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Abstract6

In the discretization of the primitive equations for numerical calculations, a formulation7

of a three-dimensional spectral model is proposed that uses the spectral method not only8

in the horizontal direction but also in the vertical direction. In this formulation, the9

Legendre polynomial expansion is used for the vertical discretization. It is shown that10

semi-implicit time integration can be efficiently done under this formulation. Then, a11

numerical model based on this formulation is developed and several benchmark numerical12

calculations proposed in previous studies are performed to show that this implementation13

of the primitive equations can give accurate numerical solutions with a relatively small14

degrees of freedom in the vertical discretization. It is also shown that, by performing15

several calculations with different vertical degrees of freedom, a characteristic property16

of the spectral method is observed in which the error of the numerical solution decreases17

rapidly when the number of vertical degrees of freedom is increased. It is also noted18

that an alternative to the sponge layer can be devised to suppress the reflected waves19

under this formulation, and that a “toy” model can be derived as an application of20

this formulation, in which the vertical degrees of freedom are reduced to the minimum.21

Keywords: three-dimensional spectral model, Legendre polynomial, semi-implicit time-22

integration, benchmark experiment, toy model equation23
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1. Introduction24

In recent years, with the improvement of computational power, non-hydrostatic atmo-25

spheric models have become available even for the entire globe(e.g. Stevens, et al, 2019).26

However, General Circulation Models (= GCMs) based on the primitive equations, which27

include hydrostatic equation, is still used for calculations at forecast centers where results28

must be obtained within a limited computational time, and for climate research where29

time-integration over a long period of time is required. In addition to the realistic GCMs30

used in these fields, mechanistic GCMs, which omit the physical processes and extract31

only the dynamics, are now widely used in researches of atmospheric dynamics(e.g. Boljka,32

et al, 2018). The dynamical core of most GCMs has been implemented using the spec-33

tral method with spherical harmonics expansion in the horizontal direction and the finite34

difference method in the vertical direction. It is considered to be a relatively mature tech-35

nology. However, there is no general guiding principle for how the grid points should be36

distributed in the vertical direction. In addition, the use of the finite difference method37

in the vertical direction causes a truncation error. If a more accurate discretization is38

possible with the same discretization degrees of freedom, it can lead to an improvement39

in computational efficiency. One such solution is to use the spectral method also for the40

vertical direction. However, there have been very few attempts to do so in the past. To the41

best of the authors’ knowledge, there have been only two attempts. One is the formulation42

proposed by Machenhauer and Daley (1974) using the Legendre polynomial expansion in43

the vertical direction, and the other is the formulation proposed by Kuroki and Murakami44

(2015) using the Chebyshef polynomial expansion in the vertical direction. Although the45

formulation by Machenhauer and Daley (1974) was a pioneering attempt, there are ad hoc46

points regarding the avoidance of singularity at the top of the atmosphere as we will see47

later in this paper. In addition, since Machenhauer and Daley (1974) was published more48
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than forty years ago, modern benchmark calculations such as those proposed by Held and49

Suarez (1994) and Polvani, et al (2004) were not conducted. On the other hand, in Kuroki50

and Murakami (2015) modern benchmark calculations were performed, and it was shown51

that using the spectral method in the vertical direction yielded results consistent with52

those obtained by the finite difference method. However, the details of the discretization,53

including the treatment of the singularity problem at the top of the atmosphere, were not54

clarified in Kuroki and Murakami (2015). In addition, the application of the semi-implicit55

method in this formulation was not attempted in Kuroki and Murakami (2015).56

In the present manuscript, we propose a new formulation of the spectral method using57

the Legendre polynomial expansion in the vertical direction, which avoids the singularity58

at the top of the atmosphere in the expansion itself. We also describe how the semi-implicit59

method can be applied under this formulation. Based on this formulation, a numerical60

model is developed and used to perform modern benchmark calculations to show that this61

implementation of the primitive equations can give accurate numerical solutions with a62

relatively small degrees of freedom in the vertical discretization. Furthermore, it is also63

noted that an alternative to the sponge layer can be devised to suppress the reflected64

waves under this formulation, and that a “toy” model can be derived as an application of65

this formulation, in which the vertical degrees of freedom are reduced to the minimum.66

The remainder of the present manuscript is organized as follows. Section 2 describes67

the governing equations and non-dimensionalization of them. In Section 3, the new for-68

mulation of the three-dimensional spectral method is proposed. Section 4 describes how69

the semi-implicit method can be applied under this formulation. In Section 5, we present70

the results of modern benchmark calculations using the numerical model based on the71

formulation proposed in the present manuscript. Finally, a discussion and summary are72

presented in Section 6. In addition, an alternative to the sponge layer to suppress the73
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reflected waves under this formulation is proposed in Appendix A, and Appendix B de-74

scribes how a “toy” model can be derived as an application of this formulation.75

2. Governing equations76

As the governing equations, we use the primitive equations in σ-coordinates on a rotat-77

ing sphere (see Durran (2010) for the derivation). The length scale, the temperature scale,78

and the time scale are non-dimensionalized by using the radius of the sphere (a∗), the79

reference temperature (T0∗), and a∗/
√
R∗T0∗, respectively. Here, R∗ is the gas-constant80

for the dry atmosphere, and the subscript, ∗, denotes that the parameter with this sub-81

script is a dimensional one. Based on this non-dimensionalization, the velocity scale and82

the geopotential are non-dimensionalized by using
√
R∗T0∗ and R∗T0∗, respectively. The83

primitive equations with the non-dimensionalization described above can be written as84

follows.85

∂δ

∂t
=

1√
1− µ2

∂B

∂λ
− ∂

∂µ
(
√

1− µ2A)−∇2(Φ′ +
1

2
(u2 + v2))− (T + τ)∇2s, (1)

∂ζ

∂t
= − 1√

1− µ2

∂A

∂λ
− ∂

∂µ
(
√

1− µ2B), (2)

∂τ

∂t
= −u 1√

1− µ2

∂τ

∂λ
− v
√
1− µ2

∂τ

∂µ
− σ̇

∂

∂σ
(T + τ) +

(
C +

σ̇

σ
+

∫ 0

1

(C + δ)dσ

)
κ(T + τ),

(3)

∂s

∂t
=

∫ 0

1

(C + δ)dσ, (4)
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86

A = uξ + σ̇
∂v

∂σ
+ τ ′

√
1− µ2

∂s

∂µ
, (5)

B = vξ − σ̇
∂u

∂σ
− τ ′

1√
1− µ2

∂s

∂λ
, (6)

C = u
1√

1− µ2

∂s

∂λ
+ v
√

1− µ2
∂s

∂µ
, (7)

ξ = 2Ωµ+ ζ, (8)

σ̇ =

∫ 0

σ

(C(λ, µ, σ′, t) + δ(λ, µ, σ′, t))dσ′ − σ

∫ 0

1

(C + δ)dσ, (9)

Φ′ = Φ′
s −

∫ σ

1

τ ′(λ, µ, σ′, t)

σ′ dσ′. (10)

Here, Ω is the non-dimensionalized angular velocity of the sphere, κ = R∗/Cp∗, where87

Cp∗ is the specific heat at constant pressure, t is the non-dimensionalized time, λ is the88

longitude, µ = sinϕ, where ϕ is the latitude, σ = p∗/ps∗, where p∗(λ, µ, σ, t) is the pressure89

and ps∗(λ, µ, t) is the surface pressure, s = ln(ps∗/p0∗), where p0∗ is a reference pressure.90

The variable Φ′(λ, µ, σ, t) is the non-dimensionalized geopotential with the global mean91

component subtracted, and Φ′
s(λ, µ) is the surface value of Φ′. The variables δ(λ, µ, σ, t)92

and ζ(λ, µ, σ, t) are the non-dimensionalized horizontal divergence and vertical component93

of the vorticity, respectively, which satisfy δ = ∇2χ and ζ = ∇2ψ. Here, χ is the non-94

dimensionalized velocity potential, ψ is the non-dimensionalized stream-function, and ∇2
95

is the non-dimensionalized horizontal Laplacian, which is defined as,96

∇2 =
1

1− µ2

∂2

∂λ2
+

∂

∂µ

(
(1− µ2)

∂

∂µ

)
.

The non-dimensionalized (eastward, northward) flow velocity (u, v) is expressed in terms97

of χ and ψ as,98

u =
1√

1− µ2

∂χ

∂λ
−
√
1− µ2

∂ψ

∂µ
, v =

1√
1− µ2

∂ψ

∂λ
+
√
1− µ2

∂χ

∂µ
.

As for the non-dimensionalized temperature field T (λ, µ, σ, t), we divide it into the basic99

state T (σ) and the perturbation from it as, T (λ, µ, σ, t) = T (σ) + τ(λ, µ, σ, t). Further-100
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more, we divide the perturbation τ(λ, µ, σ, t) into the global mean component τ(σ, t) and101

the perturbation from it as, τ = τ(σ, t) + τ ′(λ, µ, σ, t).102

3. Discretization103

We expand the dependent variables, δ, ζ, τ , and s, by using the spherical harmonics104

in the horizontal direction and the Legendre polynomials in the vertical (σ) direction as105

follows.106

δ(λ, µ, σ, t) =
L∑
l=0

M∑
n=1

n∑
m=−n

δn,m,l(t)Yn,m(λ, µ)Pl(1− 2σ), (11)

ζ(λ, µ, σ, t) =
L∑
l=0

M∑
n=1

n∑
m=−n

ζn,m,l(t)Yn,m(λ, µ)Pl(1− 2σ), (12)

τ(λ, µ, σ, t) =
L∑
l=0

τ l(t)Pl(1− 2σ) + σ
L−1∑
l=0

M∑
n=1

n∑
m=−n

τ ′n,m,l(t)Yn,m(λ, µ)Pl(1− 2σ), (13)

s(λ, µ, t) =
M∑
n=0

n∑
m=−n

sn,m(t)Yn,m(λ, µ). (14)

Here, Y m
n (λ, µ) is the spherical harmonics and Pl(η) is the Legendre polynomial. We define107

η as η = 1 − 2σ. That is, σ = (1 − η)/2. The parameter M is the horizontal truncation108

wavenumber, and L is the vertical truncation wavenumber. In the vertical direction, we109

ought to call L “truncation degree” because we use the Legendre polynomial expansion.110

However, for convenience, we call L the vertical truncation wavenumber in the present111

manuscript. The spherical harmonics, Yn,m(λ, µ), is defined as,112

Yn,m(λ, µ) = Pn,|m|(µ)e
imλ. (15)

Here, Pn,m(µ) is the associated Legendre function, which is defined as,113

Pn,m(µ) =

√
(2n+ 1)

(n−m)!

(n+m)!

1

2nn!
(1− µ2)m/2

dn+m

dµn+m
(µ2 − 1)n (0 ≤ m ≤ n). (16)
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Note that Pm
n (µ) is normalized to satisfy the following orthogonality relation:114

1

2

∫ 1

−1

Pn,m(µ)Pn′,m(µ)dµ =


1 (n′ = n),

0 (n′ ̸= n).

(17)

By using (16), the Legendre polynomial Pl(η) is defined as the case where n = l andm = 0115

with setting µ = η. Our original idea in the expansion (13) is to divide the right-hand116

side into two parts. The first term corresponds to τ and and the second term corresponds117

to τ ′. By multiplying the second term by σ, the singularity in σ′ → ∞ that appears in the118

integral of the defining expression of Φ′ (10) is avoided in the expansion. Machenhauer119

and Daley (1974) also attempted to avoid this singularity, but the expansion of τ there was120

done using the usual Legendre polynomial expansion, with a somewhat ad hoc process121

of adjusting the expansion coefficients of τ at each time step. Our approach to avoid122

this singularity is more systematic, considering the Galerkin formulation described below.123

This singularity could also be avoided by not placing the model top at σ = 0. However,124

in that case, the spectral method in the vertical direction degrades to the collocation125

method, not the Galerkin method, and then, the aliasing error cannot be removed and126

the symmetrical band structure of the matrices which appear in the semi-implicit time-127

integration will be lost.128

In the expansion of τ ′, the second term of the right-hand side of (13), the truncation129

wavenumber of l is set to L−1 in order to take the fact into account that the entire second130

term is multiplied by σ, so that the highest order of σ in the term is L, the same as in131

the expansions of ζ and δ, which are defined by (12) and (11), respectively. Also, if the132

truncation wavenumber of l is L in the expansion of the part corresponding to τ ′, then133

from (10), Φ′ has components up to L+1 order for σ. In that case, for Φ′ → Φ′
s (σ → 1) to134

be satisfied, all the components of Φ′ up to L+1 order must be considered. However, since135

the expansion of δ is up to order L, constraints on (1) to derive the evolution equations136
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for the coefficients of δn,m,l are only up to order L (see (18) below), which means that137

∂δ/∂t = 0 can not be satisfied at σ = 1 even if u = v = s = Φ′
s = 0. This also implies138

that the truncation wavenumber of l in the expansion of τ ′ should be L−1. In Subsection139

A.4, we will explain another reason for this choice of the truncation wavenumber.140

Now, by applying the Galerkin method to the governing equations, the time-derivatives141

of δn,m,l, ζn,m,l, τ l, τ
′
n,m,l, and sn,m are determined. Letting the right-hand sides of (1)–(4)142

be expressed formally as Fδ(λ, µ, σ, t), Fζ(λ, µ, σ, t), Fτ (λ, µ, σ, t), and Fs(λ, µ, t), respec-143

tively, the time-derivatives of δn,m,l,ζn,m,l,τ l, and sn,m are determined as,144

dδn,m,l
dt

=

⟨∫ 1

0

Fδ(λ, µ, σ, t)Yn,−m(λ, µ)Pl(1− 2σ)dσ

⟩
, (18)

dζn,m,l
dt

=

⟨∫ 1

0

Fζ(λ, µ, σ, t)Yn,−m(λ, µ)Pl(1− 2σ)dσ

⟩
, (19)

dτ l
dt

=

⟨∫ 1

0

Fτ (λ, µ, σ, t)Pl(1− 2σ)dσ

⟩
, (20)

dsn,m
dt

= ⟨Fs(λ, µ, t)Yn,−m(λ, µ)⟩ . (21)

Here, ⟨·⟩ is the global mean, whose operation is determined as,145

⟨·⟩ = 1

4π

∫ 2π

0

∫ 1

−1

· dµdλ.

On the other hand, by considering that the expansion of τ ′n,m,l is multiplied by σ, the146

time-derivative of τ ′n,m,l is determined as,147

L−1∑
l′=0

Bll′
dτ ′n,m,l′

dt
=

⟨∫ 1

0

Fτ (λ, µ, σ, t)Yn,−m(λ, µ)σPl(1− 2σ)dσ

⟩
(l = 0, 1, . . . , L− 1).

(22)

Here, (22) is a simultaneous linear equation for
dτ ′

n,m,l′

dt
, where Bll′ is defined as,148

Bll′ =

∫ 1

0

σ2Pl(1− 2σ)Pl′(1− 2σ)dσ

=
1

2

∫ 1

−1

(
1− η

2

)2

Pl(η)Pl′(η)dη

=
1

2

∫ 1

−1

(
1

4
− 1

2
η +

1

4
η2
)
Pl(η)Pl′(η)dη.
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Now, by using the following equations for the Legendre polynomials,149

ηPl(η) =


l√

(2l−1)(2l+1)
Pl−1(η) +

l+1√
(2l+1)(2l+3)

Pl+1(η) (l = 1, 2, . . .)

l+1√
(2l+1)(2l+3)

Pl+1(η) (l = 0)

150

η2Pl(η)

=


(l−1)l

(2l−1)
√

(2l−3)(2l+1)
Pl−2(η) +

2l2+2l−1
(2l−1)(2l+3)

Pl(η) +
(l+1)(l+2)

(2l+3)
√

(2l+1)(2l+5)
Pl+2(η) (l = 2, 3, . . .)

2l2+2l−1
(2l−1)(2l+3)

Pl(η) +
(l+1)(l+2)

(2l+3)
√

(2l+1)(2l+5)
Pl+2(η) (l = 0, 1)

and the orthogonal relation (16), the components of Bll′ can be expressed as,151

Bll′

=



1
4

(
1 + 2l2+2l−1

(2l−1)(2l+3)

)
= 3l2+3l−2

2(2l−1)(2l+3)
(l′ = l)

− l+1

2
√

(2l+1)(2l+3)
(l′ = l + 1)

− l

2
√

(2l−1)(2l+1)
(l′ = l − 1)

(l+1)(l+2)

4(2l+3)
√

(2l+1)(2l+5)
(l′ = l + 2)

(l−1)l

4(2l−1)
√

(2l−3)(2l+1)
(l′ = l − 2)

0 (|l′ − l| = 3, 4, . . .).

In the matrix form, (Bll′) can be expressed as follows.152

(Bll′) =



1
3

− 1
2
√
3

1
6
√
5

0 · · ·

− 1
2
√
3

2
5

− 1√
15

3
10

√
21

. . .

1
6
√
5

− 1√
15

8
21

− 3
2
√
35

. . .

0 3
10

√
21

− 3
2
√
35

17
35

. . .

...
. . . . . . . . . . . .


.

This is a pentadiagonal symmetric matrix.153

Calculations of σ-derivatives in (3), (5), and (6) can be done by noting that154

∂

∂σ
= −2

∂

∂η
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and the following formula for the derivative of the Legendre polynomial,155

(1− η2)
d

dη
Pl(η) =


l(l+1)√

(2l−1)(2l+1)
Pl−1(η)− l(l+1)√

(2l+1)(2l+3)
Pl+1(η) (l = 1, 2, · · · )

− l(l+1)√
(2l+1)(2l+3)

Pl+1(η) (l = 0).

(23)

Furthermore, in the calculations of (9) and (10), it is necessary to calculate the definite156

integrals of the Legendre polynomial. These integrals can be calculated as follows. Firstly,157

integrating both sides of the following equation,158

d

dη

{
(1− η2)

d

dη
Pl(η)

}
= −l(l + 1)Pl(η), (24)

we obtain,159

−l(l + 1)

∫ b

a

Pl(η)dη =

[
(1− η2)

d

dη
Pl(η)

]b
a

. (25)

By using (25), the following equations are obtained.160

∫ 0

σ

Pl(1− 2σ′)dσ′ = −1

2

∫ 1

η

Pl(η
′)dη′ =

 −1
2
(1− η) = −σ (l = 0)

− 1
2l(l+1)

(1− η2) d
dη
Pl(η) (l ̸= 0),

(26)

∫ σ

1

Pl(1− 2σ′)dσ′ = −1

2

∫ η

−1

Pl(η
′)dη′ =

 −1
2
(1 + η) = σ − 1 (l = 0)

1
2l(l+1)

(1− η2) d
dη
Pl(η) (l ̸= 0).

(27)

By using (26) and (27), we can calculate the definite integrals of the Legendre polynomial161

in evaluating (9) and (10).162

3.1 Transform method163

In the equations (18)–(22) that determine the time-derivatives of the dependent vari-164

ables, the transform method is used to evaluate the integral on the right-hand side. That165

is, we introduce grid points in the horizontal direction as, (λi, µj) (i = 1, 2, . . . , I; j =166

1, 2, . . . , J) and grid points in the the vertical direction as, σk (k = 1, 2, . . . K), to calculate167

the integral on the right-hand side by summing the weighted grid values.168
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For example, the right-hand side of (18) is calculated as follows.169

I∑
i=1

1

I

J∑
j=1

wj
2

K∑
k=1

Wk

2
Fδ(λi, µj, σk, t)Yn,−m(λi, µj)Pl(1− 2σk). (28)

Here, λi =
2π(i−1)

I
(i = 1, 2, . . . , I) and µj (j = 1, 2, . . . , J) are the Gaussian nodes, which170

are defined as zero points (sorted in ascending order) of PJ(µ). The grid points in the171

vertical direction, σk (k = 1, 2, . . . , K), are defined as σk = (1 − ηk)/2 (k = 1, 2, . . . , K),172

where, ηk (k = 1, 2, . . . , K) are zero points (sorted in ascending order) of PK(η). Also, wj173

and Wk are the Gaussian weights, which are defined as,174

wj ≡
2(2J − 1)(1− µ2

j)

{JPJ−1(µj)}2
(j = 1, 2, . . . , J), (29)

Wk ≡
2(2K − 1)(1− η2k)

{KPK−1(ηk)}2
(k = 1, 2, . . . , K), (30)

respectively. In the σ-integrals appearing in (18)–(20) and (22), the integrands are 3L-175

degree polynomials of σ except for the T (σ) part. This fact can be confirmed as follows.176

In (1)–(10), u, v, ζ, δ, τ ′, τ , τ , and Φ′ are L-degree polynomials of σ. Furthermore, since s177

does not depend on σ, C is also an L-degree polynomial of σ, and from this, it becomes178

clear that σ̇ is the product of σ and an L-degree polynomial of σ. Therefore, A and B179

are 2L-degree polynomials of σ, and from this, it becomes clear that the right-hand sides180

of (1)–(3) are 2L-degree polynomials of σ. This confirms the statement above. In order181

to avoid the aliasing error, we should set K so that 2K − 1 ≥ 3L is satisfied. That is,182

since the Gauss-Legendre quadrature formula is used in the vertical direction as well as183

in the horizontal direction, the choice of the grid points (σk) in the vertical direction is184

automatically determined. Although this may seem a disadvantage in the sense that it185

lacks flexibility in the way the grid points are chosen, it can be regarded as an advantage186

in that the optimal grid points for accuracy are automatically determined. Since the187

Gaussian nodes tend to be dense near the boundary, the grid points (σk) are dense near188

σ = 0, 1. For example, when K = 20, (σk) =(0.997, 0.982, 0.956, 0.920, 0.873, 0.818,189
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0.755, 0.687, 0.614, 0.538, 0.462, 0.386, 0.313, 0.245, 0.182, 0.127, 0.0804, 0.0439, 0.0180,190

0.00344) in three significant digits. When K is large, 1 − σ1 = σK ≈ 1.4 × K−2 and191

σ1 − σ2 = σK−1 − σK ≈ 6.1 × K−2 in a rough approximation. Dense grid points near192

σ = 1 correspond to the increase of the number of grid points in the lower layer of the193

atmosphere. On the other hand, the densification of the grid points near σ = 0 does not194

necessarily mean that the grid points are dense in the upper atmosphere if we consider the195

logarithmic pressure coordinate. On the treatment of the basic temperature field, T (σ),196

we can give its value and its σ-derivative on the grid points since it appears only in the197

evaluation of the integral.198

4. Semi-implicit time-integration199

We denote the vector that formally lumps all of the expansion coefficients200

(δn,m,l, ζn,m,l, τ l, τ
′
n,m,l, sn,m) together as u. Then the time-evolution equations (1)–(4) are201

expressed formally as,202

∂u

∂t
= f(u) +Lu (31)

where L is the linear operator for gravity wave propagation (to be defined later), and203

f(u) is a nonlinear operator that summarizes the other remaining terms. Now, following204

Durran and Blossey (2012), we consider the use of IMEX (Implicit-Explicit Multistep205

Methods) for time-integration. Among the IMEX methods, we will use the combination206

of AM2∗/AX2∗. Then the scheme of time-integration can be expressed as follows.207

1

∆t
(qn+1 − qn) = β0f(q

n) + β−1f(q
n−1) + β−2f(q

n−2) + ν1Lqn+1 + ν−1Lqn−1. (32)

12



Here, qn is the numerical approximation to u at time n∆t, and ∆t is the time step. The208

specific values of the coefficients are,209

β0 =
7

4
, β−1 = −1, β−2 =

1

4
, ν1 =

3

4
, ν−1 =

1

4
. (33)

In the actual time evolution, (32) is transformed to the following form of a simultaneous210

linear equation,211

(I − ν1∆tL)qn+1 = qn +∆t
{
β0f(q

n) + β−1f(q
n−1) + β−2f(q

n−2) + ν−1Lqn−1
}

(34)

and it is solved for qn+1. Here, I is the identity matrix. In the following, we will212

describe the time-evolution corresponding to the linear operator L. Because the explicit213

matrix form of L is not easily constructed, we derive how to obtain Lq from given214

q = (δn,m,l, ζn,m,l, τ l, τ
′
n,m,l, sn,m) as a procedure. We linearize the time-evolution equation215

(1)–(4) with the basic field being the isothermal stationary atmosphere at the temperature216

T0∗ used in the non-dimensionalization. Note that the choice of the value of T0∗ affects the217

behavior of the semi-implicit time-integration. We will set T0∗ = 300K in the benchmark218

calculations shown in the next section. If we also neglect the effect of the rotation of the219

sphere, the resulting linearized equation can be expressed as follows.220

∂δ

∂t
= ∇2

∫ σ

1

τ ′(λ, µ, σ′, t)

σ′ dσ′ −∇2s, (35)

∂τ ′

∂t
= κ

1

σ

∫ 0

σ

δ(λ, µ, σ′, t)dσ′, (36)

∂s

∂t
=

∫ 0

1

δdσ. (37)

Here, the evolution equation for ζ is omitted because it does not evolve in time in this221

linearization. Now, considering the expansions of the forms (11)–(14) and applying the222

Galerkin formulation to (35)–(37) similarly as shown in (18)–(22), we obtain the following223

13



by using (23), (26), and (27).224

∂δn,m,0
∂t

= −n(n+ 1)

(
−1

2
τ ′n,m,0 +

1

2
√
3
τ ′n,m,1 − sn,m

)
, (38)

∂δn,m,l
∂t

= −n(n+ 1)

(
−

τ ′n,m,l−1

2
√

(2l − 1)(2l + 1)
+

τ ′n,m,l+1

2
√
(2l + 1)(2l + 3)

)
(l = 1, 2, . . .),

(39)

L−1∑
l′=0

B0l′
∂τ ′n,m,l′

∂t
= κ

(
−1

2
δn,m,0 −

1

2
√
3
δn,m,1

)
, (40)

L−1∑
l′=0

Bll′
∂τ ′n,m,l′

∂t
= κ

(
δn,m,l−1

2
√

(2l − 1)(2l + 1)
− δn,m,l+1

2
√

(2l + 1)(2l + 3)

)
(l = 1, 2, . . .), (41)

∂sn,m
∂t

= −δn,m,0. (42)

Therefore, if we define the (L+ 1)× L matrix (All′) as225

A0l′ =


1
2

(l′ = 0)

− 1
2
√
3

(l′ = 1)

0 (else)

, (43)

All′(l ≥ 1) =



1

2
√

(2l−1)(2l+1)
(l′ = l − 1)

− 1

2
√

(2l+1)(2l+3)
(l′ = l + 1)

0 (else)

, (44)

(38)–(41) can be expressed as follows.226

∂δn,m,l
∂t

=


n(n+ 1)

(∑L−1
l′=0 All′τ

′
n,m,l′ + sn,m

)
(l = 0),

n(n+ 1)
∑L−1

l′=0 All′τ
′
n,m,l′ (l = 1, . . . , L),

(45)

L−1∑
l′=0

Bll′
∂τ ′n,m,l′

∂t
= −κ

L∑
l′=0

Al′lδn,m,l′ (l = 0, 1, . . . , L− 1). (46)
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The elements of the matrix (All′) can be expressed as follows.227

(All′) =
1

2



1 − 1√
3

0 0 · · · 0

1√
3

0 − 1√
15

0
. . . 0

0 1√
15

0 − 1√
35

. . . 0

0 0 1√
35

0
. . . 0

0 0 0 1√
63

. . . − 1
(2L−3)(2L−1)

...
. . . . . . . . . . . . 0

0 0 0 0 0 1
(2L−1)(2L+1)



. (47)

Using (45), (46), and (42), the procedure to obtain Lq from given q is described as228

follows. The components of Lq corresponding to δn,m,l and sn,m are directly obtained by229

calculating the right-hand sides of (45) and (42). The components of Lq corresponding to230

τ ′n,m,l are obtained by solving the simultaneous linear equation of (46) for ∂τ ′n,m,l/∂t. On231

the other hand, the components of Lq corresponding to ζn,m,l and τ l are zeros since the232

system of linearized equations (45), (46), and (42) contains neither ∂ζn,m,l/∂t nor ∂τ l/∂t.233

Now, denoting the components of the whole right-hand side of (34) corresponding to234

δn,m,l, τ
′
n,m,l, and sn,m by Rδn,m,l

, Rτ ′n,m,l
, and Rsn,m , respectively, the simultaneous linear235

equation (34) to be solved can be expressed as follows.236

δn,m,l =


Rδn,m,l

+ ν1∆tn(n+ 1)
(∑L−1

l′=0 All′τ
′
n,m,l′ + sn,m

)
(l = 0),

Rδn,m,l
+ ν1∆tn(n+ 1)

∑L−1
l′=0 All′τ

′
n,m,l′ (l = 1, . . . , L),

(48)

L−1∑
l′=0

Bll′τ
′
n,m,l′ = R̃τ ′n,m,l

− ν1∆tκ
L∑
l′=0

Al′lδn,m,l′ (l = 0, 1, . . . , L− 1), (49)

sn,m = Rsn,m − ν1∆tδn,m,0, (50)

R̃τ ′n,m,l
=

L−1∑
l′=0

Bll′Rτ ′
n,m,l′

(l = 0, 1, . . . , L− 1). (51)

Here, the solution (δn,m,l, τ
′
n,m,l, sn,m) of this simultaneous linear equation corresponds to237
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qn+1 in (34). For the components of ζn,m,l and τ l that do not appear here, since the238

corresponding rows and columns of L are zero, we do not need to solve a simultaneous239

linear equation for these components, but we should simply calculate the corresponding240

components of the right-hand side of (34). Now, let us consider the procedure for solving241

the simultaneous equation (48)–(50) in the following steps. First, substituting (50) into242

(48) and eliminating sn,m, we can derive the following equation by setting l = 0.243

δn,m,0 = Rδn,m,0 + ν1∆tn(n+ 1)

(
L−1∑
l′=0

A0l′τ
′
n,m,l′ +Rsn,m − ν1∆tδn,m,0

)
. (52)

Solving this for δn,m,0, we obtain,244

δn,m,0 =
1

1 + (ν1∆t)2n(n+ 1)

{
Rδn,m,0 + ν1∆tn(n+ 1)

(
L−1∑
l′=0

A0l′τ
′
n,m,l′ +Rsn,m

)}
. (53)

Thus, including the cases of l ≥ 1, δn,m,l can be expressed as,245

δn,m,l =


ν1∆tn(n+1)

1+(ν1∆t)2n(n+1)

∑L−1
l′=0 All′τ

′
n,m,l′ +

Rδn,m,l
+ν1∆tn(n+1)Rsn,m

1+(ν1∆t)2n(n+1)
(l = 0),

ν1∆tn(n+ 1)
∑L−1

l′=0 All′τ
′
n,m,l′ +Rδn,m,l

(l = 1, . . . , L).

(54)

Substituting the expression (54) into (49), we get246

L−1∑
l′=0

Bll′τ
′
n,m,l′

+ (ν1∆t)
2n(n+ 1)κ

(
A0l

1 + (ν1∆t)2n(n+ 1)

L−1∑
l′=0

A0l′τ
′
n,m,l′ +

L∑
l′′=1

Al′′l

L−1∑
l′=0

Al′′l′τ
′
n,m,l′

)

= R̃τ ′n,m,l
− ν1∆tκ

(
A0l

Rδn,m,l
+ ν1∆tn(n+ 1)Rsn,m

1 + (ν1∆t)2n(n+ 1)
+

L∑
l′=1

Al′lRδn,m,l

)
(l = 0, 1, . . . , L− 1).

(55)

If we introduce (Cn,ll′) as,247

Cn,ll′ =
A0lA0l′

1 + (ν1∆t)2n(n+ 1)
+

L∑
l′′=1

Al′′lAl′′l′ , (56)

16



(55) can be expressed as follows.248

L−1∑
l′=0

(
Bll′ + (ν1∆t)

2n(n+ 1)κCn,ll′
)
τ ′n,m,l′

= R̃τ ′n,m,l
− ν1∆tκ

(
A0l

Rδn,m,l
+ ν1∆tn(n+ 1)Rsn,m

1 + (ν1∆t)2n(n+ 1)
+

L∑
l′=1

Al′lRδn,m,l

)
(l = 0, 1, . . . , L− 1).

(57)

This is now a simultaneous linear equation for τ ′n,m,l′ only. The (Cn,ll′) defined by (56) is249

an L×L matrix for each n. By denoting as bn = 1/(1+(ν1∆t)
2n(n+1)), the components250

of (Cn,ll′) are calculated as follows.251

4Cn,ll′ =



bn +
1
3

((l, l′) = (0, 0))

− 1√
3
bn ((l, l′) = (0, 1), (1, 0))

1
3
bn +

1
15

((l, l′) = (1, 1))

2
(2k−1)(2k+3)

(l = l′ = k; k = 2, 3, . . . , L− 1)

− 1

(2k−1)
√

(2k−3)(2k+1)
((l, l′) = (k − 2, k), (k, k − 2); k = 2, 3, . . . , L− 1)

0 (else).

(58)

The matrix representation of (Cn,ll′) is as follows.252

(Cn,ll′) =
1

4



bn +
1
3

− 1√
3
bn − 1

3
√
5

0 0 · · ·

− 1√
3
bn

1
3
bn +

1
15

0 − 1
5
√
21

0
. . .

− 1
3
√
5

0 2
21

0 − 1
7
√
45

. . .

0 − 1
5
√
21

0 2
45

0
. . .

0 0 − 1
7
√
45

0 2
77

. . .

...
. . . . . . . . . . . . . . .


. (59)

This is an L× L pentadiagonal symmetric matrix. In the left-hand side of (57), (Bll′) is253

also an L × L pentadiagonal symmetric matrix, so that the entire coefficient matrix of254
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τ ′n,m,l′ is also an L× L pentadiagonal symmetric matrix. Thus, τ ′n,m,l can be obtained by255

solving the simultaneous linear equations with an L×L pentadiagonal diagonal symmetric256

matrix as the coefficient matrix for each (n,m). From the obtained τ ′n,m,l, we can obtain257

δn,m,l by using (54), and from the obtained δn,m,0, sn,m can be obtained by (50).258

We have now formulated the procedure for time-integration based on (32). However,259

since (32) is a three-step method, it is necessary to perform time-integration by some260

other means for two steps from the initial condition. Since the scheme (32) is a second-261

order scheme, the first two steps must also be calculated by a second-order scheme (or262

a higher-accuracy scheme). Here, for simplicity, we propose to integrate (31) with the263

following split-step method. First, the time-evolution by the operator L is done by using264

the implicit trapezoidal scheme for the time period of ∆t/2. Then, the time-evolution by265

the operator f(u) is done by using Runge-Kutta method of second or higher order for266

the time period of ∆t. Finally, the time-evolution by the operator L is done by using267

the implicit trapezoidal scheme again for the time period of ∆t/2. This maintains the268

second-order accuracy in the time direction. In the present manuscript, we use a third-269

order three-stage scheme to consider the stability of the gravity-wave component. Since270

the time-evolution of the part of the implicit trapezoidal scheme is a time-evolution of271

1/2 step, the scheme is expressed as,272

qn+1/2 − qn =
∆t

2
· 1
2
(Lqn+1/2 +Lqn). (60)

Thus, we should solve the following simultaneous linear equation,273 (
I − ∆t

4
L

)
qn+1/2 =

(
I +

∆t

4
L

)
qn. (61)

Since the coefficient matrix appearing on the left-hand side of (61) is simply the one that274

replaces the value of ν1 used in the procedure below (48) with 1/4 instead of 3/4, the275

solution for qn+1/2 can be calculated by the the same procedure. Thus, the whole calcu-276
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lation procedure, including the Runge-Kutta part and writing (61) again, is summarized277

as follows.278 (
I − ∆t

4
L

)
qn+1/2 =

(
I +

∆t

4
L

)
qn, (62)

279

k1 = f
(
qn+1/2

)
∆t

k2 = f

(
qn+1/2 +

1

3
k1

)
∆t

k3 = f

(
qn+1/2 +

2

3
k2

)
∆t

q̃n+1/2 = qn+1/2 +
1

4
(k1 + 3k3)

(63)

280 (
I − ∆t

4
L

)
qn+1 =

(
I +

∆t

4
L

)
q̃n+1/2. (64)

4.1 Treatment of dissipation terms281

As in the setting of Held and Suarez (1994), which we will discuss later, we often282

include a dissipation term in the right-hand side of (31) as follows.283

∂u

∂t
= f(u) +Lu− Γu. (65)

Here, Γ is the matrix representing the dissipation effect, which we assume to be a diagonal284

matrix. It is of course possible to combine the effects of this term into the linear operator285

L. In that case, however, the shape of the coefficient matrix becomes more complicated286

when the semi-implicit method described above is applied. Therefore, in the present287

manuscript, we propose the following method. Introducing the vector-valued function288

v(t) as289

v(t) = etΓu(t), (66)
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we can derive the following equation from (65).290

∂v

∂t
= etΓ

(
Γu(t) +

∂u

∂t

)
= etΓ (f(u) +Lu) = etΓf(e−tΓv) + etΓLe−tΓv. (67)

Let us apply AM2∗/AX2∗ scheme to perform the time-integration of this differential equa-291

tion for v. Denoting the numerical approximation of v at time n∆t as rn, the scheme292

corresponding to (32) can be expressed as follows.293

1

∆t
(rn+1 − rn) = β0e

n∆tΓf(e−n∆tΓrn) + β−1e
(n−1)∆tΓf(e−(n−1)∆tΓrn−1)

+β−2e
(n−2)∆tΓf(e−(n−2)∆tΓrn−2)

+ν1e
(n+1)∆tΓLe−(n+1)∆tΓrn+1 + ν−1e

(n−1)∆tΓLe−(n−1)∆tΓrn−1.

(68)

Multiplying e−(n+1)∆tΓ from the left to both sides of this equation and noting that294

e−n∆tΓrn = qn, (68) can be rewritten as follows.295

1

∆t
(qn+1 − e−∆tΓqn) = β0e

−∆tΓf(qn) + β−1e
−2∆tΓf(qn−1)

+β−2e
−3∆tΓf(qn−2) + ν1Lqn+1 + ν−1e

−2∆tΓLqn−1.

(69)

Therefore, comparing (69) and (32), we can see that the inclusion of the dissipation term296

means that we only need to apply attenuation when using values from past time steps.297

Note that in this case, the first two steps should also be changed from (62)–(64). The298

equations (62) and (64) should be changed to299 (
I − ∆t

4
L

)
qn+1/2 = e−

1
2
∆tΓ

(
I +

∆t

4
L

)
qn (70)

and300 (
I − ∆t

4
L

)
qn+1 = e−

1
2
∆tΓ

(
I +

∆t

4
L

)
q̃n+1/2, (71)

respectively.301
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5. Benchmark experiments and accuracy assessment302

In this section, we implement the three-dimensional spectral formulation of the prim-303

itive equations described so far as a numerical model, and check that it gives reasonable304

numerical solutions by using benchmark experimental settings proposed in previous stud-305

ies. In order to check the effect of using the spectral method also in the vertical direction,306

we investigate the dependence of the computational accuracy on the discretization degrees307

of freedom in the vertical direction.308

In the numerical calculations presented in this section, ispack-3.1.0 (http://www.gfd-309

dennou.org/arch/ispack/), which is designed based on Ishioka (2018), is used for the310

transform method described in Subsection 3.1.311

5.1 Benchmark experiment based on Polvani, et al (2004)312

First, we calculate the time-evolution of baroclinic disturbances, which grow by baro-313

clinc instaility of a mid-latitude zonal jet, based on the benchmark setting of Polvani, et314

al (2004).315

In the benchmark setting of Polvani, et al (2004), a baroclincally unstable mid-latitude316

zonal jet and a zonal temperature field which is in the thermal-wind balance with the jet317

are given as the initial basic state. A Gaussian-like initial temperature disturbance is318

added to the unstable basic state, and the time-evolution of the whole system, including319

the growth of baroclinic disturbances, is calculated. For details of the benchmark settings,320

see Polvani, et al (2004). Figure 1 shows the time-evolution of the temperature field321

on the σ = 0.975 surface, corresponding to Fig. 2 in Polvani, et al (2004). While the322

horizontal truncation wavenumber is T341 and the number of the vertical levels for the323

finite difference scheme in the σ-coordinate is 20 for the calculation of Fig. 2 in Polvani,324

et al (2004), the horizontal truncation wavenumber is T170 and the vertical truncation325
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wavenumber is 13 (the number of the vertical grids is 20) for the calculation of Fig. 1 in326

the present manuscript. The time step also differs: ∆t = 150s in Polvani, et al (2004) and327

∆t = 600s in the present manuscript. Comparing Fig. 1 in the present manuscript and328

Fig. 2 in Polvani, et al (2004) shows almost perfect agreement on the fine structure of the329

contours of the temperature field at time t =12day. It is worth noting that the number of330

the vertical levels in the calculation for Fig. 2 in Polvani, et al (2004) is 20, but the vertical331

truncation wavenumber for the calculation of Fig. 1 in the present manuscript is 13. This332

means that although the vertical degrees of freedom used in the three-dimensional spectral333

model here is smaller than that used in Polvani, et al (2004), the development pattern334

of the baroclinic disturbance can be calculated with almost the same accuracy by the335

three-dimensional spectral model.336 Fig. 1

5.2 Benchmark experiment based on Held and Suarez (1994)337

Next, to check the mean field of long time-evolution, meridional distribution of the338

zonal-mean temperature field and the zonal-mean zonal wind field for 1000-day mean339

from the 200th day of time-evolution based on the benchmark setting of Held and Suarez340

(1994) are calculated by using the three-dimensional spectral model developed in the341

present manuscript and shown in Fig. 2. The top panel of Fig. 2 corresponds to Fig.1c342

in Held and Suarez (1994), and the bottom panel of Fig. 2 corresponds to Fig. 2 in Held343

and Suarez (1994).344

The calculation of Held and Suarez (1994) is done using the finite difference method345

with 144×72 or a spectral method with T63 for the discretization in the horizontal di-346

rection and the finite difference method with 20 levels in the vertical direction. For the347

calculation of Fig. 2 in the present manuscript, the horizontal truncation wavenumber348

is T85, the vertical truncation wavenumber is 13 (20 grids), the time step ∆t is 720s,349
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and the initial disturbance is the same Gaussian-like temperature disturbance as that is350

used in Polvani, et al (2004). In this long-time average statistical equilibrium state, the351

meridional structures of the zonal-mean temperature and zonal-mean zonal wind fields352

are in good agreement with those obtained in Held and Suarez (1994), even though the353

vertical truncation wavenumber of the three-dimensional spectral model is 13, which is a354

small number of degrees of freedom, as in the case of the previous subsection.355 Fig. 2

5.3 Benchmark experiment based on Jablonowski and Williamson (2006)356

At the end of the benchmark tests, we perform numerical calculations of the growth of357

baroclinic disturbances according to the settings proposed by Jablonowski and Williamson358

(2006). This setup is similar to that of Polvani, et al (2004), but with a north-south359

symmetric zonal wind and temperature fields, and the smoothness of the basic field is360

considered. The initial disturbance is a Gaussian-like distribution in the eastward wind361

field in the northern hemisphere. Figure 3 shows the surface pressure field on day 9362

in the time-evolution calculated based on this benchmark setting, with the horizontal363

truncation wavenumber of T170 (512× 256 grids), the vertical truncation wavenumber is364

17 (26 grids), and the time step is 300s. This figure corresponds to Fig. 7a in Jablonowski365

and Williamson (2006). However, in the present manuscript, the horizontal diffusion366

term for the sponge-like effect in the upper layer, which is added in Jablonowski and367

Williamson (2006), is not added. Comparing Fig. 7a of Jablonowski and Williamson368

(2006) with Fig. 3 of the present manuscript, we can see that there is a slight difference in369

the pattern of the contour lines of 1000hPa because the position of the 1000hPa contour370

lines can vary greatly even with very small deviations from the basic field. However, the371

contours at other levels show almost perfect agreement down to the fine structure. It is372

still worth mentioning that the number of the vertical levels in the calculation for Fig. 7a373
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in Jablonowski and Williamson (2006) is 26, but the vertical truncation wavenumber for374

the calculation of Fig. 3 in the present manuscript is 17. This means that although the375

vertical degrees of freedom used in the three-dimensional spectral model here is smaller376

than that used in Jablonowski and Williamson (2006), the development pattern of the377

baroclinic disturbance can be calculated with almost the same accuracy by the three-378

dimensional spectral model.379

Next, we examine the convergence of the numerical solution for the three-dimensional380

spectral model with changing the vertical truncation wavenumber. Figure 4 shows the381

dependence of the error of the surface pressure field on the vertical truncation wavenumber382

L for days 1, 5, 9, 11, and 12, measured in l2 norm. The result at L = 170 (K = 256)383

is taken as the true value here and we define the difference from it as the error. The384

horizontal truncation wavenumber is T85 (256 × 128 grids), and the time step is 150s.385

Here, the reason why the small time step is used is to ensure the stability of the calculation386

even in the case of L = 170 (K = 256). In Fig. 4, the horizontal places of the markers387

indicate the values of the vertical truncation wavenumber L used in the time-integrations388

(L = 10, 11, 12, 13, 14, 15, 16, 17, 21, 42, and 85). The corresponding number of the vertical389

grids, K, is K = 16, 18, 20, 20, 22, 24, 26, 26, 32, 64, and 128, respectively. If the error of390

the surface pressure measured in the l2 norm is expressed as ϵ, the dependence of ϵ on L391

is expressed approximately as ϵ ∼ L−1 for day 1 and day 5. We believe that this is caused392

by horizontal propagation of Lamb-wave modes excited by the initial disturbance until393

baroclinic disturbances develop due to baroclinic instability. As shown in Subsection A.4,394

in this three-dimensional spectral model, the error of phase speed of Lamb-wave modes395

is roughly proportional to L−1. Therefore, as Lamb-wave modes excited by the initial396

disturbance propagate horizontally, the influence of phase speed difference increases with397

time and the error of surface pressure also increases, hence, the error is considered to be398
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approximately proportional to L−1. On the other hand, on day 9, in the region where399

L is small (L = 10 to L = 15) the L-dependence of ϵ is clearly higher power curve400

than L−1 (about ϵ ∼ L−4), and on day 11 and day 12, a still higher power dependence401

(about ϵ ∼ L−6) is observed in the region from L = 10 to L = 17. This is because after402

day 9, as seen in Fig. 3, baroclinic disturbances are sufficiently developed and the error403

included in the evaluation of the advection effect due to the vertical velocity becomes404

larger than that of the phase speed of the initially excited Lamb-wave modes. Since the405

vertical discretization error affects the evaluation of the vertical advection largely, it can406

be interpreted that using the spectral method in the vertical direction makes the error407

decrease rapidly as L is increased.408 Fig. 3

In Fig. 4, the error from the initial disturbance itself has a certain magnitude before409

the development of the disturbance due to baroclinic instability. Therefore, the effect of410

vertical resolution on the improvement of accuracy at the timing of the development of the411

baroclinic disturbances is somewhat obscured. In order to resolve this point, we perform412

time-integrations again based on the benchmark setting of Jablonowski and Williamson413

(2006), but where the amplitude of the initial disturbance is set to 1/1000. Figure 5414

shows the surface pressure field on day 19 in such a setup, with the horizontal trunca-415

tion wavenumber of T85 (256 × 128 grids), the vertical truncation wavenumber of 170416

(256 grids), and the time step of 150s. Since the amplitude of the initial disturbance417

is reduced, the development of the baroclinic disturbances is delayed compared to the418

case of Fig. 3. However, after a sufficient amount of time has elapsed, well-developed low419

pressure systems can be seen. Figure 6 shows the convergence of the numerical solution420

with changing the vertical truncation wavenumber for the case where the amplitude of421

the initial disturbance is set to 1/1000 of the standard value, as in Fig. 4. Since the422

development of the baroclinic disturbances is delayed compared to the case of Fig. 4, the423
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dependence of the error on the vertical truncation wavenumber L is shown for days 1, 9,424

11, 13, 15, 17, 19, and 21. The time-integrations are done with the horizontal truncation425

wavenumber of T85 (256× 128 grids) and the time step of 150s. In Fig. 6, on day 1 and426

day 9, the dependence of ϵ on L is expressed approximately as ϵ ∼ L−1, which is the same427

as day 1 and day 5 in Fig. 4. We believe that this is caused by Lamb-wave modes directly428

excited by the initial disturbance similarly as on day 1 and day 5 in Fig. 4. However, in429

Fig. 6, the amplitude of the initial disturbance is set to 1/1000, so that the ϵ on day 1430

in Fig. 6 is almost 1/1000 of that on day 1 in Fig. 4. In Fig. 6, on day 11, in the region431

where L is small (L = 10 to L = 21) the L-dependence of ϵ is clearly higher power curve432

than L−1 (about ϵ ∼ L−3) as seen on day 9 in Fig. 4. After day 13, when the baroclinic433

disturbances develop, the power of the power-law dependence becomes higher, and on day434

17, the dependence is about ϵ ∼ L−6 in the range of L = 10 to L = 42. Therefore, these435

time-integrations with the reduced amplitude of the initial disturbance clearly shows that436

in the development of baroclinic disturbances, using the spectral method in the vertical437

direction makes the error decrease rapidly as L is increased. In Fig. 6, however, the ϵ438

becomes large even when L is large (L = 42, 85) in day 19 and day 21. We believe that439

this is due to the increase of high-wavenumber components in the vertical direction, which440

are produced by nonlinear effects enhanced by the growth of the baroclinic disturbances.441 Fig. 4

Fig. 5

Fig. 66. Summary and discussion442

In the present manuscript, we have proposed to use a three-dimensional spectral443

method for the GCM dynamical core based on the primitive equations, which uses the444

spectral method not only in the horizontal direction but also in the vertical direction,445

where the Legendre polynomial expansion is used and the time-evolution equations of the446

expansion coefficients are determined by the Galerkin method. We have shown that the447
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semi-implicit time-integration can be computed more efficiently with the vertical discriti-448

zation formulation proposed in the present manuscript. This is an improvement com-449

pared with the previous study by Machenhauer and Daley (1974), where the Legendre450

polynomial expansion was also used in the vertical direction. Using the numerical model451

implemented based on the proposed three-dimensional spectral method, modern bench-452

mark numerical experiments with the settings of Polvani, et al (2004), Held and Suarez453

(1994) and Jablonowski and Williamson (2006) have been performed to show that the454

numerical results are consistent with those of previously developed numerical models and455

to show that there is no numerical instability caused by the use of the three dimensional456

spectral method. Also, in Subsection 5.3, we have also evaluated the convergence of the457

numerical solution for different truncation wavenumbers in the vertical direction. It has458

been shown that the error decreases rapidly as the vertical truncation wavenumber in-459

creases, which is a characteristic of the spectral method. This is an advantage over the460

finite difference method, which is often used in existing numerical models. In fact, in the461

benchmark calculations shown as Figs. 1–3, the numbers of the vertical grids are set to462

be the same as the numbers of the vertical levels in previous studies, but each vertical463

truncation wavenumber is about 2/3 of the number of the vertical grids. This means that464

a numerical solution with high-accuracy is obtained with a small number of degrees of465

freedom. The fact that fewer degrees of freedom are needed is not only an advantage in466

data storage, but also it has the advantage of reducing the size of the matrix in which the467

eigenvalue problem should be solved when calculating the flow stability.468

If we compare the three-dimensional spectral method proposed in the present manuscript469

with ordinary numerical models that uses the finite difference method in the vertical direc-470

tion, some disadvantages, of course, can be considered. One of them is the computational471

cost in transforming between the coefficients of the Legendre polynomial expansion and472

27



the grid values. If the vertical truncation wavenumber is L and the horizontal truncation473

wavenumber of the spherical harmonic expansion is M , the cost of the vertical trans-474

form required per one time step is estimated to be O(L2M2). When the finite difference475

method is used in the vertical direction, the computational cost of the vertical calculation476

is O(KM2) if the number of the vertical levels is K. Therefore, the comparison reduces to477

the comparison of O(L2) and O(K). Since K ∼ L, the three-dimensional spectral method478

looks worse in terms of the computational cost. However, since the computational cost479

of the horizontal transform is estimated to be O(LM3), the computational cost of the480

vertical transform becomes a small fraction of the total computational cost in the situ-481

ation where the horizontal truncation wavenumber is sufficiently large compared to the482

vertical truncation wavenumber (L ≪ M). Therefore, the use of the spectral method in483

the vertical direction is not a big disadvantage unless the truncation wavenumber in the484

vertical direction is larger than the that in the horizontal direction.485

The second possible disadvantage is that the spectral method proposed in the present486

manuscript does not strictly guarantee the conservation of the total energy. This is487

because in the formulation of the time-evolution of the temperature disturbance field488

(22), the weighting function is set to be σPl(1− 2σ), which is the same function as used489

in the expansion according to the Galerkin method. If we set the weighting function as490

Pl(1− 2σ), we can satisfy the total energy conservation. In this case, since the weight is491

set to 1/σ as in the original Galerkin method and this means that the weight of the upper492

atmosphere is relatively increased and the weight of the lower atmosphere is relatively493

decreased, the benchmark calculation shows that the accuracy of the calculation in the494

lower atmosphere is lower than that of the one proposed in the present manuscript (not495

shown). In that case, we also lose the property that the matrix to be computed is a band496

matrix in the formulation of the semi-implicit method. In actual GCM calculations, the497
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effects of forcing and dissipation are introduced, so even if the discretized system does not498

strictly satisfy the total energy conservation, it does not seem to be a big disadvantage499

unless it leads to any numerical instability.500

The third possible disadvantage is that the vertical discretization grids are automati-501

cally set by the Gaussian node ηk, and there is no freedom in the vertical grid setting as in502

the finite difference method. However, this point can be regarded as an advantage in that503

the “optimal” vertical grids are automatically determined once the number of the vertical504

grids is determined, without having to worry about how to set the vertical grids. In addi-505

tion, in the case of the finite difference method, the existence of computational mode can506

be a problem when the Lorenz grid is used in the vertical direction (Arakawa and Konor,507

1996). In the spectral method proposed in the present manuscript, however, there is no508

such computational mode (see Subsection A.4). This point can also be considered as one509

of the advantages of the spectral method proposed in the present manuscript.510

As described above, the discretization of the primitive equations by the three-dimensional511

spectral method proposed in the present manuscript has advantages over the conventional512

discretization using the finite difference method in the vertical direction in terms of ac-513

curacy and other factors. In particular, it is useful for theoretical studies when a small514

number of degrees of freedom are used. As an extreme form of such an application, a“toy”515

model equation is derived for the case where the vertical degree of freedom is reduced to516

the minimum in Appendix B.517
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A. Pseudo-hyper-viscosity531

The primitive equations in the σ-coordinate system treated in the present manuscript532

use the boundary condition at σ = 0, which means that the region that extends to533

infinite height is treated as a finite σ region. Therefore, if we consider a wave propagating534

vertically upward, the wave that should have propagated infinitely upward and left the535

region will be artificially reflected back into the region. This means that the time-evolution536

of the wave cannot be treated correctly. This situation is the same as that of the finite537

difference method, even if the spectral method is used in the vertical direction. In the case538

of the finite difference method, if it is possible to impose a radiative boundary condition,539

it may be done, but it is difficult to do so except in special cases where the waves are540

monochromatic. Therefore, a damping region (sponge layer) of a certain thickness is541

set near the upper boundary of the computational domain to suppress the reflection542

by absorbing the upward propagating waves. However, if the damping ratio and the543

thickness of the sponge layer are not set properly, the wave absorption will be insufficient544

and reflected waves will be generated. When using the spectral method by projecting545
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a geometrically infinite domain onto a finite domain, as in the present manuscript, the546

effect corresponding to a sponge layer can be obtained by introducing the pseudo-hyper-547

viscosity (Ishioka, 2008). We show below that such pseudo-hyper-viscosity can also be548

introduced when the spectral method is used in the vertical direction as in the present549

manuscript.550

A.1 Description of gravity wave propagation in this system551

As in the case where the semi-implicit method is introduced in Section 4, we linearize552

the time-evolution equation (1)–(4) with the basic field being the isothermal atmosphere553

at the temperature T0∗ used in the non-dimensionalization and with neglecting the effect554

of the rotation of the sphere. For further simplification, we assume here that the horizontal555

geometry is not a sphere but a plane. We use Cartesian coordinates (x, y) of the plane,556

and assume the field variables to be uniform in the y-direction. In this case, we non-557

dimensionalize the length scale using an appropriate length X∗ in the x-direction. If we558

assume that a uniform flow U > 0 is blowing in the x-direction, the linearized equation559

using it as the basic field can be expressed as follows (here, we consider the effect of the560

topography).561

∂δ

∂t
= −U ∂δ

∂x
+

∂2

∂x2

(
−Φ′

s +

∫ σ

1

τ ′(x, σ′, t)

σ′ dσ′ − s

)
, (72)

∂τ ′

∂t
= −U ∂τ

′

∂x
+ κ

1

σ

∫ 0

σ

δ(x, σ′, t)dσ′, (73)

∂s

∂t
= −U ∂s

∂x
+

∫ 0

1

δdσ. (74)

Here, the vorticity ζ is omitted in this linearization because it does not evolve in time.562

Now, in the x-direction, we consider a wave solution with dimensionless wavenumber563
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k > 0 and and express it as follows.564

δ(x, σ, t) = Re
{
δ̂k(σ, t)e

ikx
}
, (75)

τ ′(x, σ, t) = Re
{
τ̂ ′k(σ, t)e

ikx
}
, (76)

s(x, t) = Re
{
ŝk(t)e

ikx
}
, (77)

Φ′
s(x) = Re

{
(Φ̂′

s)ke
ikx
}
. (78)

Then, from (72)–(74), we obtain565

∂δ̂k
∂t

= −iUkδ̂k − k2
(
−(Φ̂′

s)k +

∫ σ

1

τ̂ ′k(σ
′, t)

σ′ dσ′ − ŝk

)
, (79)

∂τ̂ ′k
∂t

= −iUkτ̂ ′k + κ
1

σ

∫ 0

σ

δ̂k(σ
′, t)dσ′, (80)

∂ŝk
∂t

= −iUkŝk +

∫ 0

1

δ̂kdσ. (81)

This equation describes the propagation of internal gravity waves forced by the bottom566

topography. This equation is a little complicated because it is written in the σ-coordinate.567

However, if we impose the radiative boundary condition and consider steady state with a568

positive vertical group velocity, we obtain the following solution (the derivation process569

is omitted).570

δ̂k = δse
(im+ 1

2
)z. (82)

Here, we define that z = − lnσ and571

m =

√
κ

U2
− 1

4
. (83)

Note that m is used as the vertical wavenumber, not the longitudinal wavenumber in this572

appendix. Here, we also impose that 0 < U < 2
√
κ for a solution with a positive vertical573

group velocity to exit. In this case, δs is determined as,574

δs = − iUk(Φ̂′
s)k

U2 + 1
im− 1

2

. (84)
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A.2 When discretized by the spectral method575

Similarly as (11) and (13), we expand δ̂k(σ, t) and τ̂ ′k(σ, t) appearing in (79)–(81) as576

follows.577

δ̂k(σ, t) =
L∑
l=0

δk,l(t)Pl(1− 2σ), (85)

τ̂ ′k(σ, t) = σ
L−1∑
l=0

τ ′k,l(t)Pl(1− 2σ). (86)

In this case, applying the Galerkin formulation to (79)–(81) in the same way as when we578

derived (45), (46), and (42), we obtain the followings.579 (
∂

∂t
+ iUk

)
δ̂k,l = k2

(
L−1∑
l′=0

All′ τ̂
′
k,l′ + (ŝk + (Φ̂′

s)k)δl0

)
(l = 0, 1, . . . , L), (87)

L−1∑
l′=0

Bll′

(
∂

∂t
+ iUk

)
τ̂ ′k,l′ = −κ

L∑
l′=0

Al′lδ̂k,l′ (l = 0, 1, . . . , L− 1), (88)(
∂

∂t
+ iUk

)
ŝk = −δ̂k,0. (89)

The equations (87)–(89) can be transformed as follows.580 (
1

k

∂

∂t
+ iU

)
(
√
κδ̂k,l) =

√
κ
L−1∑
l′=0

All′(kτ̂
′
k,l′) + ((k

√
κŝk) + (k

√
κ(Φ̂′

s)k))δl0 (l = 0, 1, . . . , L),

(90)

L−1∑
l′=0

Bll′

(
1

k

∂

∂t
+ iU

)
(kτ̂ ′k,l′) = −

√
κ

L∑
l′=0

Al′l(
√
κδ̂k,l′) (l = 0, 1, . . . , L− 1), (91)(

1

k

∂

∂t
+ iU

)
(k
√
κŝk) = −(

√
κδ̂k,0). (92)
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The matrix representation of the equation (90)–(92) is as follows.581

(
1

k

∂

∂t
+ iU

)



0

I O
...

0

0

O B
...

0

0 · · · 0 0 · · · 0 1





√
κδ̂k,0

...

√
κδ̂k,L

kτ̂ ′k,0
...

kτ̂ ′k,L−1

k
√
κŝk



=



1

0

O
√
κA

...

0

0

−
√
κAT O

...

0

−1 0 · · · 0 0 · · · 0 0





√
κδ̂k,0

√
κδ̂k,1

...

√
κδ̂k,L

kτ̂ ′k,0
...

kτ̂ ′k,L−1

k
√
κŝk



+



k
√
κ(Φ̂′

s)k

0

...

0

0

...

0

0



.

(93)

Here, B is a (L+1)× (L+1) matrix whose (l, l′) component is Bll′ , and A is a (L+1)×L582

matrix whose (l, l′) component is All′ (the subscripts l and l′ are starting from 0). The583

square matrix appearing on the left-hand side of (93) is a symmetric matrix, and the584

square matrix on the right-hand side is a skew-symmetric matrix.585
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A.3 Steady-state solution in the discretized system and the introduction586

of pseudo-hyper-viscosity587

In the system discretized by the spectral method, (93), we consider a stationary solu-588

tion. In the right-hand side of (93), we set as589

k(Φ̂′
s)k = 1.

Then, the stationary solution is obtained by solving a linear simultaneous equation, which590

is derived by setting as ∂/∂t = 0 in (93). Corresponding to (δ̂k,l) in the stationary solution,591

the σ distributions of the imaginary part of δ̂k(σ) for U = 0.05 and U = 0.1 are shown in592

Fig. 7. For comparison, the stationary solutions (with the radiative boundary condition)593

determined by (82) and (84) are plotted together. The amplitude is multiplied by
√
σ,594

taking its dependence on σ into account. It is clear from Fig. 7 that the numerical solution595

differs significantly from the exact solution due to the effect of reflected waves. Fig. 7596

Now, referring to Ishioka (2008), in the right-hand side of (93) we introduce the effect597

of pseudo-hyper-viscosity at the diagonal components of the matrix which correspond to598
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the divergence components as follows.599

(
1

k

∂

∂t
+ iU

)



0

I O
...

0

0

O B
...

0

0 · · · 0 0 · · · 0 1





√
κδ̂k,0

...

√
κδ̂k,L

kτ̂ ′k,0
...

kτ̂ ′k,L−1

k
√
κŝk



=



−(νh)0 O 1

−(νh)1 0

. . .
√
κA

...

O −(νh)L 0

0

−
√
κAT O

...

0
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.

(94)

Here, (νh)l (l = 0, 1, . . . , L) are the coefficients of the pseudo-hyper-viscosity. How to set600

the values of (νh)l is subject to arbitrariness. If we set as601

(νh)l =

(
l(l + 1)

L(L+ 1)

)5

(l = 0, 1, . . . , L), (95)

and calculate the steady-state solution as in Fig. 7, the result is shown in Fig. 8. Thus, by602

introducing a pseudo-hyper-viscosity, it acts like a sponge layer in the upper atmosphere,603

where σ is small, and suppresses the reflected waves. By suppressing the reflected waves,604

a response close to the exact solution is obtained in the lower atmosphere. Using (95) in605
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(94), a strong dissipation on δ in the upper-layer atmosphere like a sponge layer can be606

explained as follows. Considering (24), the dissipation term in the equation of ∂δ/∂t can607

be expressed as,608

− k

(L(L+ 1))5

[
− d

dη

{
(1− η2)

d

dη

}]5
δ. (96)

Now, changing the independent variable as z = − lnσ = − ln 1−η
2
, (96) can be rewritten609

as follows.610

− k

(L(L+ 1))5

[
−
{
∂

∂z
+ (ez − 1)

∂2

∂z2

}]5
δ. (97)

Thus, as z → ∞, a hyper-viscosity of the fifth-order of the Laplacian acts on δ and its611

coefficient increases roughly in proportion to e5z. This corresponds to having an effect612

similar to introducing a sponge layer in the upper layer of the model. We can change the613

characteristics of the spongy effect by changing the order and coefficients of the pseudo-614

hyper-viscosity in (95). Fig. 8615

Now, the introduction of pseudo-hyper-viscosity in the form of (94) means that we616

add the pseudo-hyper-viscosity term in (87) as,617 (
∂

∂t
+ iUk

)
δ̂k,l = −k(νh)lδ̂k,l + k2

(
L−1∑
l′=0

All′ τ̂
′
k,l′ + (ŝk + (Φ̂′

s)k)δl0

)
(l = 0, 1, . . . , L).

(98)

Here, the pseudo-hyper-viscosity term is the first term on the right-hand side. Further-618

more, in the expression for the spherical domain (18), we can add −
√
n(n+ 1)(νh)lδn,m,l619

to the right-hand side since the k is replaced by
√
n(n+ 1). Note that the pseudo-hyper-620

viscosity is not added in the benchmark numerical experiments in Section 5. It would621

be desirable if we had also performed test-case calculations to examine the effects of622

the pseudo-hyper-viscosity, such as Klemp, et al (2015), in which the model suffers from623

gravity waves reflecting off the model top. However, this test case appears to be for a624
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non-hydrostatic model and the intercomparison does not seem directly applicable to our625

hydrostatic model and we need to find some appropriate test case to evaluate the effect626

of the pseudo-hyper-viscosity. Hence, let us leave this exploration to our future work.627

A.4 Eigenvalue problems and the Lamb-wave solution628

In the linear time-evolution equation discretized by the spectral method (93), setting629

the rightmost term of the terrain effect to 0, and the basic flow U = 0, we obtain the630

following eigenvalue problem assuming that the time-dependence is expressed as ∝ e−iωt.631

− ic
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.

(99)

Here, c = ω/k. Since the square matrix appearing on the left-hand side of (99) is a632

positive-definite symmetric matrix and the square matrix on the right-hand side is a633

38



skew-symmetric matrix, we can see that the eigenvalues of ic are purely imaginary, so the634

eigenvalue c corresponding to the phase velocity is eventually a real number. Further-635

more, there are no zero eigenvalues associated with the even number of rows (or columns)636

of the coefficient matrices on the left and right sides in (99). This means that the compu-637

tational mode that arises when the Lorenz grid is used for the finite difference method in638

the vertical direction, as described in Arakawa and Konor (1996), does not arise in this639

formulation of the spectral method. However, in the vertical discretization of τ ′, if the640

truncation wavenumber is set to L instead of L − 1, a zero eigenvalue appears. In this641

sense, it is also desirable to take the truncation wavenumber in the expansion of τ ′ as642

L− 1.643

The eigenvalue problem (99) can be solved numerically. The eigenmode which gives644

the maximum absolute value of eigenvalue c is the one corresponding to the Lamb-wave645

mode. Table 1 shows the maximum absolute value of eigenvalue c for different vertical646

truncation wavenumber L, and Fig. 9 shows the σ distribution of δ̂k(σ) for the correspond-647

ing eigenmodes. Note that we now set κ = 2/7 and the true value of |c| corresponding to648

the Lamb wave is, |c| =
√
1/(1− κ) =

√
7/5 ≈ 1.183216.649 Table 1

From Table 1, it can be seen that the eigenvalue of the largest absolute value ap-650

proaches the true value corresponding to the Lamb wave as the truncation wavenumber651

L is increased. Correspondingly, from Fig. 9, it can be seen that the vertical structure of652

eigenmodes approaches that of the Lamb-wave solutions up to smaller σ as L increases.653

The L-dependence of the error of the phase velocity from the true value is shown in654

Fig. 10. It can be seen that the error is roughly at the power of L−1.655 Fig. 9

Fig. 10
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B. Deriving a toy model656

As one byproduct of the formulation of the three-dimensional spectral method pro-657

posed in the present manuscipt, by setting the truncation wavenumber L in the vertical658

direction to a small value such as 1 or 2, we can create a “toy” model that is equivalent659

to the so-called two-level model or three-level model, without having to worry about how660

to take the grid in the vertical direction or how to set the finite difference scheme. For661

example, in (11)–(14), if we set as L = 1, then we can obtain a closed system of equations662

for the time-dependent expansion coefficients, (δn,m,0), (δn,m,1), (ζn,m,0), (ζn,m,1), τ̄0, τ̄1,663

(τ ′n,m,0), and (sn,m). Since we have two degrees of freedom in the vertical direction in this664

setting, this can be regarded as corresponding to the so-called two-layer model or two-level665

model. However, in this form, since the system contains the barotropic component of the666

divergence field (δn,m,0) and the logarithm of the surface pressure (sn,m), the Lamb-wave667

modes are supported in the system, which is complicated for a “toy” model. Similar to668

the two-level model proposed by Kitamura and Matsuda (2004), a “toy” model without669

the Lamb-wave modes and with good symmetry between barotropic and baroclinic modes670

can be derived as follows.671

First, in (11)–(14), we set the truncation wavenumber as L = 1, that is we set the672

degree of freedom in the vertical direction to 2. However, to exclude the Lamb waves,673

the barotropic component of the divergence field (δn,m,0) and the logarithm of the surface674

pressure (sn,m) are assumed to be zero and are removed from the time-evolution. The675

bottom topography is assumed to be flat and we set as Φ′
s = 0. Furthermore, for the676

temperature disturbance τ , we assume that it is symmetric around the middle layer of677
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the atmosphere and use the following expression instead of the expansion form of (13).678

τ(λ, µ, σ, t) = τc(λ, µ, t)4
√
3σ(1− σ), (100)

τc(λ, µ, t) =
M∑
n=0

n∑
m=−n

τn,m(t)Yn,m(λ, µ). (101)

Here, the coefficient 4
√
3 in (100) is chosen to simplify the subsequent calculations. Noting679

that in the definition of the present manuscript, the first order Legendre polynomial P1(η)680

is defined as P1(η) =
√
3η, we use the following expressions instead of (11) and (12).681

δ(λ, µ, σ, t) = δc(λ, µ, t)
√
3(1− 2σ), (102)

δc(λ, µ, t) =
M∑
n=1

n∑
m=−n

δn,m,1(t)Yn,m(λ, µ), (103)

ζ(λ, µ, σ, t) = ζt(λ, µ, t) + ζc(λ, µ, t)
√
3(1− 2σ), (104)

ζt(λ, µ, t) =
M∑
n=1

n∑
m=−n

ζn,m,0(t)Yn,m(λ, µ), (105)

ζc(λ, µ, t) =
M∑
n=1

n∑
m=−n

ζn,m,1(t)Yn,m(λ, µ). (106)

That is, δ(λ, µ, σ, t) is expressed using the first baroclinc component δc(λ, µ, t) and ζ(λ, µ, σ, t)682

is expressed by a superposition of the barotropic component ζt(λ, µ, t) and the first baro-683

clinc component ζc(λ, µ, t).684

Now, let us consider the time-evolution equation of δc, ζt, ζc, andτc. From the assump-685

tions made in this section, (1)–(10) simplifies to the followings.686

∂δ

∂t
=

1√
1− µ2

∂B

∂λ
− ∂

∂µ
(
√
1− µ2A)−∇2(Φ′ +

1

2
(u2 + v2)), (107)

∂ζ

∂t
= − 1√

1− µ2

∂A

∂λ
− ∂

∂µ
(
√

1− µ2B), (108)

∂τ

∂t
= −u 1√

1− µ2

∂τ

∂λ
− v
√

1− µ2
∂τ

∂µ
− σ̇

∂

∂σ
(T + τ) +

σ̇

σ
κ(T + τ), (109)
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687

A = uξ + σ̇
∂v

∂σ
, (110)

B = vξ − σ̇
∂u

∂σ
, (111)

σ̇ =

∫ 0

σ

δ(λ, µ, σ′, t)dσ′, (112)

Φ′ = −
∫ σ

1

τ(λ, µ, σ′, t)

σ′ dσ′. (113)

Now, using (102), the equation (112) can be expressed as follows.688

σ̇ = −
√
3σ(1− σ)δc. (114)

Also, using (100), the equation (113) can be expressed as follows.689

Φ′ = 2
√
3(1− σ)2τc. (115)

Also for (u, v), we separate them into barotropic components (ut, vt) and baroclinic com-690

ponents (uc, vc) as u = ut + uc, v = vt + vc. Decomposing the stream function ψ and the691

velocity potential χ into barotropic components and baroclinic components (χ has only692

the baroclinc component), we express ζt, ζc, and δc as,693

ζt = ∇2ψt, ζc = ∇2ψc, δc = ∇2χc. (116)

Then, ut, uc, vt, and vc are expressed as,694

ut = −
√
1− µ2

∂ψt
∂µ

, uc =
1√

1− µ2

∂χc
∂λ

−
√

1− µ2
∂ψc
∂µ

, (117)

695

vt =
1√

1− µ2

∂ψt
∂λ

, vc =
1√

1− µ2

∂ψc
∂λ

+
√

1− µ2
∂χc
∂µ

. (118)

In this case, considering (102), (104) and (114), the equations (110) and (111) can be696

written as,697

A = (ut + uc)(2Ωµ+ ζt + ζc) + 2
√
3σ(1− σ)δcvc, (119)

B = (vt + vc)(2Ωµ+ ζt + ζc)− 2
√
3σ(1− σ)δcuc. (120)
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Based on the above preparation, the Galerkin method is used to determine the time-698

evolution equations of δc, ζt, ζc and τc. That is, multiplying P1(1− 2σ) =
√
3(1− 2σ) on699

both sides of (107), multiplying P0 = 1 on both sides of (108), multiplying P1(1− 2σ) =700

√
3(1 − 2σ) on both sides of (108), and multiplying σ(1 − σ) on both sides of (109), we701

obtain the followings by integrating them from 0 to 1 for σ.702

∂δc
∂t

=
1√

1− µ2

∂

∂λ
(vcξt + vtζc)−

∂

∂µ
{
√

1− µ2(ucξt + utζc)} − ∇2 (τc + utuc + vtvc) ,

(121)

∂ζt
∂t

= − 1√
1− µ2

∂

∂λ
(utξt + ucζc + δcvc)−

∂

∂µ
{
√
1− µ2(vtξt + vcζc − δcuc)}, (122)

∂ζc
∂t

= − 1√
1− µ2

∂

∂λ
(ucξt + utζc)−

∂

∂µ
{
√

1− µ2(vcξt + vtζc)}, (123)

∂τc
∂t

= −ut
1√

1− µ2

∂τc
∂λ

− vt
√

1− µ2
∂τc
∂µ

− δc

(
S +

√
3κ

2
τc

)
. (124)

Here, we set ξt = 2Ωµ+ ζt and703

S =
1

4
· 30

∫ 1

0

σ(1− σ)2
(
κT − σ

dT

dσ

)
dσ = −15

2

∫ 1

0

σ2(1− σ)2σκ
d

dσ
(T̄ σ−κ)dσ. (125)

Here, S becomes a static stability measure. Also, for the derivation of (124), the following704

is used.705 ∫ 1

0

(σ(1− σ))2dσ =
1

30
.

The system of equations derived here (121)–(124) is very similar to the two-level system706

of equations derived in Kitamura and Matsuda (2004). The only major difference is that707

the coefficient on the equivalent of τc in parentheses in the third term on the right-hand708

side of (124) is negative in Kitamura and Matsuda (2004). This is because we consider a709

boundary condition for the disturbance component of the temperature field τ such that710

it is 0 for σ = 0, 1, whereas in Kitamura and Matsuda (2004), the disturbance component711

of the specific volume α is set to be 0 at σ = 0, 1. This reverses the contribution of712
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the disturbance to the static stability of the field. However, this is due to the different713

structure of the temperature disturbances considered in the very coarse σ discretization.714

Hence, it is not a matter of which is correct.715

Now, in (124), if T̄ is an isothermal basic field independent of σ, then, by (125), we716

have717

S =
5κ

8
T̄ .

In addition, let us consider the model temperature distribution of the tropical atmosphere718

introduced by Stevens, et al (1977) which satisfies,719

κT − σ
dT

dσ
= Γ,

where Γ is a constant. That is,720

T =
Γ

κ
+

(
T s −

Γ

κ

)
σκ,

where T s is the value of T at σ = 1. In this case, S is expressed as,721

S =
5

8
Γ.

For further simplification, we assume that
√
3κ
2
|τc| ≪ S and ignore the τc term in722

parentheses in the third term on the right-hand side of (124). Then (124) reduces to,723

∂τc
∂t

= −ut
1√

1− µ2

∂τc
∂λ

− vt
√
1− µ2

∂τc
∂µ

− Sδc. (126)

Now, in the system of equations (121)–(123), (126), we show that the energy conservation724

law holds. If we represent the operation of averaging on the whole sphere by ⟨·⟩, we obtain725

44



the followings.726 ⟨
−χc

∂δc
∂t

⟩
= ⟨uχc(vcξt + vtζc)− vχc(ucξt + utζc) + δc (τc + utuc + vtvc)⟩ ,⟨

−ψt
∂ζt
∂t

⟩
= ⟨−vt(utξt + ucζc + δcvc) + ut(vtξt + vcζc − δcuc)⟩

= ⟨ζc(−vtuc + utvc)− δc(vtvc + utuc)⟩ ,⟨
−ψc

∂ζc
∂t

⟩
= ⟨−vψc(ucξt + utζc) + uψc(vcξt + vtζc)⟩ ,⟨

τc
∂τc
∂t

⟩
= −S ⟨δcτc⟩ .

Here, we define as,727

uψc = −
√

1− µ2
∂ψc
∂µ

, uχc =
1√

1− µ2

∂χc
∂λ

,

728

vψc =
1√

1− µ2

∂ψc
∂λ

, vχc =
√
1− µ2

∂χc
∂µ

.

Summing the two equations for the baroclinic components, we get729 ⟨
−ψc

∂ζc
∂t

− χc
∂δc
∂t

⟩
= ⟨uc(vcξt + vtζc)− vc(ucξt + utζc) + δc (τc + utuc + vtvc)⟩

= ⟨ζc(ucvt − vcut) + δc (τc + utuc + vtvc)⟩ .

If we represent the kinetic energy density as K = −1
2
⟨ψtζt + ψcζc + χcδc⟩, then finally we730

obtain,731 ⟨
∂K

∂t

⟩
=

⟨
−ψt

∂ζt
∂t

− ψc
∂ζc
∂t

− χc
∂δc
∂t

⟩
= ⟨δcτc⟩ .

Therefore, the energy conservation law in this system is expressed as,732

d

dt

⟨
K +

1
2
τ 2c
S

⟩
= 0. (127)

The second term in the left-hand parenthesis corresponds to the available potential energy.733

Therefore, the system of equations (121)–(123) and (126) includes baroclinic effects and734

inertial-gravity modes on a rotating sphere, and the system has the energy conservation735
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law written in the second order of the field variables. This system can be regarded as736

a kind of “toy” model, following Lindborg and Mohanan (2017), and we will call it the737

“baroclinic toy-model equation”.738
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Fig. 1. Temperature fields on the σ = 0.975 surface at time t = 4, 6, 8, 10, and 12days
(unit is K) in the course of time-evolution of the growth of the baroclinic disturbance
calculated based on the benchmark setting in Polvani, et al (2004) by using the three-
dimensional spectral model developed in the present manuscirpt. Contour interval is
2.5K. The horizontal axis is longitude and the vertical axis is latitude. The time is
shown in the upper right corner of each panel. The horizontal truncation wavenumber
is T170 (512 × 256 grids), the vertical truncation wavenumber is 13 (20 grids), and
the time step ∆t is 600s.
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Fig. 2. Zonal-mean field averaged over 1000 days from t = 200day to t = 1200day in
the time-evolution with the benchmark setting based on Held and Suarez (1994).
The horizontal axis is latitude and the vertical axis is σ. Top panel: zonal-mean
temperature field (K). Contour interval is 5K. Bottom panel: zonal-mean eastward
wind field (m/s). Contour interval is 4m/s. In the calculation of the time-evolution,
the horizontal truncation wavenumber is T85 (256×128 grids), the vertical truncation
wavenumber is 13 (20 grids), and the time step is 720s.
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Fig. 3. The surface pressure field on day 9 (unit is hPa) in the course of time-evolution of
the growth of the baroclinic disturbance calculated based on the benchmark setting
in Jablonowski and Williamson (2006) by using the three-dimensional spectral model
developed in the present paper. Contour interval is 10hPa. The horizontal axis
is longitude and the vertical axis is latitude. The maximum value in this figure
is 1019.73hPa (at (λ, ϕ) = (231.33◦, 49.47◦)), The minimum value is 942.03hPa (at
(λ, ϕ) = (208.13◦, 61.40◦)). The horizontal truncation wavenumber is T170 (512×256
grids), the vertical truncation wavenumber is 17 (26 grids), and the time step is 300s.
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Fig. 4. The dependence of l2 error of the surface pressure field (vertical axis. unit is
hPa) on the vertical truncation wavenumber L (horizontal axis) at days 1, 5, 9, 11,
and 12 in the time-evolutions of baroclinic disturbances based on the benchmark
setting of Jablonowski and Williamson (2006). Both the axes are in logarithms.
The result at L = 170 (K = 256) is taken as the true value here and we define
the difference from it as the error. The horizontal places of the markers indicate
the values of the vertical truncation wavenumber L used in the time-integrations
(L = 10, 11, 12, 13, 14, 15, 16, 17, 21, 42, and 85). The corresponding number of the
vertical grids, K, is K = 16, 18, 20, 20, 22, 24, 26, 26, 32, 64, and 128, respectively.
The number of days is indicated at the left end of the line connecting the markers.
The time-integrations are done with the horizontal truncation wavenumber of T85
(256× 128 grids) and the time step of 150s.
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Fig. 5. Same as Fig. 3 except that the amplitude of the initial disturbance is 1/1000
of that used for the computation of Fig. 3 and this figure is on day 19. Contour
interval is 10hPa. The maximum value in this figure is 1022.82hPa (at (λ, ϕ) =
(29.53◦, 48.33◦)), The minimum value is 950.45hPa (at (λ, ϕ) = (50.63◦, 63.73◦)). The
horizontal truncation wavenumber is T85 (256 × 128 grids), the vertical truncation
wavenumber is 170 (256 grids), and the time step is 150s.
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Fig. 6. Same as Fig. 4 except that the amplitude of the initial disturbance is 1/1000 of
that used for the computation of Fig. 4. The times are days 1, 9, 11, 13, 15, 17, 19,
and 21.
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Fig. 7. The σ distribution of the imaginary part of the stationary wave solution without
pseudo-hyper-viscosity (multiplied by

√
σ). Numerical solution (solid line) and the

exact solution for the case with radiative boundary condition (dotted line). Left
panel: U = 0.05 case, right panel: U = 0.10 case. The vertical truncation wavenum-
ber is L = 80.
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Fig. 8. Same as Fig. 7 except that the numerical solution (solid line) is computed with
pseudo-hyper-viscosity.
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Fig. 9. Dependence of the amplitude of the eigenmode corresponding to the Lamb wave
on σ (solid line). The dotted line is for the exact solution of the Lamb wave (σ−κ).
The vertical truncation wavenumber is changed to L = 10, 20, 40, and 80. The value
of L is displayed in the upper-right corner of each panel.
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Fig. 10. Dependence of the difference between the eigenvalues of the discretized eigen-
modes corresponding to the Lamb wave and the exact solution (vertical axis) on
L (horizontal axis). The marker indicates the value of L that was used (L =
10, 20, 40, 80).
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Table 1. Dependence of phase speed of eigenmodes corresponding to Lamb waves on the
truncation wavenumber L.

L = 10 L = 20 L = 40 L = 80
1.170342 1.176177 1.179378 1.181121
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