is horizontally uniform, C
−1/2
hx can be Cholesky decomposed as657

C
−1/2
hx = UTU, and this inverse matrix can be written as658

C
1
2
hx = U−1

(
UT

)−1
, (75)

where U is an upper triangular matrix. With any input vector p, interme-659

diate vector q, and output vector s, the operations of U−1
(
UT

)−1
can be660

described by two separate calculations as661

q =
(
UT

)−1
p, (76)

s = U−1q. (77)

These equations can be rewritten as662

qi = βpi +
n∑

j=1

αjqi−j, (78)

si = βqi +
n∑

j=1

αjsi+j, (79)
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where β = 1/Ui,i and αj = −Ui,i+j/β. In the recurrence formulas Eqs. (78)-663

(79), qi is calculated from pi in the x direction where i increases and si is664

calculated from qi in the x direction where i decreases. The order of the665

RF n is set to 4. For a finite domain RF, boundary conditions need to be666

set appropriately. The boundary condition in a finite domain i ∈ [1, N ] is667

given as668 (
L̂T − ÛTL̂−1L̂

)
ŝN = βq̂N , (80)

where L̂ is a lower triangular n × n matrix, of which the elements are669

L̂i,i = 1 and L̂i+j,i = −αj; Û is an upper triangular n × n matrix, of670

which the elements are Ûi,i+j = −αn−j. ŝN is a sub-vector of s and defined671

as ŝN = (sN+1−n, · · · , sN)T. q̂N is a sub-vector of q in the same way as672

ŝN . In the operational system, αj and β are precomputed assuming twice673

the number of grids in x and y direction of actual analysis area, and only674

components in the effective area are extracted and used. This preparation675

suppresses post-filtering distortion near the boundary. For example, without676

the preparation for boundary condition of RF, analysis increments near the677

boundary are excessively suppressed.678

The square root of the vertical background error covariance matrix is679

given as680

B
1
2
v = UvΛ

1
2
vUT

v , (81)

where Λv is the diagonal matrix whose elements are the eigenvalues of Bv681
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and Uv is the orthogonal matrix composed of the eigenvectors of Bv. The682

model’s vertical coordinate is the terrain following coordinate. Conversely,683

the control variables are located in a vertical coordinate system that is684

less dependent on terrain. In Eq. (73), V is the transformation matrix685

of the vertical coordinate for the control variable to the model’s vertical686

coordinate, as in Fujita (2010) and Fukuda et al. (2011). In ASUCA-Var,687

V is defined for each u-, v-, and p-point where the control variables are688

located. Figure 7 shows the impact of the transformation of the vertical689

coordinate. By using the transformation, the analysis increments distorted690

along the terrain are better eliminated than in the case without using it.691 Fig. 7

b. Parameter transformation692

The initial perturbation of the TL model is created by a parameter trans-693

formation from the analysis increment δx0 = (δu, δv, δTg, δPs, δθ, δWg, δµp)
T

694

to a perturbation of the prognostic variables of the NWP model. Conversion695

to perturbation for the mixing ratio is described from the analysis increment696

of pseudo RH as697

δqv =
∂qv
∂µp

δµp (82)

= Qµpδµp, (83)
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where Qµp is Jacobean. The moist potential temperature θm is given as698

follows:699

θm = θ ×
(
1 +

Rv −Rd

Rd

qv −
∑
i

qi

)
, (84)

where i indicates the kind of hydrometeors: cloud water, rain, cloud ice,700

snow, and graupel. The perturbation of θm is given as701

δθm =
∂θm
∂θ

δθ +
∂θm
∂qv

∂qv
∂µp

δµp (85)

= Tθδθ + Tµpδµp, (86)

where the perturbation of the mixing ratio for hydrometeors is ignored be-702

cause the mixing ratios are not analysis variables. The Exner function π703

at altitude z (m) is diagnosed from the surface pressure Ps (Pa) at the sur-704

face altitude zs (m) and the moist potential temperature θm (K) based on705

hydrostatic balance, as follows:706

π (z) = π (zs)−
g

cp

∫ z

zs
θ−1
m dz, (87)

707

π (zs) =
(
Ps

P00

)Rd
cp

, (88)

where P00 = 100 000 Pa, Rd is the gas constant, cp (= 7/2 Rd) is the708

heat capacity for dry air at constant pressure, and g (= 9.80665 m s−2) is709

gravity acceleration. Air density is calculated from the Exner function and710

the moist potential temperature:711

ρ =
P00π

cp
Rd

−1

Rdθm
. (89)
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The perturbation of density is given as follows:712

δρ =
∂ρ

∂Ps

δPs +
∂ρ

∂θm
δθm (90)

=
∂ρ

∂Ps

δPs +
∂ρ

∂θm

(
∂θm
∂θ

δθ +
∂θm
∂µp

δµp

)
(91)

= DPsδPs +Dθδθ +Dµpδµp. (92)

The transformation matrix from analysis variables to prognostic variables713

is written as714 

δ (ρu)

δ (ρv)

δ (ρθm)

δ (ρqv)

δρ


=



ρ 0 uDPs uDθ uDµp

0 ρ vDPs vDθ vDµp

0 0 θmDPs θmDθ + ρTθ θmDµp + ρTµp

0 0 qvDPs qvDθ qvDµp + ρQµp

0 0 DPs Dθ Dµp





δu

δv

δPs

δθ

δµp


.

(93)

δTg and δWg are assumed to be uncorrelated with each other and are trans-715

fomed by identity matrix I. The flux of a scalar variable that ignores per-716

turbations is written as717

δ (ρqα) = qαDPsδPs + qαDθδθ + qαDµpδµp, (94)

where α includes the mixing ratios of hydrometeors and turbulent kinetic718

energy. The left sides of Eqs. (93)-(94) are the initial perturbations of719

prognostic elements of the TL model.720
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c. Perfect quadratic form of the cost function721

The cost function is rewritten in a perfect quadratic form722

J =
1

2
∥χ∥22

+
n∑

i=0

1

2

∥∥∥∥R− 1
2

i

(
H̃

(j)
i B̃

1
2χ− d̃

(j)
i

)∥∥∥∥2
2

+
1

2

∥∥∥∥B− 1
2

df

(
Γ̃(j)B̃

1
2χ− g̃(j)

)∥∥∥∥2
2
, (95)

where723

B̃
1
2 =

 B
1
2
0 0

0 B
1
2
bc

 , (96)

724

H̃
(j)
i =

 H
(j)
i M

(j)
i,0 0

0 P(j)

 , (97)

725

Γ̃(j) =

 Γ(j) 0

0 0

 . (98)

The modified innovation of observation d̃
(j)
i is given as726

d̃
(j)
i = d

(j)
i −R

− 1
2

i H
(j)
i M

(j)
i δx

b(j)
0 −R

− 1
2

i P(j)δβb(j). (99)

The modified innovation of DF g̃(j) is given as727

g̃(j) = g(j) − Γ(j)δx
b(j)
0 . (100)

The gradient of the cost function is given as728

∂J

∂χ
= χ (101)
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+
n∑

i=0

(
B̃

1
2

)T (
H̃

(j)
i

)T
R−1

i

(
H̃

(j)
i B̃

1
2χ− d̃

(j)
i

)
(102)

+
(
B̃

1
2

)T (
Γ̃(j)

)T
B−1

df

(
H̃

(j)
i B̃

1
2χ− d̃

(j)
i

)
. (103)

The optimized control variable χa is given as729

χa = min
χ

J (χ) . (104)

This minimization problem is solved using the limited-memory Broyden–Fletcher–Goldfarb–Shanno730

(L-BFGS) quasi-Newton minimization method algorithm (Nocedal, 1980;731

Liu and Nocedal, 1989). χa is converted into the analysis variables xa
0 and732

βa at the start time of the assimilation window:733

xa
0 = xb

0 +B
1
2
0 χ

a
0, (105)

734

βa = βb +B
1
2
bcχ

a
bc. (106)

In MA, the assimilation window is three hours; thus, the model creates an735

initial condition of the forecast model at analysis time tn:736

xa (tn) = Mn,0 (x
a
0) . (107)

2.8 Coding design737

One of the issues in developing and continuing to operate 4D-Var is that738

the model operators used in the forecast model and assimilation will deviate739

as development progresses. To prevent this, NL,TL, and AD coexist in one740
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subroutine for the purpose of sustainable development. The switching of741

NL,TL, and AD modes is specified by an input parameter and branched by742

an if statement. The subroutine arguments and return values are shared743

by NL,TL, and AD modes. This rule will force a change in TL and AD744

if NL is changed. That is, the dynamics subroutines, physics library, and745

observation operator libraries contain NL,TL, and AD code for assimilation.746

Figure 8 shows the structure of ASUCA-Var, which comprises an assim-747

ilation core to perform optimization and preconditioning, ASUCA as NWP748

model to perform time integration, a physics library to compute physical749

processes, and observation operators to simulate observations. All observa-750

tion operators are archived in the observation operator library. The observa-751

tion operators included in the library are used via the ASUCA-Var common752

interface. When implementing an observation operator library developed by753

other developers, the common interface facilitates new implementations and754

updates and minimizes changes to existing code. In the operational system,755

RTTOV and ROPP have been implemented.756 Fig. 8

2.9 Parallelization757

The data assimilation system is envisioned to run in a hybrid environ-758

ment of message passing interface (MPI) and open multiprocessing (OpenMP).759

The data assimilation region is decomposed into blocks in two dimensions,760
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each of which is processed by a different MPI process. In the following, the761

two-dimensional decomposed region is called a block. Observations are also762

arranged and processed in parallel for each of those blocks. The spatial-763

horizontal do-loops in that block are forked via OpenMP parallelization.764

The RF method used in preconditioning is also parallelized in each block.765

The calculation of RF in the x direction must be sequential but independent766

in the y direction, so it is parallelized in the y direction. The RF in the y767

direction is similarly parallelized in the x direction.768

In the adjoint codes for advection and the pressure tendency equation,769

conflicts occur when applying spatial-horizontal OpenMP parallelization770

without any special treatment because the adjoint variables are added to771

the neighboring grid points of the target grid point. To avoid this conflict,772

the adjoint code is parallelized by the multi-color successive over-relaxation773

(SOR) method (Adams and Ortega, 1982). The Red-Black SOR method is774

used when adding to one adjacent grid point. When adding to the adjacent775

five grid points (or nine grid points), parallelization was performed by the776

five-color (nine-color) SOR method. The adjoint equations, which require777

the use of Red-Black, five-color, and nine-color SOR methods, are given as778

Red-Black : qi,j = qi,j + qi+1,j, (108)

5-color : qi,j = qi,j + qi−1,j + qi+1,j + qi,j−1 + qi,j+1, (109)
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9-color : qi,j =
i+1∑

k=i−1

j+1∑
l=j−1

qk,l, (110)

(111)

where qi,j represents an arbitrary variable and the subscripts i and j denote779

the grid numbers. The optimization algorithm is also parallelized. In the780

computation of cost function minimization, computational efficiency is im-781

proved by calculating the inner product of the general vector, which is the782

input of the L-BFGS, in each block.783

3. Operational system784

The JMA operates MA and LA as regional data assimilation systems785

with ASUCA-Var as core method for DA. The MA creates the initial condi-786

tions for MSM and the LA creates the initial conditions for LFM. Figure 9787

shows the domains of MSM and LFM. These domains cover Japan and its788

surroundings. In this section, we provide an overview of MA and LA.789 Fig. 9

3.1 Meso-scale analysis790

Figure 10 shows the flow diagram for MA. The formulation of the vari-791

ational method in MA is described in Section 2. The data assimilation792

method employs an incremental 4D-Var method, and the iterative opti-793

mization with three inner loops (20, 15, and 15 iterations) is conducted,794
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and the basic field is updated twice by the inner model at the connection795

point of the inner loops. The high-resolution outer model is the same as the796

MSM. The low-resolution inner model has 15 km horizontal grid spacing,797

38 vertical layers, and the same model top as in MSM. The assimilation798

window starts 3 h before the initial time, and the observation timeslots are799

set to hourly. The MSM initial conditions are created at 00, 03, 06, 09, 12,800

15, 18, and 21 UTC daily, and data assimilation is run eight times a day.801

In the following, we describe the steps to run the MA.802 Fig. 10

a. Procedure803

STEP 1. The first guess is provided by the 3 h forecast of MSM from the804

result of the previous MA.805

STEP 2. Innovation is calculated with the MSM and observations.806

STEP 3. The basic field is calculated with the NL model.807

STEP 4. Perturbation is calculated with the TL model (skipped in the808

first iteration), and the cost function is evaluated.809

STEP 5. Gradient of cost is calculated with the AD model.810

STEP 6. Analysis increment is calculated by minimization of the cost811

function using the L-BFGS algorithm.812
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STEP 7. As the inner loop, steps 4–6 are repeated. The number of inner813

loop iterations is 20 times in the first outer loop and 15 times in the814

second and third outer loop.815

Finally, the low-resolution analysis from the result of STEP 7 is interpolated816

to the high resolution of 5 km with consideration of ancillaries (topography,817

soil type, and land use). From the interpolated analysis, MSM as high-818

resolution model operator is run from T−3h to T+0h (Fig. 10). The result819

of the computation becomes the initial condition for the forecast of MSM.820

b. Observation821

The cutoff time for waiting to receive observation data is 50 min. The822

assimilated observations in MA are listed as follows (Japan Meteorologi-823

cal Agency, 2019): SYNOP; SHIP; BUOY; TEMP; PILOT; WPR; Weather824

Doppler radar (radial velocity, reflectivity); AIREP; AMDAR; AMVs from825

Himawari-8; ocean surface wind from Metop-[A, B]/ASCAT; radiances from826

NOAA-[15, 18, 19]/ATOVS, Metop-[A, B]/ATOVS, Aqua/AMSU-A, DMSP-827

F[17, 18]/SSMIS, GCOM-W/AMSR2, and GPM-core/GMI; water vapor828

CSR from Himawari-8; R/A; precipitation retrievals from DMSP-F[17, 18]/SS-829

MIS, GCOM-W/AMSR2, and GPM-core/GMI; GPM-core/DPR; GNSS-830

RO refractivity data from Metop-[A, B]/GRAS, COSMIC/IGOR, GRACE-831

[A, B]/Blackjack, TerraSAR-X/IGOR, and TanDEM-X/IGOR; and PWV832
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from ground-based GNSS (see Table 2).833

3.2 Local analysis834

In the LA, the computational time available for data assimilation is very835

limited because the analysis for the initial condition of LFM is created every836

hour. As described below, the LA does not cycle itself because the LA’s837

first guess is given by the forecast of MSM. To reduce the computation838

cost, 3D-Var is used as the data assimilation method for the LA. Because839

no model operators are used in 3D-Var, basic field updates and DF are not840

used. Also, VarQC is not used, and the background error is not dependent841

on the initial time. The cost function is defined as842

J = Jb + Jo + Jbc. (112)

The assimilation window is 3 h before the initial time of LFM, and the843

observations are assimilated by 3D-Var every hour starting at the initial time844

of the assimilation window. To calculate the time propagation of analysis845

increments within the assimilation window, LA repeats the 3D-Var and the846

1 h forecast. Figure 11 illustrates the process flow of LA. In the following847

sections, we show the steps to run the LA.848 Fig. 11
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a. Procedure849

There are four timeslots to assimilate observation, at hourly intervals.850

The analysis xa at the initial time of LFM is calculated by repeating 3D-851

Var and 1 h forecasting. The 1 h forecast operator Mi+1,i from the i-th852

timeslot to (i + 1)-th timeslot is configured specifically for the LA. In this853

configuration, horizontal resolution is set to 5 km as in the MSM, but the854

physics schemes differ from those used in the MSM. The cycles of LA are855

performed in the order shown below.856

STEP 1. In the first timeslot, the first guess of the model state xb
i=1 is857

provided by the MSM, and the VarBC coefficient βb
i=1 inherits the858

results of the previously run LA.859

STEP 2. In the i-th timeslot, the optimized model state xa
i and the opti-860

mized VarBC coefficients βa
i are defined as861

xa
i = xb

i + δxi, (113)
862

βa
i = βb

i + δβi, (114)

where δxi and δβi are the analysis increments by 3D-Var.863

STEP 3. The (i + 1)-th background state is given by the 1 h integration864

by Mi+1,i:865

xb
i+1 = Mi+1,i (x

a
i ) , (115)
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and the background VarBC coefficient inherits the i-th analysis of866

VarBC as βb
i+1 = βa

i .867

STEP 4. Steps 2 and 3 are repeated three times.868

STEP 5. In the fourth timeslot at the initial time of LFM, the analysis in-869

crements by 3D-Var are added to the background states. The analysis870

values are given as871

xa = xb
4 + δx4, (116)

872

βa = βb
4 + δβ4. (117)

Finally, the analysis xa with 5 km resolution is interpolated to the 2 km873

resolution grid with consideration of ancillaries (topography, soil type, and874

land use) to be used as initial conditions with the LFM. Note that the first875

guess of the LA is always given and refreshed by the MSM. The results of876

the LA are not carried over to the next cycle of LA, except for the VarBC877

coefficients.878

b. Observation879

The cutoff time for waiting to receive observation data is 30 min. The880

assimilated observations for the LA are listed as follows (Japan Meteoro-881

logical Agency, 2019): SYNOP; SHIP; BUOY; AMeDAS; TEMP; PILOT;882

WPR; Weather Doppler radar (radial velocity, reflectivity); AIREP; AM-883

51



DAR; AMVs from Himawari-8; radiances from NOAA-[15, 18, 19]/ATOVS,884

Metop-[A, B]/ATOVS, Aqua/AMSU-A, DMSP-F[17, 18]/SSMIS, GCOM-885

W/AMSR2, and GPM-core/GMI; water vapor CSR from Himawari-8; soil886

moisture from GCOM-W/AMSR2 and Metop-[A, B]/ASCAT; and PWV887

from ground-based GNSS (see Table 2).888

4. Performance889

4.1 Degrees of freedom for signal890

Using degrees of freedom for signal (DFS: Cardinali et al., 2004) based891

on Chapnik et al. (2006), we show the impact of assimilated observations892

on MA. The DFS, divided into subsets for each observation type, is defined893

as894

DFSk = Tr

(
Πo

k

∂H (xa)

∂yo
Πo

k
T

)
, (118)

where Πo
k is a projection operator onto the k-th subset. The actual calcula-895

tion method is as follows. First, the perturbation of the observation vector896

with vector length p using the random vector ζ ∼ N (0, Ip) is given as897

δyo = R
1
2 ζ. (119)

In practice, using this observed perturbation, DFS is calculated as follows:898

〈
(Πo

kδy
o)T R−1

k Πo
k {H [xa (yo + δyo)]−H [xa (yo)]}

〉
52



=

〈
δyoTΠo

k
TR−1

k Πo
k

∂H (xa)

∂yo
δyo

〉
(120)

=

〈
Tr

[
δyoδyoTΠo

k
TR−1

k Πo
k

∂H (xa)

∂yo

]〉
(121)

≃ Tr

[
RΠo

k
TR−1

k Πo
k

∂H (xa)

∂yo

]
(122)

= Tr

[
Πo

k

∂H (xa)

∂yo
Πo

k
T

]
, (123)

where subscript k indicates the subset for each observation type. Figure 12a899

shows the DFS by observation type. The statistical period is from 0000 UTC900

13 June 2018 to 2100 UTC 23 July 2018. We can see that the Doppler ve-901

locity and Rain observations have a significant impact. Among the satellite902

observations, Himawari’s AHI, precipitation estimated from microwaves,903

and RH estimated from GPM/DPR have a large impact. The combined904

DFS of each satellite accounts for roughly 30% of the total DFS. Although905

a variety of observations are assimilated, it is clear that satellite observa-906

tions contribute to create the initial conditions for the MSM. Figure 12b907

shows the DFS per observation (DFS/p). It can be seen that in situ ob-908

servations such as radiosonde and aircraft observations have a large impact909

per observation. Focusing on remote sensing observations, the DFS/p of910

satellite observations and those of Doppler velocity observations are rela-911

tively small, and that of DPR is large. Since the brightness temperature912

of satellite and the Doppler velocity have huge number of observations, the913

impact per observation is not large. On the other hand, the number of ob-914
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servations of DPR is not as large as those observations. In addition, DPR is915

assimilated as a RH profile (Ikuta et al., 2021), which has 3D information of916

water vapor in the precipitation system. Especially over the ocean, because917

such RH profiles are unique in our system, the DPR has a relatively large918

impact per observation compared to other observational data. For example,919

in the Météo-France regional DA system, Brousseau et al. (2014) showed920

that radar DFS is large and radiosonde DFS/p is relatively large, which is921

similar to our DA system.922 Fig. 12

4.2 Analysis forecast cycle923

a. JNoVA and ASUCA-Var924

To compare the performance of JNoVA and ASUCA-Var, with a partic-925

ular focus on MA, an experiment was conducted using the mesoscale NWP926

system. The JNoVA experiment uses JNoVA as the data assimilation sys-927

tem. The setup of JNoVA is described in Section 2 of the outline of NWP at928

JMA (Japan Meteorological Agency, 2019). The ASUCA-Var experiment929

uses ASUCA-Var as the data assimilation system. The forecast model for930

both experiments was ASUCA, MSM2003 (Ikuta et al., 2020) version.931

The major differences between JNoVA and ASUCA-Var are shown in932

Table 3. The analysis variables of ASUCA-Var are the analysis variables933

of JNoVA with the addition of the underground elements Tg and Wg (see934
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subsection 2.2). Bv of JNoVA is independent of location and time, while935

Bv of ASUCA-Var depends on the initial time and surface type (see subsec-936

tion 2.3). The same Bh is used for both, however, JNoVA uses Cholesky de-937

composition and ASUCA-Var uses the recursive filter (see subsection 2.7a).938

The model operators used as strong constraints are JMA-NHM in JNoVA939

and ASUCA in ASUCA-Var. NL is used for the forward calculation method940

in the inner loop of JNoVA and TL is used in ASUCA-Var. The maximum941

number of iterations to find the minimum of cost function in JNoVA is942

35, and the total number of iterations for ASUCA-Var is 50-time. The943

breakdown of the number of iterations for ASUCA-Var is as described in944

subsection 3.1a. For parallel computation, JNoVA divides the domain into945

one-dimensional strips, while ASUCA-Var divides the domain into two-946

dimensional blocks (see subsection 2.9).947 Table 3

b. Comparison of performances948

The experimental periods are June 18 to July 23, 2018; and December949

23, 2018, to January 27, 2019. The JNoVA and ASUCA-Var experiments950

assimilate the same kind of observations. However, the treatment of ob-951

servations such as VarQC and VarBC is different. Figure 13 shows the952

number of assimilated observation related to VarQC and VarBC at each953

initial time in JNoVA experiment and ASUCA-Var experiment. Figure 13a954
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shows conventional observations which have VarQC weight larger than 0.25.955

In Fig. 13a, the reason why there are more observations at 0300 UTC than956

at other initial times is that there are more radiosonde and aircraft observa-957

tions, and the reason why there are fewer observations at 1800–2100 UTC958

is that those initial times are late at night in local time, thus the number of959

aircraft observations is few. Figure 13b shows the number of observations of960

TB for satellite observations with VarBC in the ASUCA-Var experiment and961

without VarBC in the JNoVA experiment. At 0000 UTC and 1200 UTC,962

the number of observations is larger than other initial times, because the963

NOAA and DMSP satellites cover the analysis region regularly. For both964

the conventional observation with VarQC and the satellite observations re-965

lated VarBC, the number of assimilated observations in the ASUCA-Var is966

slightly higher than the number of assimilated observations in the JNoVA,967

but the difference is small compared to the overall number of assimilated968

observations.969 Fig. 13

In the JNoVA experiment, satellite brightness temperature uses the vari-970

ational bias correction coefficient of the global data assimilation system,971

which provides the initial condition for the global model at JMA. Con-972

versely, in the ASUCA-Var experiment satellite observation bias is corrected973

by the variational bias correction of MA. Figure 14 shows a boxplot of the974

observed brightness temperature minus the first guess of brightness temper-975
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ature. The observations shown in Fig. 14 are GPM/GMI, Metop-B/MHS,976

Metop-B/AMSU-A, and Himawari-8/AHI. The channels 3, 5, 12 and 13 of977

GMI without bias correction have large bias, however JNoVA and ASUCA-978

Var correct the bias successfully. In JNoVA, the channels 6 and 8 of GMI979

(Fig. 14a), the channels 3–5 of Metop-B/MHS (Fig. 14b), the channels 6–7980

of Metop-B/AMSUA (Fig. 14c), and the channels 2–3 of Himawari-8/AHI981

(Fig. 14d) have larger bias than uncorrected observation. However, all of982

them are very well corrected in ASUCA-Var. From the above, in the JNoVA983

experiment, the brightness temperature bias is not fully corrected, and the984

divergence of the bias correction factor from the global analysis is the cause985

of bias in some channels. On the other hand, in the ASUCA-Var experi-986

ment, bias is corrected as expected by the variational bias correction.987 Fig. 14

The impact on the forecast is shown next. Figure 15 shows the bias988

score and equitable threat score (ETS) of the 3-hour accumulated precipi-989

tation forecast against R/A. These scores are averaged over the lead time990

of 3–39 hours. In the summer experiment from 0000 UTC 18 Jun 2018 to991

2100 UTC 23 July 2018, the bias scores under the threshold 5 mm in JNoVA992

experiment indicates overprediction (Fig. 15a), however the ASUCA-Var ex-993

periment significantly improves such overprediction (Fig. 15b). In Fig. 15c,994

the difference of ETS shows significant improvement in ASUCA-Var at all995

thresholds. In the winter experiment from 0000 UTC 23 December 2017996
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to 2100 UTC 27 January 2018, the difference of ETS indicates that the997

precipitation forecast in ASUCA-Var experiment is significantly improved998

under the threshold of 5 mm (Fig. 15f).999 Fig. 15

Figure 16 shows the results of the verification of 3-hour accumulated1000

precipitation using Fractions Skill Score (FSS: Roberts and Lean, 2008).1001

FSS is a scale-dependent score, and verification using FSS is expected to1002

reduce misleading influence due to double penalty (Gilleland et al., 2009).1003

The ASUCA-Var experiment in the summer period showed that precipita-1004

tion forecasts at threshold of 1 mm were significantly worse at spatial scales1005

of about 300 km, however significantly better at spatial scales under about1006

100 km (Fig. 16a). At the threshold of 5 mm, the precipitation forecast1007

of ASUCA-Var experiment improved significantly at a spatial scale under1008

about 100 km (Fig. 16b). In addition, over the threshold of 10 mm, FSS1009

shows that ASUCA-Var experiment is improved significantly at all spatial1010

scales (Fig. 16c–e). In the winter period, the ASUCA-Var experiment is sig-1011

nificantly improved at all scales under the threshold of 30 mm (Fig. 16f–i).1012 Fig. 16

The accuracy of the precipitation forecast was verified by using the im-1013

provement ratio of ETS, defined as1014

IETS = 2× ⟨ETSASUCA-Var − ETSJNoVA⟩
fci (ETSASUCA-Var − ETSJNoVA)

, (124)

where ⟨·⟩ denotes the mean and fci (·) denotes the 95% confidence interval.1015

fci was obtained by the block bootstrap method, and ETS was obtained1016
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using R/A as the reference value.1017

Forecast against radiosonde and SYNOP were verified by the improve-1018

ment ratio using the root mean square error (RMSE). Note that most of1019

these observations were assimilated in MA. The indices are given by1020

IRMSE = 2× ⟨RMSEJNoVA −RMSEASUCA-Var⟩
fci (RMSEJNoVA −RMSEASUCA-Var)

. (125)

In Eqs. (124)-(125), the coefficient 2 is a scaling factor that simply sets1021

the significance value to ±1. If these indicators are greater (smaller) than1022

or equal to 1, they indicate statistically significant improvement (deterio-1023

ration). Figures 17a and 17b show the indexes in summer and winter ex-1024

periments. Verified elements are 3-hour accumulated precipitation; specific1025

humidity, temperature, wind speed and geopotential height of radiosonde;1026

screen-level specific humidity at an altitude 1.5 m, screen-level temperature1027

at an altitude 1.5 m, screen-level wind speed at an altitude 10 m, surface1028

pressure, and solar radiation.1029 Fig. 17

First, in summer period (Fig. 17a), precipitation prediction was im-1030

proved in the ASUCA-Var experiment. Specific humidity of lower tropo-1031

sphere (925–850 hPa) was degraded in some parts of the initial time, but1032

there was no significant degradation in the almost all lead times of forecast.1033

Temperature, wind speed, and geopotential height were improved at almost1034

all times. Surface pressure, screen-level specific humidity, screen-level tem-1035

perature, screen-level wind speed, and solar radiation have improved also1036
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in almost all lead times. The reason for the difference in the sensitivity1037

of specific humidity between the screen-level and the lower-atmosphere is1038

that the screen level is more affected by the underground control variables1039

which are newly added in ASUCA-Var. Next, in winter period (Fig. 17b),1040

indices of precipitation forecasts are improved mainly under the threshold1041

of 5 mm and after T+24h. The improvement in precipitation forecast is1042

greater in summer than in winter. Specific humidity at upper troposphere1043

(200 hPa) was degraded in some lead times of forecast, however that of1044

lower troposphere was improved. The improvement in forecast accuracy for1045

tropospheric temperature, wind speed, and geopotential height is greater1046

in winter than in summer. Surface pressure, screen-level specific humidity,1047

screen-level temperature, and solar radiation have improved in winter. The1048

screen-level wind speed was improved at the initial time, and was worsened1049

afterwards. Consequently, the absolute value of wind speed RMSE became1050

larger.1051

The performance of 4D-Var, with the model as a strong constraint, natu-1052

rally also depends on the characteristics of the model’s performance. Thus,1053

the improvement in prediction shown here is due to not only the enhance-1054

ment of data assimilation methods, such as the newly added control vari-1055

ables, background errors, and variational bias correction, but also in no1056

small part to differences between the inner and outer models.1057
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5. Concluding remarks1058

In this paper, the data assimilation system for the JMA regional model1059

was reviewed. The JMA has been operating ASUCA-Var which is a varia-1060

tional data assimilation system based on the non-hydrostatic model ASUCA1061

in LA since 0300 UTC 29 January 2015, and in MA since 0000 UTC 251062

March 2020. As data assimilation methods, 3D-Var and 4D-Var versions1063

are adopted as initial value generation methods for LFM in LA and MSM1064

in MA, respectively. Applying several refinements such as control vari-1065

ables, background errors, and manually coded TL and AD models, and1066

equipped with advanced techniques including basic field updates, VarQC,1067

and VarBC, ASUCA-Var attained a remarkable improvement in operational1068

regional NWP forecasts.1069

With respect to the next steps, flow dependency for the background1070

error is limited in the current MA and LA. Thus, we are developing these1071

systems to be extended to a hybrid data assimilation system using ensemble1072

forecasts. The numerical prediction centers that currently use variational1073

methods are also using hybrid assimilation with ensemble forecasts in their1074

current operations or plan to do so in the near future (Gustafsson et al.,1075

2018).1076

To forecast precipitation systems accurately, it is also important to1077

make hydrometeors control variables. Because the background error of hy-1078
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drometeors is strongly dependent on the meteorological situation, a flow-1079

dependent background error is required. Ikuta (2017b) has been developing1080

a direct assimilation of radar reflectivity using a hybrid data assimilation1081

method with hydrometeors as control variables. Currently, ASUCA-Var1082

adopts a strongly constrained 4D-Var, which assumes that there is no er-1083

ror in the model. However, NWP model is not perfect in practice, thus1084

the bias of individual observations corrected by VarBC also includes model1085

bias. Although weakly constrained 4D-Var (e.g., Trémolet, 2006) may be1086

adopted in the future to account for model errors into Jb and other term1087

(e.g., systematic error term) as well as Jdf , current model errors are clear1088

and large compared to observation errors, and the best way to resolve such1089

clear errors is to improve the model by identifying the sources of errors.1090

Finally, we remark on the advantages of ASUCA-Var in terms of sustain-1091

able development practices. ASUCA-Var is coded with a strong awareness1092

of the fate of 4D-Var, where the TL has to follow the model updates. This1093

development manner, which prevents the model from leaving behind the1094

data assimilation system, contributes to maintaining the consistency of the1095

model used in the analysis forecast cycle. Furthermore, the packaging of the1096

observation operators will also lead to more efficient development through1097

unit testing. These innovations will promote sustainable development. In1098

terms of forecast accuracy, ASUCA-Var, which has a high affinity between1099
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assimilation and models, can quickly introduce the benefits of model sophis-1100

tication in the assimilation system, and assimilation can produce effects that1101

are consistent with the model, resulting in improved forecast accuracy. The1102

improvement in forecasting accuracy reported by Ikuta et al. (2020) is a re-1103

sult of such enhancements in the development of ASUCA-Var. In the future,1104

data assimilation of operational regional models is likely to move to higher1105

resolution and target phenomena with stronger nonlinearity. ASUCA-Var1106

will be a platform for the development of fundamental technologies to handle1107

these complex relationships in an integrated manner and improve prediction1108

accuracy.1109
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Fig. 1. Background error variance of initial time (UTC) at 3 h intervals.
Blue (orange) line shows the background error on sea (land) grid points.
The elements are (a) u, (b) v, (c) (Tg, Ps, θ), and (d) (Wg, µp). For
convenience, in this figure, Tg is placed at −1 level or under, Ps is
placed at 0 level, and Wg is placed at 0 level or under.
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Fig. 2. Background error correlation of (Tg, Ps, θ) in vertical direction on
(a) land grid point and (b) sea grid point at 0600 UTC. Tg is placed at
−1 level or under, Ps is placed at 0 level, and θ is placed at 1 level or
above.
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Fig. 3. Horizontal autocorrelation length of background error for (a) u, (b)
v, (c) (Tg, Ps, θ), and (d) (Wg, µp) in the x direction (solid line), and in
the y direction (dashed line).
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Fig. 4. Comparison between NL perturbation and TL perturbation. (a–d)
Integrated qv in vertical direction and (e–f) precipitation. (a) Back-
ground and (b) perturbation at T−3h. (c,e) NL perturbation and (d,f)
TL perturbation at T+0h.
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Fig. 7. Analysis increment by temperature observation at an altitude of
5000 m in the center of domain (a) without transformation of the ver-
tical coordinate and (b) with the transformation of the vertical coor-
dinate. The shading shows the terrain, black lines show the analysis
increments, and red lines show the model’s vertical layers.
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Fig. 8. Structure of ASUCA-Var. The ASUCA-Var core involves precondi-
tioning and optimization.
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Fig. 9. LFM and MSM domains.
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Fig. 10. Flow diagram of MA. NL is the nonlinear model, TL is the tangent-
linear model, and AD is the adjoint model. The initial time of MSM is
T+0h. The assimilation window is from T−3h to T+0h.
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Fig. 11. Flow diagram of LA. The initial time of LFM is T+0h. The
assimilation window is from T−3h to T+0h.
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Fig. 15. Precipitation verification in (a–c) summer experiment and (d–f)
winter experiment. (a,d) Bias score of ASUCA-Var experiment and
JNoVA experiment. (b,e) Difference of bias score and (c,f) difference
of ETS; these difference scores indicate score of ASUCA-Var experi-
ment minus that of JNoVA experiment. Shading represents the 95%
confidence interval.
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Fig. 17. Indexes of improvement ratio in (a) summer experiment and (b)
winter experiment. Shown elements are ETS, specific humidity (Qv),
temperature (T), wind speed (Wind), geopotential height (Z), solar ra-
diation (Rad) and pressure (P) at thresholds, pressure-levels or screen-
level. |Index| > 1 indicates significance at the 95% level.

99



List of Tables1487

1 Configuration of outer/inner models in the meso-scale analysis.1011488

2 List of abbreviations for observations. . . . . . . . . . . . . . 1021489

3 Main diffrence of configuration between JNoVA and ASUCA-1490

Var in MA. Note that configuration of LA is different from1491

this table, for example, the basic field update and the VarQC1492

are not used in LA (see subsection 3.2). . . . . . . . . . . . . 1031493

100



Table 1. Configuration of outer/inner models in the meso-scale analysis.

Outer model Inner model
NL TL/AD

Horizontal grid
spacing

5 km 15 km

Vertical layers in
the atmosphere

76 levels 38 levels

Vertical layers
underground

Tg: skin layer + 8 levels, Wg: skin layer + 1 level

Cloud Six-class three-ice bulk scheme
(Japan Meteorological Agency,
2019; Ikuta et al., 2020)

Only the saturation adjust-
ment process is tangent-
linearized.

Convection Kain and Fritsch (1990) No perturbation
Boundary layer Mellor-Yamada–Nakanishi–Niino

level 3 (Nakanishi and Niino,
2004)

Tangent-linearized except
for the diffusion coefficient
and the partial condensa-
tion

Surface flux Beljaars and Holtslag (1991) Tangent-linearized except
for the bulk coefficients

Radiation Japan Meteorological Agency
(2019)

Mahfouf (1999)
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Table 2. List of abbreviations for observations.

Name Description
AHI Advanced Himawari Imager
AIREP Aircraft Reports
AMDAR Aircraft Meteorological Data Relay
AMeDAS Automated Meteorological Data Acquisition System
AMSR2 Advanced Microwave Scanning Radiometer-2
AMSU-A Advanced Microwave Sounding Unit-A
AMV Atmospheric Motion Vector
ASCAT Advanced Scatterometer
ATOVS Advanced TIROS Operational Vertical Sounder
BUOY Report of a buoy observation
COSMIC Constellation Observing System for Meteorology, Ionosphere, and Climate
CSR Clear Sky Radiance
DMSP Defense Meteorological Satellite Program
DPR Dual-frequency Precipitation Radar
GCOM-W Global Change Observation Mission-Water
GMI GPM Microwave Imager
GNSS Global Navigation Satellite System
GNSS-RO GNSS Radio Occultation
GPM Global Precipitation Measurement
GRACE Gravity Recovery and Climate Experiment
GRAS GNSS Receiver for Atmospheric Sounding
IGOR Integrated GPS Occultation Receiver
Metop Meteorological Operational Satellite
NOAA National Oceanic and Atmospheric Administration
PILOT Upper-wind report from a land station
R/A Radar/Raingauge-Analyzed Precipitation
SHIP Report of surface observation from a sea station
SSMIS Special Sensor Microwave Imager Sounder
SYNOP Report of surface observation from a land station
TanDEM-X TerraSAR-X add-on for Digital Elevation Measurement
TEMP Upper-level pressure, temperature, humidity, and wind report from a fixed land station
WPR Wind Profiler
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Table 3. Main diffrence of configuration between JNoVA and ASUCA-Var
in MA. Note that configuration of LA is different from this table, for
example, the basic field update and the VarQC are not used in LA (see
subsection 3.2).

JNoVA ASUCA-Var

Analysis variable u, v, Ps, θ, µp u, v, Tg, Ps, θ,Wg, µp

Vertical Background
Error

Independent of the location
and initial times

Depend on the grid type
(land or sea) and initial
times (00, 03, 06, 09, 12, 15,
18, and 21 UTC)

Model operator JMA-NHM ASUCA
Forward/Backward
model

NL/AD TL/AD

Basic field update No 2 times
Iteration 35 times 50 times, First loop: 20, Sec-

ond loop: 15, Third loop: 15
VarQC Yes, Valid from the 15-th it-

eration
Yes, Valid from the first it-
eration

VarBC No Yes
Parallell computing Dividing the domain into

strips parallel to the x-
direction

Dividing the domain into
blocks

103


