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Abstract25

The spectral element (SE) and local Galerkin (LG) methods may be re-26

garded as variants and generalizations of the classic Galerkin approach. In27

this study, the second-order spectral element (SE2) method is compared28

with the alternative LG scheme referred to as o2o3 that combines a second-29

order field representation (o2) with a third-order representation of the flux30

(o3). The full name of o2o3 is o2o3C0C1, where the continuous basis func-31

tions in C0-space are used for the field representation and the piecewise32

third-order differentiable basis functions in C1-space are used for the flux33

approximation. The flux in o2o3 is approximated by a piecewise polyno-34

mial function that is both continuous and differentiable, in contrast to many35

Galerkin and LG schemes that use either continuous or discontinuous basis36

functions for flux approximations. We show that o2o3 not only has some37

advantages of SE schemes but also possesses third-order accuracy similar38

to o3o3 and SE3, while SE2 possesses second-order accuracy and does not39

show superconvergence. SE3 has an approximation order greater than or40

equal to three and uses the irregular Gauss-Lobatto collocation grid, while41

SE2 and o2o3 have a regular collocation grid; this constitutes an advantage42

for physical parameterizations and follow-up models, such as chemistry or43

solid-earth models. Furthermore, o2o3 has the technical simplicity of SE2.44

The common features (accuracy, convergence and numerical dispersion re-45
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lations) and differences between these schemes are described in detail for46

one-dimensional homogeneous advection tests. A two-dimensional test for47

cut cells indicates the suitability of o2o3 for realistic applications.48
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1. Introduction51

Some numerical atmospheric models use the classic Galerkin method52

or its variants to discretize the state variables of the atmospheric motion53

equations in basis functions. The global spectral method (Simmons et al.54

1989) uses spherical harmonic basis functions, whereas the finite element55

(FE) method employs the classic Galerkin method in combination with local56

basis functions (Steppeler 1987). The advantages of the classic Galerkin FE57

method include the combination of a high approximation order (third or58

fourth order) with conservation properties and its suitability for irregular59

grid structures. Another advantage, namely, a sparse grid, is obtained when60

the Galerkin method is combined with higher than first-order FEs; in other61

words, some of the points in the regular grid are omitted, considerably62

reducing the computational time. For the FE method, such sparse grids are63

called serendipity grids (Ahlberg et al. 1967).64

Classic Galerkin methods involve the solution of a linear equation related65

to the mass matrix. When the matrices are solved by direct methods, such66

as Gaussian elimination (Steppeler et al. 1990), they require global com-67

munication, even though the basis functions are local and the mass matrix68

3



has a band structure. As classic FE methods require global communication69

between all cells within the computational domain, it is difficult to scale70

such models for very large numbers of processors. Accordingly, variants of71

the classic Galerkin procedure known as local Galerkin (LG) methods were72

developed (Steppeler and Klemp 2017). In particular, spectral element (SE)73

techniques are LG methods that have undergone substantial development74

and are almost suitable for operational use (Herrington et al. 2019). SE75

methods have achieved scalability for the Nonhydrostatic Unified Model76

of the Atmosphere (NUMA) for up to millions of processors (Taylor et al.77

1997; Giraldo 2001; Giraldo and Rosmond 2004; Kelly and Giraldo 2012).78

The present paper investigates a higher-order LG method referred to as79

o2o3, the full name of which is o2o3C0C1. The continuous basis functions80

for the field representation are piecewise quadratic polynomials in C0-space,81

while third-order differentiable basis functions in C1-space are used for the82

flux approximation. o2o3C0C1 is a further development of the o3o3C0C0
83

method (Steppeler et al. 2019a). Both o2o3 and o3o3 can be considered84

variants and generalizations of the SE technique. High-order SE methods85

use the irregular Gauss-Lobatto grid, possibly limiting the time step. Step-86

peler et al. (2019a) demonstrated that o3o3 inherits the advantages of SEs87

and allows a larger time step to improve the computational efficiency. Even88

though the effective resolution of o3o3 as defined by Ullrich et al. (2018) is89
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comparable to that of the third-order spectral element method (referred to90

as SE3), a dispersion analysis showed that o3o3 has a large 0-space. This91

means that waves are stationary for a relatively large range of wavenumbers.92

Classic Galerkin approaches are widely applied in computational fluid93

dynamics (CFD), where irregular cells are used to correctly describe the94

surface of an airplane. In a meteorological context, this property may trans-95

late into an accurate representation of the lower surface, meaning a more96

accurate approximation of mountains. Additionally, FEs are expected to97

improve the impact of mountains on atmospheric circulation. For meteoro-98

logical models, it is important for the lines composed of grid points to be99

horizontally aligned (Steppeler et al. 2006). Hence, these horizontal lines100

of grid points cut into the mountains. However, the lower boundary rep-101

resentation is complex, which hinders the use of this approach during the102

modeling process. Terrain-following coordinates enable the alignment of the103

grids with the surface topography, thereby simplifying the computation of104

the lower boundary condition (Phillips 1957). Horizontally aligned grids are105

normally constructed using a regular height grid structure where only the106

surface grid cells are irregular (Yamazaki and Satomura 2010). The hori-107

zontal alignment of numerical grids and the underlying terrain, such as that108

obtained with cut cells (Nishikawa and Satoh 2016), will result in a more109

accurate representation of mountains (Steppeler et al. 2006; Zängl 2012).110
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Steppeler et al. (2019b) showed that cut cells provide a better represen-111

tation of vertical velocities in a three-dimensional realistic model than the112

models using terrain-following coordinates, leading to improved forecasts.113

Consequently, cut-cell models were used with grid point numerical methods114

(Yamazaki et al. 2016; Steppeler et al. 2019b).115

Steppeler and Klemp (2017) showed that some finite-difference (FD)116

cut-cell approximations can produce noisy solutions even for smooth moun-117

tains. Their work was limited to linear test functions and a rather simple118

test mountain consisting of a straight line. However, SE and FE methods119

are mostly performed on grids that are not horizontally aligned (Marras120

et al. 2016). Therefore, the advantages of cut cells in representing moun-121

tains proposed by Steppeler and Klemp (2017) are not realized with these122

FE/SE representations. In contrast, Galerkin methods using first-order ba-123

sis functions and horizontally aligned grids lead to solutions without such124

noise (Steppeler and Klemp 2017). This finding confirms the fact that125

Galerkin methods lead to accurate surface approximations when the cells126

are adapted to the surface, meaning for horizontally aligned cells. Nev-127

ertheless, existing atmospheric Galerkin models often do not take advan-128

tage of such suitability for good surface approximations, because grids that129

are not horizontally aligned are typically used. A notable exception is130

the atmospheric model called Active Tracer High-resolution Atmospheric131
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Model-Fluidity (ATHAM-Fluidity) that uses horizontally aligned cells and132

achieves good results in the generation of mountain-induced waves (Savre133

et al. 2016).134

In this study, we construct o2o3 to address the disadvantages of o3o3,135

and we demonstrate the following properties of o2o3:136

• The accuracy of o2o3 is comparable to that of SE3 as a result of137

the constructed superconvergence, even though o2o3 has the simplic-138

ity and basis function structure of the second-order spectral element139

method (referred to as SE2).140

• o2o3 uses a regular collocation grid, while SE3 uses the irregular141

Gauss-Lobatto grid; the former is an advantage when parameteriz-142

ing physical processes (Herrington et al. 2019).143

• A sparse grid is possible with o2o3, while SE3 uses a full grid.144

• o2o3 avoids the large 0-space of o3o3.145

• The suitability of the high-order o2o3 method for cut cells is shown146

using the simple example of Steppeler and Klemp (2017). Therefore,147

o2o3 allows for cut-cell implementation in second- and third-order148

spaces, while the Steppeler and Klemp (2017) scheme uses linear basis149

functions.150
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We describe the grid and approximation spaces for SE2, o2o3, and SE3151

in Section 2. A summary of the numerical properties of all schemes com-152

pared in this paper is given in Tab. 1. Section 3 outlines the inhomogeneous153

FD schemes representing the approximations of these schemes. Section 4154

presents the LG procedure for o2o3, conserving first-order moments. Sec-155

tion 5 illustrates the results of a homogeneous advection test to show the156

accuracy and stability, convergence and numerical dispersion relations of157

o2o3, and the study is concluded in Section 6.158 Table 1

2. Grids and approximation spaces159

In this study, the test problem involves homogeneous one-dimensional160

(1D) advection of the density field h(x):161

∂h

∂t
= −u0

∂h

∂x
, (1)

where u0 is the velocity field, assumed to be constant, and the periodic162

boundary condition is imposed.163

Eq. (1) is solved using piecewise polynomial spaces of degrees 2 and164

3. These are the discretization spaces used with the continuous Galerkin165

schemes o2o3, SE2, and SE3. Let a 1D domain Ω be divided into the el-166

ements Ωi(i = 0, 1, 2, ...), where Ωi = (xi, xi+1). In each element Ωi, the167

polynomial Pi(x) =
∑J

j=0 pi,jx
j is determined by three polynomial coeffi-168
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cients pi,0, pi,1, pi,2 for SE2 and by four coefficients pi,0, pi,1, pi,2, pi,3 for SE3.169

The index i indicates that the polynomial representation is applicable to170

the element Ωi. Therefore, for a discontinuous second-order field represen-171

tation, the polynomial coefficients pi,0, pi,1, pi,2 are independently chosen and172

are the degrees of freedom. The spaces formed by pi,0, pi,1, pi,2, pi,3 are used173

for third-order discontinuous and continuous field representations. For the174

continuous Galerkin scheme, the polynomials need to fit together continu-175

ously, implying the condition Pi−1(xi) = Pi(xi) and Pi(xi+1) = Pi+1(xi+1).176

Therefore, we have only two degrees of freedom per element with SE2 and177

three for SE3.178 Fig. 1

In one dimension, the length of the element Ωi is defined as dxi = xi+1−179

xi. If the grid distribution is regular, then dx = dxi. The boundary grid180

points xi and xi+1 of the element Ωi are called the principal points or corner181

points. For SE2, there are three independent amplitudes described by three182

collocation point values in each element, while there are four amplitudes for183

SE3 (Fig. 1). Collocation points are grid points within an element such that184

the amplitudes at these points are sufficient to determine the polynomial185

coefficients corresponding to this element. For SE2 and o2o3, the fields are186

quadratic polynomials within the element Ωi, and we need three collocation187

points Xi,0, Xi,1, Xi,2. Even though we have three collocation points per188

element, the dimension of the collocation grid space is twice as large as the189
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number of elements, as principal points are shared by two elements. For a190

third-order field representation, such as with SE3 or the flux for o2o3, we191

need two interior points in addition to two principal points. Therefore, the192

collocation grid points are Xi,j (i = 0, 1, 2, ..., j = 0, 1, ..., J) in Ωi:193


Xi,0 = xi, Xi,1 = xmi , Xi,2 = xi+1, for SE2 and o2o3 ,

Xi,0 = xi, Xi,1 = xmi − 1
2
√

5
dxi, Xi,2 = xmi + 1

2
√

5
dxi, Xi,3 = xi+1, for SE3 ,

(2)

where xmi = 1
2
(xi + xi+1) is the midpoint of the element Ωi. We have J = 2194

for o2o3 and SE2 and J = 3 for SE3. The collocation grids X are noted by195

broken indices: xi+ 1
2

= Xi,1 for SE2 and o2o3 and xi+ 1
3

= Xi,1, xi+ 2
3

= Xi,2196

for SE3. We note that in Eq. (2), the collocation points form a set of197

Gauss-Lobatto points of either three (SE2 or o2o3) or four (SE3) nodes.198

The sets of points are redundant as follows:199


Xi,2 = Xi+1,0 = xi+1, for SE2 and o2o3 ,

Xi,3 = Xi+1,0 = xi+1, for SE3 .

(3)

The field values at collocation points form the grid point space. The200

points Xi,j must be used to derive the initial data for the three schemes.201

The basis functions used to define the field h(x) in Eq. (1) are the same202

among the three schemes. The basis functions are defined in the interval203
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(xmi − 1
2
dxi, x

m
i + 1

2
dxi) as follows:204



e+
i (x) = 1

2
+ 1

dxi
(x− xmi ),

e−i (x) = 1
2
− 1

dxi
(x− xmi ),

b2
i (x) = 1

2

[
(x− xmi )2 − 1

4
dx2

i

]
,

b3
i (x) = 1

6

[
(x− xmi )3 − 1

4
(x− xmi )dx2

i

]
.

(4)

These four basis functions are identically zero when x /∈ (xmi − 1
2
dxi, x

m
i +205

1
2
dxi).206

For any field or flux q(x), we can derive the discretized representation207

using the basis functions defined in Eq. (4):208

q(x) =


∑

i=0,1,2,...

q−i+1e
+
i+1(x) + q+

i e
−
i (x) + qxx,i+ 1

2
b2
i (x) + εqxxx,i+ 1

2
b3
i (x), for SE2 and o2o3,

∑
i=0,1,2,...

q−i+1e
+
i+1(x) + q+

i e
−
i (x) + qxx,i+ 1

2
b2
i (x) + qxxx,i+ 1

2
b3
i (x), for SE3,

(5)

where ε = 0 is used for the second-order field representation with SE2 and209

o2o3, while ε = 1 is used for the flux in the third-order representation with210

o2o3. For the representation of discontinuous functions, two values of q(x)211

at principal nodes are introduced: q+
i and q−i . We note that in this study,212

discontinuous functions occur for flux derivatives with SE2 and SE3. In Eq.213

(5), the amplitudes qi, qxx,i+ 1
2

form the spectral space for SE2 and o2o3,214
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whereas the amplitudes qi, qxx,i+ 1
2
, qxxx,i+ 1

2
form the spectral space for SE3.215

For the field q(x), the grid point space for SE2 and o2o3 is formed by qi216

and qi+ 1
2
(i = 0, 1, 2, 3, ...). According to Eq. (5), qi at the principal nodes217

represents both the spectral amplitudes and the grid point values for the218

three schemes.219

Using Eq. (5), we can obtain the transformation equations to the grid220

point space at the midpoints xi+ 1
2

for SE2 and o2o3 with ε = 0:221

qi+ 1
2

= qxx,i+ 1
2
b2(xi+ 1

2
) +

1

2
(qi + qi+1) = −1

8
qxx,i+ 1

2
dxi

2 +
1

2
(qi + qi+1). (6)

From Eq. (6), we can obtain the transformation from the grid point space222

to the spectral space in Ωi. When qi, qi+1 and qi+ 1
2

are given, the transfor-223

mation to the spectral space is:224

qxx,i+ 1
2

= − 4

dx2
i

[
2qi+ 1

2
− (qi + qi+1)

]
. (7)

For the third-order space used in SE3, we refer to Steppeler et al. (2019a)225

for the formulas of the transformation between the grid point space and226

spectral space. A list of published LG schemes and their discretization227

spaces is given in Tab. 1.228

We note that o2o3 for the two-dimensional (2D) problem is obtained by229

differencing along the coordinate lines, analogous to the 2D o3o3 scheme230
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derived in Steppeler et al. (2019a). Therefore, the 1D scheme is extracted231

while leaving the interior points out. Thus, the 2D grid becomes sparse for232

interior points that are not used for forecasting. This means that the sparse233

grid is obtained from the full grid (all points are dynamic) by removing234

the interior points, as illustrated in Fig. 2. Thus, only the grid points235

at the corners and edges are dynamic. Steppeler et al. (2019a) defined236

the sparseness factor as the ratio of the number of dynamic points to the237

number of points in the full grid. A small sparseness factor indicates the238

potential for reducing the computational time.239 Fig. 2

3. Inhomogeneous finite difference schemes240

The classic fourth-order FD scheme (o4) is a homogeneous FD scheme241

that uses the same FD formula at each grid point. In contrast, SE and242

other LG schemes typically use different discretization equations at each243

collocation point (Steppeler et al., 2019a); these approaches are known as244

an inhomogeneous FD scheme. In this section, we discuss inhomogeneous245

FD schemes resulting in the temporal derivatives of the field q(x) for a246

regular grid distribution dxi = dx.247

SE2, o2o3, and SE3 are used as examples for comparison. For all three248

examples, q(x) within the cells is approximated by polynomials. For any of249

the collocation points, these polynomials are not centered around the target250
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point (the point to compute the derivatives). Rather, to obtain the spatial251

derivative of q(x) in a cell, the polynomial is differentiated at different col-252

location points. We note that the right and left derivatives (q+
x,i and q−x,i) at253

the principal points are defined discontinuously between two different cells;254

thus, an averaging procedure for q+
x,i and q−x,i must be defined to obtain qx,i.255

Therefore, the FD schemes in a cell differ among the collocation points, and256

as a consequence, the three schemes are inhomogeneous in the grid point257

space. In the following paragraphs, we introduce three schemes for both258

principal and interior points except that o2o3 for the interior points will be259

defined in the next section.260

For SE2, the time derivative in Eq. (1) at the collocation points can be261

computed using the field representation Eq. (5) with ε = 0. For the interior262

points in Ωi, the functional representation in Eq. (5) is differentiable, and263

we can obtain:264

qt,i+ 1
2

= −u0qx,i+ 1
2

= −u0

[
qi+1e

+
x,i+1(xmi ) + qie

−
x,i(x

m
i ) + qxx,i+ 1

2
b2
x,i(x

m
i )
]

= −u0
qi+1 − qi
dx

,

(8)

where b2
x,i(x

m
i ) = 0.265

For the principal points xi in Ωi, the basis function in Eq. (4) has a266

discontinuous derivative, and we obtain the right and left derivatives, q+
x,i267
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and q−x,i at xi from Eq. (5). These values are obtained as follows:268


q+
x,i = qi+1−qi

dx
+ qxx,i+ 1

2
b2
x,i(xi) = qi+1−qi

dx
+ 4

dx

(
qi+ 1

2
− qi+1+qi

2

)
,

q−x,i = qi−qi−1

dxi
+ qxx,i− 1

2
b2
x,i(xi) = qi−qi−1

dx
− 4

dx

(
qi− 1

2
− qi+qi−1

2

)
,

(9)

where we use the transformation formula for the spectral space and Eqs.269

(4), (5) and (7).270

If the derivative at a principal node is defined as the average of these271

two values, we can write qt,i as:272

qt,i = −u0

2
(q+
x,i + q−x,i) = −u0

(
−qi+1 − qi−1

2dx
+ 2

qi+ 1
2
− qi− 1

2

dx

)
. (10)

The right-hand-side term in Eq. (10) is a linear combination of two cen-273

tered FD schemes with second-order accuracy. By comparing Eq. (8) with274

Eq. (10), this scheme can be recognized as an inhomogeneous FD scheme.275

Because neither Eq. (8) nor Eq. (10) has an approximation order higher276

than two, superconvergence does not occur for SE2.277

o2o3 may be viewed as a generalization of SE2 with constructed inherent278

superconvergence to an order of at least three. Therefore, o2o3 will be279

introduced as an inhomogeneous FD scheme. For the principal grid points280

in Ωi, any FD scheme of at least the third order may be chosen. Here, we281

choose the classic o4 scheme:282
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qt,i = −u0

(
−1

3

qi+1 − qi−1

2dx
+

4

3

qi+ 1
2
− qi− 1

2

dx

)
, (11)

for the derivatives at the principal nodes in Ωi.283

Eq. (11) guarantees fourth-order accuracy at corner points on regular284

grids (Durran 2010). However, for irregular grids, the accuracy drops to285

the first order. Now, we list the formula for calculating qt on an irregular286

grid. When we employ Eq. (11) for all points, the rather strong deviation287

from conservation occurs partly due to a decrease in the order of approxima-288

tion to 1. This decrease in the order of approximation is then counteracted289

by smoothly changing the resolution. Grid smoothing methods, such as290

“spring dynamics” (Tomita et al. 2001), are applied, while the Voronoi291

type of smoothed grid is used for the Model for Prediction Across Scales292

(MPAS) (Skamarock et al. 2012). For irregular grid structures, an alter-293

native generalized formulation of Eq. (11) is derived as (Steppeler et al.294

2008):295

qt(xi) = w−1
i qi−1 + w

− 1
2

i qi− 1
2

+ wiqi + w
1
2
i qi+ 1

2
+ w1

i qi+1, (12)

where the corresponding weights wi shown in Tab. 2 are computed numer-296

ically, for example, by polynomial fitting in Steppeler et al. (2019a). A297

simplification is achieved by replacing the Legendre representation of the298

polynomial space with order-consistent polynomials. Any other high-order299
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FD scheme can be used as an alternative to Eq. (11) or Eq. (12). In the300

following text, we refer to the o4 scheme given by Eq. (11) as classic o4,301

while the o4 scheme given by Eq. (12) is referred to as weighted o4. We302

consider an example of irregular grids as defined in the seventh column of303

Tab. 2 (see also Section 5.1). With these weights, a third-order approxi-304

mation can be achieved when we apply the differentiation to analytic test305

functions, such as polynomials of degree 3. We note that the value of wi306

in the fine mesh area (dx = 1) is twice the value in the coarse mesh area307

(dx = 2). The advantages of Eq. (12) will be demonstrated in Section 5.1.308 Table 2

For comparison purposes, we also use SE3. For the principal nodes in309

SE3, averaging between right and left values, as performed in Eq. (10), is310

adapted to the third-order representation. For the two interior nodes, Eq.311

(8) is used analogously because the basis function representation for SE3 is312

directly differentiated.313

Finally, the proof of the third-order approximation of Eq. (11) follows314

from the requirement of third-order consistency. The FD equation for mass315

follows directly from Eq. (5). Let dmi be the mass contained in the element316

Ωi = (xi, xi+1):317

dmi =

∫ xi+1

xi

q(x)dx. (13)

Then, we have:318
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dmi =
dx

2
(qi + qi+1) +

2

3
dx

(
qi+ 1

2
− qi+1 + qi

2

)
. (14)

The mass conservation property requires that the time derivative of the319

mass of dmi within the element Ωi is the flux difference at the two principal320

points of the element Ωi. We show this in the next section.321

4. Local Galerkin procedure322

In this section, with the field representation defined in Section 2, we323

introduce the LG procedure to define o2o3 in comparison with SE2 and324

SE3.325

We assume h(x) to be represented in the grid point space by hi, and326

we assume that h(x) can be transformed into the spectral space by Eq.327

(7). This will result in the spectral amplitudes hi, hxx,i+ 1
2

for SE2 and o2o3328

and the spectral amplitudes hi, hxx,i+ 1
2
, hxxx,i+ 1

2
for SE3 in Ωi. Using these329

amplitudes, Eq. (5) gives the functional form of h(x).330

For SE2 and SE3, fl(x) = −u0h(x) can be defined using the represen-331

tations in Eqs. (5) and (7). For SE2, we have:332


fli = −u0hi,

f lxx,i+ 1
2

= −u0hxx,i+ 1
2
.

(15)
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For SE3, we refer to Eqs. (5) and (7) analogously:333



fli = −u0hi,

f lxx,i+ 1
2

= −u0hxx,i+ 1
2
,

f lxxx,i+ 1
2

= −u0hxxx,i+ 1
2
.

(16)

We note that in this study, discontinuous functions occur for flux derivatives334

with SE2 and SE3.335

To define o2o3, the temporal derivative of the field is proportional to the336

spatial derivative according to Eq. (1), which means that we only need to337

determine the expressions of ht,i = flx,i at the principal nodes and of flxx,i+ 1
2

338

and flxxx,i+ 1
2

at the interior nodes within Ωi. However, in o2o3, the field339

h(x) given by Eq. (5) has only a second-order representation. Therefore,340

we apply Eq. (5) with ε = 1 to define a third-order representation of the341

flux fl(x).342

At the principal nodes in Ωi with o2o3, we again define:343

fli = −u0hi, (17)

which will not be used, as we are interested only in the flux divergence344

used in Eq. (1), rather than in the value of the flux itself. The third-345

order flux representation according to Eq. (11) is defined such that fl(x)346

is differentiable at the principal nodes of Ωi. The degree-3 polynomial is347
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defined such that the derivatives at the principal points have the same value348

for left and right differentiation. Therefore, by construction, we obtain a349

differentiable spline. The derivative flx,i at the principal nodes of fl(x) is350

defined analogously to Eq. (11) up to a classic o4 approximation:351

flx,i = −u0

(
−1

3

hi+1 − hi−1

2dx
+

4

3

hi+ 1
2
− hi− 1

2

dx

)
. (18)

We note that the definition in Eq. (18) already gives the FD equations at352

the principal nodes according to Eq. (1):353

ht,i = flx,i. (19)

At the interior points within the element Ωi, the values of flxx,i+ 1
2

and354

flxxx,i+ 1
2

follow the continuity requirement of the functional representation355

in Eq. (11) at the principal nodes (see the details of the steps to derive the356

time derivative of h(x) in Fig. 3). We provide two methods to obtain the357

expressions of flxx,i+ 1
2

and flxxx,i+ 1
2
.358 Fig. 3

In the first method, the equations for the spectral coefficients flxx,i+ 1
2

359

and flxxx,i+ 1
2

are obtained by taking the x-derivative of Eq. (5):360


flx,i = fli+1e

+
x,i+1(xi) + flie

−
x,i(xi) + flxx,i+ 1

2
b2
x,i(xi) + flxxx,i+ 1

2
b3
x,i(xi),

f lx,i+1 = fli+1e
+
x,i+1(xi+1) + flie

−
x,i(xi+1) + flxx,i+ 1

2
b2
x,i(xi+1) + flxxx,i+ 1

2
b3
x,i(xi+1).

(20)
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Eq. (20) is an equation for flxx,i+ 1
2

and flxxx,i+ 1
2
, as all other quantities361

are known. The derivatives of e+
i+1, e

−
i , b

2
i , b

3
i are obtained from their defini-362

tions in Eq. (4). Using Eqs. (4), (5) and (20), we can derive the expressions363

for the spectral amplitudes at the interior points xi+ 1
2
:364

flxx,i+ 1
2

=
1

dx
(flx,i+1 − flx,i), (21)

and365

flxxx,i+ 1
2

=
6

dx2
[flx,i+1 + flx,i −

2

dx
(fli+1 − fli)]. (22)

For the time derivative at the interior point of an element, according to366

b3
x,i(xi+ 1

2
) = − 1

24
dx2 and Eqs. (4), (5), (21) and (22), we can obtain:367

ht,i+ 1
2

= flx,i+ 1
2

= fli+1e
+
x,i+1(xi+ 1

2
) + flie

+
x,i(xi+ 1

2
) + flxx,i+ 1

2
b2
x,i(xi+ 1

2
) + flxxx,i+ 1

2
b3
x,i(xi+ 1

2
)

=
3

2

fli+1 − fli
dx

− 1

2

flx,i+1 + flx,i
2

.

(23)

In the second method, we directly employ the principle of the conser-368

vation of mass to construct Eq. (23). Let the time derivative of h at the369

principal nodes be given again by Eq. (19) or by any other difference scheme370

of at least the third order. By differentiating Eq. (14) with respect to t, the371

time derivative of the mass dmt,i in the element Ωi is obtained as:372
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dmt,i =
dx

2
(ht,i + ht,i+1) +

2

3
dx

(
ht,i+ 1

2
− ht,i + ht,i+1

2

)
. (24)

dmt,i can also be computed from the flux into Ωi, and we obtain:373

dmt,i = −u0(hi+1 − hi). (25)

By combining Eqs. (24) and (25) and solving for ht,i+ 1
2
, we obtain Eq. (23).374

These two methods lead to the same piecewise quadratic polynomial repre-375

sentation. The uniqueness of the two methods follows from the fact that the376

equation of motion is assumed to be valid with the spatial flux representa-377

tion as a piecewise cubic spline. The derivation of Eq. (23) from the basis378

function representation implies the conservation of first-order moments, cor-379

responding to the conservation of mass in this case. Therefore, Eqs. (23)380

and (18) can be viewed as a method for defining the time derivative ht,i381

such that mass is conserved.382

Fig. 3 illustrates the steps for the computation of the time derivative383

of the field h. The field is defined as h(xi) = 0, except for h(x500) = 4.384

This defines a rather small-scale field for which different numerical methods385

are expected to give different results. For smooth fields, all methods must386

give very similar results. Fig. 3a shows the results with SE2. The flux387

in this case that is shown as the dashed curve is merely the negative of388

the field. However, the spatial derivative of the flux shown by the dotted389
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line, is discontinuous. The blue curve is the result of the LG operation that390

approximates the derivative by a continuous function. Fig. 3b shows similar391

results for o2o3. The flux shown by the dashed curve is approximated by a392

differentiable function, and the spatial derivative of the flux shown by the393

dotted curve is continuous; hence, no further approximation is necessary.394

Fig. 3c gives the result for SE3, which is analogous to the result shown in395

Fig. 3a, but with the approximating polynomial of degree 3. We note that396

the grid is different from that of SE2 because its length is 3dx.397

For all of the described methods, when the time derivative ht(x) is given398

in the grid point space, the fourth-order Runge-Kutta method (RK4) can399

be applied as with any other FD scheme. Although the example of Fig. 3400

uses a low resolution, all methods give a reasonable approximation of the401

time derivative. This is important, as practical calculations in meteorology402

depend on reasonable approximations with poor resolution in some instances403

(Steppeler et al. 2003), and the orography is often not well-resolved in404

atmospheric models.405

Thus far, we have already illustrated how to generate the inhomogeneous406

o2o3 scheme for ht,i and ht,i+ 1
2

using the homogeneous 1D advection equa-407

tion Eq. (1). Overall, the steps of the implementation of o2o3 are described408

as follows:409

• Step 1: Divide the computational domain (Fig. 1) into elements and410
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define the collocation points Eq. (2) in each element. Note that the411

collocation points include the corner point and interior point for o2o3;412

• Step 2: Define the basis functions Eq. (4) for the field representation413

and flux representation Eq. (5) in each element;414

• Step 3: Construct the temporal derivative of field ht,i Eq. (19) at415

corner points by Eqs. (1) and (17) and a classic o4 scheme Eq. (18);416

• Step 4: Construct the temporal derivative of field ht,i+ 1
2

at interior417

points by Eq. (23) or the condition of flux conservation expressed418

by Eqs. (24)-(25). Note that to achieve the variable ht,i+ 1
2
, we need419

to rely on the intermediate variables: the second- and third-spatial420

derivatives of the flux at the interiror point expressed by Eqs. (21)-421

(22);422

• Step 5: Compute hi and hi+ 1
2

at the next time level using the RK4423

method or any proper time integration scheme.424

Note that the time loop consists of Steps 3, 4 and 5. Steps 1 and 2 are used425

to initialize the forecast.426
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5. Results427

To investigate the characteristics of o2o3, including its accuracy, conver-428

gence, numerical dispersion and stability, homogeneous advection tests in429

both one and two dimensions are implemented. For a first examination of430

the suitability of o2o3 for high-order cut-cell modelling, an advection test431

along a straight mountain is implemented.432

5.1 1D homogeneous advection test433

The advection equation in Eq. (1) is solved for a 1D area with 600434

points, and the constant-velocity field u0 is set to be u0 = 1.0. For o2o3435

and SE2, 300 elements are present in the area, while for SE3, 200 elements436

are present.437

With an element length dx = 2 for o2o3 and SE2, the resolution of the438

collocation grid is dxr = 1. Tab. 3 shows the Courant-Friedrichs-Lewy439

(CFL) condition with RK4 time-stepping. The available time steps (i.e.,440

CFL condition) are 2.2, 1.8 and 1.5 for SE2, o2o3 and SE3, respectively.441

According to conventional wisdom (Durran 2010), classic o4 has a stability442

limit of 1.9 with the RK4 scheme. This means that o2o3 has a marginally443

smaller CFL condition than the classic o4 scheme. The relatively weak444

CFL condition with SE3 can be explained by the minimum grid size of the445

Gauss-Lobatto grid being lower than that of the equally spaced grid used446
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with o2o3. Therefore, the time step in o2o3 is approximately 20% higher447

than that in SE3. However, these two schemes are comparable with regard448

to their accuracy and conservation properties. The large CFL number of449

SE2 is to be expected, as the transition to a higher order often requires a450

smaller time step. Ultimately, the CFL conditions for o2o3, SE2, and SE3451

are more severe than those for the second-order centered FD scheme.452 Table 3

To measure stability, we perform temporal integration for a long time.453

We use 30000
dt

steps, meaning that the structure is transported over 30000 grid454

points or 15000 elements over the area. Because of the periodic boundary455

conditions, for t = 600 n (n = 1, 2, 3, ...), the analytic solution of Eq. (1) is456

identical to the initial value, so that the accuracy can easily be checked at457

these times.458

Fig. 4 shows the solutions of the homogeneous advection test after459

transport over 300dx and 30000dx. The initial value of h(x) is defined as:460

h(i) = 4 · exp

[
−
(
xi − x150

8
dx

)2
]
, for i = 0, 1, 2, 3, .... (26)

The results for SE2, o2o3 and SE3 are shown in the left, middle and right461

columns of Fig. 4, respectively. At 300 time steps, the results for the three462

schemes are similar except for a slight oscillation in SE2. At the 30000th463

timestep, SE3 and o2o3 show a better simulation quality than SE2 because464

SE2 is only of the second order. The small difference in the accuracy between465
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o2o3 and SE3 is in accordance with the results of the numerical dispersion466

analysis in Section 5.3. For an analysis of the order of approximation, see467

Section 5.2.468 Fig. 4

For the regular resolution case and periodic boundary conditions, both469

classic o4 and o2o3 are conserved. However, a lack of conservation will be470

observed only for o4 on irregular grids in practical tests. Hence, an irregular471

resolution is introduced:472

dx =


1, for i = 1, 2, ..., 180, 211, 212, ..., 600,

2, for i = 181, 182, ..., 210.

(27)

For o2o3, the weights wi occurring in Eq. (12) are given in Tab. 2. The473

values of the weights gradually change near i = 180 (Lines 3-5 compared474

to Line 2 in Tab. 2) and 210 (Lines 7-9 compared to Line 10 in Tab. 2).475

All points xi, where i 6= 179, 180, 181, 209, 210, 211 according to Eq. (27),476

have constant wi
′
i (i′ = −1,−1

2
, 0, 1

2
, 1) in Eq. (12), meaning that w does not477

depend on i. Fig. 5 shows the temporal evolution of the solution between478

t = 0 and t = 400. For the initial values, the peak solution is used where only479

one principal point (x150 = 4) is different from 0. The computational modes480

of both classic and weighted o4 are stronger than that of o2o3, particularly481

for the case of an irregular grid. Considering Steppeler et al. (2008) and482

Steppeler et al. (2019a), it may be assumed that the difference is due to483
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the different orders of approximation at these points, where the resolution484

is irregular. Classic o4 decreases to the first order at such points. This485

is consistent with the fact that SE schemes are suitable for an irregular486

resolution, which (for this simple case) also applies to o2o3.487 Fig. 5

Mass diagrams of the solutions, defined as
∫

Ω
h(x)dx, are shown in Fig.488

6. The formula for computing the mass is given in Eq. (13). o2o3 conserves489

the mass down to the round-off error, while o4 conserves the mass until the490

resolution jump is reached. Then, the deviation from conservation is rather491

strong (reaching 50%) and diminishes for advection in the coarse-resolution492

area.493 Fig. 6

5.2 Comparison of the convergence of o2o3 with that of o3o3494

and SE495

This section investigates the approximation order of the schemes con-496

sidered in this paper. Because a general function can be approximated by a497

Fourier transformation of the sum of trigonometric functions, we investigate498

the accuracy of the approximation of the derivative of a cosine function g(x)499

that can be expressed as:500

g(x) = cos(2πx), for x ∈ (0, 1). (28)

We assume a grid distribution as follows:501
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xi = idx(1 + δri), for i = 0, 1, ..., ie, (29)

where ri is a fixed random number between zero and one. When the grid502

is regular we set δ = 0. When the grid is irregular, δ is any positive real503

number between zero and one. For δ > 0.0, we obtain the irregular case, and504

in this case, we set δ = 1.0. Using the grid point values gi = g(xi) and using505

the grid approximations described in Sections 3–4, the approximations gappx,i506

at xi can be obtained. The corresponding exact values gx,i = −2π ·sin(2πxi)507

can be used to find the approximation error as:508

E(dx) = maxi|gx,i − gappx,i |. (30)

Fig. 7 shows the numerical errors of its spatial derivative with dx =509

1
8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32, and 64. The classic o4 scheme converges to the fourth510

order only on regular grids. For comparison, the result for SE2 on regular511

grids is shown to exhibit second-order convergence, meaning that there is512

no superconvergence for SE2. In contrast, the high-order flux computations513

with o2o3 lead to superconvergence.514

Next, the convergence on an irregular grid is investigated. The grid is515

defined in Eq. (29) where δ = 1.0. o2o3 converges to the fourth order516

with an irregular grid. The use of weighted o4 to compute the differences517

on principal grids is essential. On the other hand, the classic o4 scheme is518
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reduced to the first order for the irregular grid.519 Fig. 7

5.3 Dispersion analysis of o2o3520

To derive the numerical dispersion relation for o2o3, we use spectral521

solutions following Ullrich et al. (2018). The field h is assumed to be:522

hj = h0e
Ik(j·dx−ct), for j = 0, 1, 2, ..., (31)

where I =
√
−1 and c and k are the phase velocity and nondimensional523

wavenumber, respectively. Then, we define the amplitudes ~A = (hj, hxx,j)524

in the spectral space. For each k, the linear relation between ~Ak and ~At,k525

for Eq. (1) is given by:526

~At,k = Mk ~Ak, (32)

where ~At,k is the temporal derivative of ~Ak and the matrix Mk depends on527

the wavenumber k. The exact solution should be linearly dependent on k528

due to:529

∂hj
∂xj

= Ik · hj, (33)

where xj = j · dx and j = 0, 1, 2, ....530

We assume that ak1 and ak2 are defined as the eigenvalues of the ma-531

trix Mk. Therefore, the imaginary components of ak1 and ak2 represent the532
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frequency ω(k) of the wavenumber k, while the real components are the533

diffusivity. The phase velocity of the wavenumber k becomes c(k) = ω(k)
k

.534

The evolution matrix Mk is given by:535

Mk = M1 · e−Iδ +M2 +M3 · eIδ +M4 · e2Iδ, (34)

where Mk is applied to the amplitudes ~A = (hj, hxx,j) and δ = k
1000
·2π, k =536

0, 1, 2, ..., 1000. The matrices M1,M2,M3,M4 are 2 × 2 matrices that are537

given by:538

M1 =

 − u0
12dx

+ 2u0
3dx

(
1
2

)
2u0
3dx

(
−dx2

2

)
3

2dx2
M1

1,1
3

2dx2
M1

1,2

 =

 1
4
−1

3

3
8
−1

2

 (35)

M2 =

 2u0
3dx

(
1
2

)
− 2u0

3dx

(
1
2

)
−2u0

3dx

(
−dx2

2

)
− 3u0

2dx3
+ 3

2dx2

(
M2

1,1 +M1
1,1

)
3

2dx2

(
M2

1,2 +M1
1,2

)
 =

 0 1
3

−9
8

0


(36)

M3 =

 −1
4

0

3u0
2dx3

+ 3
2dx2

(
M3

1,1 +M2
1,1

)
3

2dx2
M2

1,2

 =

 −1
4

0

9
8

1
2

 (37)

M4 =

 0 0

3
2dx2

M3
1,1 0

 =

 0 0

−3
8

0

 (38)

where Mk
j1,j2

is the element of matrix Mk in row j1 and column j2 (we539

assume dx = 1 and u0 = 1 for simplification).540
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For o2o3, Figs. 8 (a) and (b) show the phase velocity and the devia-541

tion of the amplification factor from unity, respectively, as functions of the542

nondimensional wavenumber. For comparison, the corresponding results for543

SE3 and o3o3 are also given. In Fig. 8 (a), we focus on the maximum of544

the frequency curve because the corresponding wavelength is the resolution545

limit for each scheme. For o2o3 and SE3, the approximated phase veloc-546

ities are accurate for wavelengths greater than 3dx, with o3o3 performing547

somewhat worse. For smaller wavelengths, the derivative of the frequency548

curve becomes negative, resulting in a negative group velocity. This means549

that for this range of wavenumbers, the solution is not useful in terms of the550

propagation of wave packets. Based on this criterion, the useful wavelength551

range for o2o3 is larger than that for o3o3 by approximately dx. Finally, as552

shown in Fig. 8 (b), the amplification factor is one for all three schemes,553

and thus, the schemes are all nondiffusive.554 Fig. 8

The part of the spectrum with negative group velocities should be fil-555

tered. Sometimes, a more elaborate definition of the essential resolution is556

used (Ullrich 2014). This is based on the realistically approximated part557

of the dispersion diagram that shows the frequency as a function of the558

wavenumber. We note that o2o3 does not have the large 0-space of o3o3.559

The 0-space is a space where waves are stationary for a relatively large num-560

ber of wavenumber values. For o3o3, there exists a 0-space with wavenum-561
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ber values where physical waves are not captured (Steppeler et al. 2019a).562

Thus, o2o3 is simpler to execute than o3o3.563

Although SE3 has a marginally larger useful wavelength range than o2o3,564

we note that the dispersion relation for SE3 shows a spectral gap, as indi-565

cated by black circles in Fig. 8 (a). A spectral gap is a small wiggle on the566

frequency curve leading to a small area of negative group velocities in an567

otherwise well-resolved k-area located around the wavelength 8dx in Fig. 8568

(a). Due to this spectral gap of SE3, Steppeler et al. (2019a) concluded that569

o3o3 has performance advantages over SE3. In contrast, o2o3 and o3o3 do570

not have spectral gaps. The methods for reducing the effect of the spectral571

gap for SE3 by applying hyperdiffusion have been discussed in the literature572

(Ullrich et al. 2018). In the absence of a spectral gap, an estimate of the573

usefully resolved wavenumber k is the range of k up to the maximum.574

5.4 Von Neumann stability analysis of o2o3 for finite dt575

In this section, the 1D advection equation in Eq. (1) is used for the576

classic Von Neumann stability analysis of o2o3. The waveform solution Eq.577

(31) of the field h and the linear relation Eq. (32) between ~Ak and ~At,k are578

utilized for this analysis.579

For RK4 time integration, the amplification factor G is given by:580
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G = E +
1

6
(Mk + 2 ·Mk

RK2 + 2 ·Mk
RK3 +Mk

RK4)dt, (39)

where E is the identity matrix and581



Mk
RK2 = Mk

(
E + 1

2
Mkdt

)
,

Mk
RK3 = Mk

(
E + 1

2
Mk

RK2dt
)
,

Mk
RK4 = Mk

(
E +Mk

RK3dt
)
.

(40)

The amplification factor G for o2o3 is shown in Fig. 9. The resulting582

stability is achieved for CFL = 1.9, consistent with the values obtained in583

Section 5.1.584 Fig. 9

5.5 2D cut-cell results using a sparse grid585

As stated in Section 2, o2o3 can be easily adapted for 2D advection586

over simple terrain. This method is completely analogous to the method in587

Steppeler et al. (2019a) and can be considered a generalization of the o1o1588

scheme treated by Steppeler and Klemp (2017). For details regarding the589

calculation, the readers are referred to Steppeler et al. (2019a). Here, we590

give only a short description.591

Following Steppeler and Klemp (2017), we conduct a 2D advection test592

along the profile of a mountain composed of a straight line oriented at an593

angle of 45 degrees. This test problem is very simple; we assume that the594
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velocity is parallel to this straight line, and the velocity components (u0595

and w0) are constant (1, 1). Despite the extreme simplicity of this example,596

Steppeler and Klemp (2017) showed that noise can be generated along the597

orographic line. We can examine how this kind of noise can be avoided.598

Fig. 10 shows that the sparse grid is available in the same manner as for599

o3o3. However, there is a difference in the sparseness factor between o2o3600

and o3o3. The sparseness factor is the ratio of the number of grid points601

in the sparse grid to that in the full grid. According to Steppeler et al.602

(2019a), o3o3 has a sparseness factor of 5
9
, whereas o2o3 has a sparseness603

factor of 3
4

(as illustrated in Fig. 2). Comparing the result of Fig. 10 with604

that of Steppeler et al. (2019a) with a sparse grid, we find that o2o3 has605

fewer unused points than o3o3. However, discussing this finding in terms606

of practical modelling and numerical computation reduction is beyond the607

scope of this paper.608 Fig. 10

We define the fluxes in the x- and z-directions as follows:609


Flx = u · h(x, z),

F lz = w · h(x, z).

(41)

The flux divergences in the x- and z-directions at the principal points are610

computed by classic o4 because the cut and uncut cells in this case are611

regular. However, Eq. (12) must not be invoked because it is suitable for612
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irregular grids. Applying the principle of mass conservation according to613

Steppeler et al. (2019a) and the formula obtained in Section 3, we obtain:614

Flx
x,i+ 1

2
,k

=
3

2

Flxi+1,k − Flxi,k
dx

− 1

2

Flxx,i+1,k + Flxx,i,k
2

. (42)

For Flx
z,i,k+ 1

2

, the result is similar. For the divergence in the z-direction, the615

same procedure is followed using the z−coordinate lines. The spectral am-616

plitudes Flxx,i+ 1
2
,k and Flzz,i,k+ 1

2
are then uniquely determined by requiring617

mass conservation for the fluxes in the x- and z-directions, respectively.618

For uncut cells, this procedure is straightforward and analogous to o3o3.619

For the cut cells, a coordinate along the surface line is introduced. For620

this specific test problem, the streamlines of advection are parallel to the621

surface line x = z such that there is no flux and no flux divergence in the622

direction perpendicular to the surface. Because the orography is diagonal623

to the model area, the principal points lie on the orographic line that can624

be treated by classic o4. No interpolation is necessary for orography to cut625

the cells diagonally.626

To this line x = z, we assume a coordinate s in the diagonal line with627

ds =
√

2dx. Therefore, Eq. (42) for s-axis takes the form:628

Fls
s,i+ 1

2
,k+ 1

2
=

3

2

Flsi+1,k+1 − Flsi,k
ds

− 1

2

Flsx,i+1,k+1 + Flxx,i,k
2

, (43)

in which Flsi,k =
√

2Flxi,k because the flux is in the direction of the di-629
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agonal line. In addition, the time derivatives for the principal points on630

the boundary are obtained by differentiating along the diagonal boundary.631

Rather than rectangles, cut-cell grids can be applied for rhombohedral grids,632

resulting in quadrilaterals with two angles not equal to π
2
. This will com-633

plicate the computation of mass contributions by the different amplitudes634

relative to the rectangular grid case used here. However, in more general635

cases, the principle of mass conservation is used in the same manner as with636

squares to determine the amplitudes of the time derivatives at the midpoints637

of the edges.638

For the experimental setup, we use a square grid of 140×140 grid points639

with dx = dz = 1.0, and we perform temporal integration for 100 time steps640

with dt = 1.0. The results for o2o3 are shown in Fig. 10 and can be com-641

pared directly to those by Steppler and Klemp (2017). The inaccuracies642

and noise for this problem, as seen for some non-Galerkin treatments, are643

absent; o2o3 is able to advect a structure along a straight line without gen-644

erating noise. This result is consistent with that for the first-order Galerkin645

approach and with that obtained by Savre et al. (2016), who reported fewer646

numerical boundary-related errors for the classic Galerkin method. These647

results indicate that cut cells may be applicable with polynomial represen-648

tations higher than one.649

The cut-cell example shown above is a rather special case because it is650
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valid only when the orography passes through the diagonal of cells. The651

more general case where the orography is any straight line can be treated652

with only little more effort. The computational domain consists of the points653

above the orography. As the orography is a straight line of direction (u0, u0),654

we define the flux as (u0h, u0h) where h is the density. This means that the655

flux has no component perpendicular to the orography at each point on the656

orography. We call this the pointwise boundary scheme. Another option657

not followed in this paper would be to use the less stringent condition that658

the integrals of the vertical flux components over segments of the orographic659

line are zero.660

The orography for the general case is shown in Fig. 11 (b) as a green661

line. The nondiagonal computational domain above the green line (gray662

area in Fig. 11b) is notated as Snd, while the diagonal domain above the663

red line (gray area in Fig. 11a) is correspondingly notated as Sd. Near the664

nondiagonal boundary, we have cells with triangles or pentagons marked in665

green, while the cells are squares and triangles at the diagonal boundary666

in red. There is more than one way to define the field representations near667

the small boundary sections in triangles/pentagons, and we are seeking the668

simplest scheme. Note that a polynomial function defined in a part of a669

rectangular cell, such as the small cut-cell triangles/pentagons in Fig. 11670

(b), can be uniquely extended to the whole cell. Therefore, it is possible671
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to define fields in the area Snd by adopting the same discretization (such as672

Eq. (43)) in the larger area Sd and restrict the field values in Snd. Thus,673

we can further define the temporal scheme in Snd to be the same as that in674

Sd because Sd and Snd share the common area Snd.675

Let us assume the mass MS for the area S:676

MS(t) =

∫∫
S

h(x, z)dxdz, (44)

in which S can be either Sd or Snd. When we define the Snd scheme to677

be the restriction of the Sd scheme to the smaller area, we must show that678

a closed system is obtained. This means that no mass is lost through the679

boundary of Snd, indicating that the fluxes of the Sd scheme are parallel to680

the boundary of Snd (green line in Fig. 11) and to the boundary of Sd (red681

dotted line in Fig. 11). We can apply Stokes theorem to Eq. (1). For the682

time derivative of MSnd
we obtain:683

∂MSnd

∂t
=

∫∫
Snd

htdxdz =

∫
∂Snd

Fl⊥(l)dl = 0, (45)

in which Fl⊥ is the flux component orthogonal to the boundary of Snd in684

Fig. 11 (b). Thus, according to the scheme adopted in the area Sd, the mass685

is also conserved in Snd due to the absence of flux components perpendicular686

to the green line. For convenience, we can define phantom amplitude points687

for the cut cells outside the computational domain and perform FDs for the688
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area above the dotted line in Fig. 11 (b).689 Fig. 11

The case of cut cells with a curved boundary is beyond the scope of690

this paper. The derivations of Eqs. (44)-(45) use the pointwise cancella-691

tion of the flux at the boundary, which follows from the assumption of a692

constant velocity. However, the extension of fields and fluxes beyond the693

small triangles and pentagons can also be useful for a more general orogra-694

phy. When the orography is not a straight line but rather a linear spline695

and the x-component of the flux is represented as a piecewise continuous696

polynomial spline, the z-component of the flux vector must have a discon-697

tinuous representation. It follows from that fact that a curved piecewise698

linear spline for the orography changes direction at the corner points in699

a discontinuous manner. Therefore, the function obtained by differentia-700

tion would be treated as a discontinuous function. Second-order staggered701

Arakawa C-grid schemes can be obtained as low-order LG schemes by a702

discontinuous piecewise linear 2D spline (Steppeler 1989). This is achieved703

by assuming constant piecewise fields for the density and representing the704

velocity components u and w as piecewise linear splines. Specifically, u is705

set to be continuous and piecewise linear in the x−direction and piecewise706

constant in the z−direction. w is represented in a similar manner by swap-707

ping the treatment to u in the x− and z−directions. The generalization708

to orographic surfaces represented by linear splines can be accomplished by709
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generalizing the low-order Galerkin representation of Steppeler (1989) to a710

higher polynomial order.711

6. Conclusion712

This study has investigated an alternative LG method referred to as713

o2o3. This method represents the field h by piecewise quadratic polyno-714

mials and the fluxes by degree-3 polynomials. o2o3 inherits not only the715

accuracy of SE3 but also the geometric flexibility of FE methods and the716

potentially strong scalability of SE techniques. Furthermore, o2o3 uses a717

regular collocation grid and allows a larger time step than SE3. The al-718

lowed time step is the same as that of standard fourth-order differencing.719

The transition to the LG approach is an advance compared to conventional720

fourth-order differencing, as the proposed method is mass conserving, and a721

conservation law may be achieved for each equation used in a multi-equation722

system.723
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Fig. 1. Grids for o2o3, SE2 and SE3, in which the solid black points rep-
resent the principal nodes and the dashed white points represent the
interior nodes of the elements.
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Fig. 2. o2o3 computational grid in two dimensions: (a) full grid and (b)
sparse grid where unused points are shown in white.
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Fig. 3. Approximations of the flux and the flux derivative of the field h(x)
by the (a) SE2, (b) o2o3 and (c) SE3 schemes. The solid curves are
the field h(x), and the dashed curves are the flux. The dotted curves
represent the derivative of the flux, while the blue curves represent
the regularized derivative, which is the derivative approximated by a
continuous function. The regularized derivative is applied with SE2
and SE3. The grid intervals are shown corresponding to the dotted
curves, where the long vertical lines represent the principal points and
the short vertical lines are the interior points. In (a) and (c), the flux
is different from h(x) only by the factor −1. In (b), the flux fl(x) is
approximated by a differentiable function, and the flux derivative does
not need to be regularized, as fl(x) is differentiable. In (c), h(x) is a
third-order representation.
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Fig. 4. Solutions of the homogeneous advection equation with periodic
boundary conditions after transport over 300dx and 30000dx, and the
length of the horizontal area is 600dx. The initial condition centered at
150dx is shown in (a). The second row shows the results after transport
over 300dx, while the third row shows the results after transport over
30000dx. The left, middle and right columns are the results with SE2,
o2o3 and SE3, respectively. Due to dx = dt = 1, the transport of
30000dx is done in 30000dt. This value of dt means that all schemes
perform well in their CFL limit.
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Fig. 5. Solution of a single cell peak for the (a) classic o4 scheme with a
regular cell structure, (b) weighted o4 scheme with an irregular cell
structure, (c) o2o3 scheme with a regular cell structure and (d) o2o3
scheme with an irregular cell structure. The black curves are the initial
field and the forecasts at t = 100, 200, 300, and 400, and the red and
blue curves are the forecasts at t = 30 and t = 60 at the start and end
of the resolution jumps.
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Fig. 6. Mass diagrams for the (a) classic o4 scheme with a regular cell
structure, (b) weighted o4 scheme with an irregular cell structure, (c)
o2o3 scheme with a regular cell structure and (d) o2o3 scheme with an
irregular cell structure. With the nonconserving o4 scheme, deviations
of mass conservation occur when the advected structure reaches the
lower-resolution area and to a smaller degree when the highly resolved
area is reached again.
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Fig. 7. Convergence speeds of o4, o2o3 and SE2 under irregular and regular
grids for different grid spacings: dx = 1

8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32, and 64.

The left, middle and right panels are the results for o4, o2o3 and SE2,
respectively. The circles represent the error norms for a regular grid,
where Eq. (11) is used for o4 and o2o3, while the squares represent
the error norms for an irregular grid, where Eq. (11) is used for o4,
and the rhombuses are the error norms for an irregular grid, where Eq.
(12) is used for o4 and o2o3. The squares in the left panel are used for
classic o4 according to Eq. (11), leading to a first-order scheme on an
irregular grid.
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Fig. 8. Dispersion relations for o2o3, SE3, and o3o3. (a) is the imaginary
part and (b) is the deviation of the eigenvalues from one, which is a
measure of the intrinsic diffusivity of the scheme. All three schemes
are non-diffusive. The black circles mark the spectral gap for SE3,
producing negative group velocities in an area where the neighboring
wavenumber values indicate a well-resolved solution.
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Fig. 9. (a) Von Neumann analysis results for o2o3. (b) is the cross-section
of (a) at the nondimensional wavenumber k = π.
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Fig. 10. 2D results of o2o3 with a cut-cell grid under a straight line rep-
resenting the terrain. The tracer in the first row is above the terrain,
while the tracer in the second row is advected along the terrain. The
first column presents the initial values of the tracers and the advec-
tion results after 100 time steps. The second column shows magnified
views of the field at the locations of the initial values. The third col-
umn shows magnified views of the forecast fields. (b) and (e) show a
background comprising zero field values with clusters of higher values.
These points are marked in white in Fig. 2 (b); as these points are un-
used for forecasting, they retain their initial values. (c) and (f) show a
smooth structure representing the field. At some points corresponding
to the points marked in white in Fig. 2 (b), there is a steep point valley
assuming the value of zero. The contour interval is set to be 0.5.
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Fig. 11. Different options for the cut-cell grid. (a) Special case of a straight
orographic line going through the cell corners, as was used in the exam-
ple of Fig. 10. All cut cells in this case are triangular marked with red
colors. (b) A general case where the orography does not cut each cell
diagonally. The thick solid and green lines mark the boundary approx-
imation cells. The cut cells are triangles or pentagons shown in green.
The physical domains are the gray areas marked with Sd in (a) and Snd
in (b). The mass of the system is the integral of the density over the
area above the orography. The polynomial field representations for the
fluxes and the density can be uniquely extended to the whole area of
the boundary approximation cells.
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Table 1. The properties of five numerical schemes (o2o3, o3o3, o4, SE2 and
SE3).

Property o2o3 o3o3 o4 SE2 SE3
Order of polynomials To field 2nd 3rd / 2nd 3rd

Order of polynomials To flux 3rd 3rd / 2nd 3rd

Accuracy >= 3rd >= 3rd 4th 2nd >= 3rd

Regularity of collocation grids within an element Regular Regular Regular Regular Irregular
Mass conservation Regular grid Yes Yes Yes Yes Yes
Mass conservation Irregular grid Yes Yes No Yes Yes
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Table 2. The values of wi in Eq. (12) on an irregular grid with resolution
jumps.

Resolution w−1
i w

− 1
2

i wi w
+ 1

2
i w+1

i Locations of point xi
Fine Resolution (dx = 1.0) 0.083 -0.667 0.0 0.667 -0.083 i = 1, 2, ..., 177, 178

Resolution Jumps 0.1 -0.75 0.167 0.5 -0.017 i = 179
Resolution Jumps 0.167 -1.067 0.75 0.167 -0.017 i = 180
Resolution Jumps 0.152 -0.5 0.083 0.3 -0.036 i = 181

Coarse Resolution (dx = 2.0) 0.042 -0.333 0.0 0.333 -0.042 i = 182, 183, ..., 207, 208
Resolution Jumps 0.036 -0.3 0.083 0.5 -0.152 i = 209
Resolution Jumps 0.017 -0.167 -0.75 1.067 -0.167 i = 210
Resolution Jumps 0.017 -0.5 -0.167 0.75 -0.1 i = 211

Fine Resolution (dx = 1.0) 0.083 -0.667 0.0 0.667 -0.083 i = 212, 213, ..., 600
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Table 3. The CFL conditions with RK4 time-stepping in the SE2, o2o3,
SE3, centered FD and classic o4 schemes. The CFL condition with the
spatial centered FD scheme is 2.8.

Schemes SE2 o2o3 SE3 centered FD classic o4
CFL condition 2.2 1.8 1.5 2.8 1.9
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