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Abstract 31 

 32 

Recent progress in the particle filter has made it possible to use it for nonlinear or non-33 

Gaussian data assimilation in high-dimensional systems, but a relatively large ensemble 34 

is still needed to outperform the ensemble Kalman filter (EnKF) in terms of accuracy. An 35 

alternative ensemble data assimilation method based on deep learning is presented, in 36 

which deep neural networks are locally embedded in the EnKF. This method is named 37 

the deep learning-ensemble Kalman filter (DL-EnKF). The DL-EnKF analysis ensemble 38 

is generated from the DL-EnKF analysis and the EnKF analysis deviation ensemble. The 39 

performance of the DL-EnKF is investigated through data assimilation experiments in 40 

both perfect and imperfect model scenarios using three versions of the Lorenz 96 model 41 

and a deterministic EnKF with an ensemble size of 10. Nonlinearity in data assimilation 42 

is controlled by changing the time interval between observations. Results demonstrate 43 

that despite such a small ensemble the DL-EnKF is superior to the EnKF in terms of 44 

accuracy in strongly nonlinear regimes and that the DL-EnKF analysis is more accurate 45 

than the output of deep learning due to positive feedback in assimilation cycles. Even if 46 

the target of training is an EnKF analysis with a large ensemble or a simulation by an 47 

imperfect model, the improvement introduced by the DL-EnKF is not very different from 48 

the case where the target of training is the true state.  49 

 50 
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1. Introduction 53 

Data assimilation in nonlinear or non-Gaussian systems has been a challenge in 54 

meteorology and other geosciences (Bocquet et al., 2010). For instance, it is well known 55 

that cumulus convection exhibits strong non-Gaussianity in data assimilation (e.g., Kondo 56 

and Miyoshi, 2019; Kawabata and Ueno, 2020). The ensemble Kalman filter (EnKF) is 57 

formulated under the Gaussian assumption and is close to optimal in weakly nonlinear 58 

regimes, but it does not work well if nonlinearity is strong.  On the other hand, the particle 59 

filter (PF) does not need the Gaussian assumption, but the weight degeneracy had been 60 

preventing the use of the PF for high-dimensional data assimilation (Snyder et al., 2008; van 61 

Leeuwen 2009). However, this limitation is disappearing due to recent developments in the 62 

PF, including the use of localization and hybrids with the EnKF (Farchi and Bosquet, 2018; 63 

van Leeuwen et al., 2019). Despite this progress, a relatively large ensemble is still needed 64 

for the PF to outperform the EnKF (e.g., Penny and Miyoshi, 2016).  This may be plausible 65 

since non-Gaussian data assimilation needs some information on higher-order moments of 66 

probability density functions (PDFs). As for the 4-dimensional variational method (4D-Var), 67 

Tsuyuki (2014) showed that the 4D-Var with a conventional cost function implicitly used a 68 

non-Gaussian prior PDF that evolved according to the Liouville equation (Ehrendorfer, 1994) 69 

if a certain condition was satisfied, and that the difficulty caused by multiple minima could 70 

be alleviated by combining with the EnKF. The iterative ensemble Kalman filter/smoother 71 

(IEnKF/IEnKS) have been shown to be the missing link between the PF and the EnKF and 72 
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4D-Var, and can work very well with mild nonlinearity and generate a much better analysis 73 

than the above data assimilation methods (Sakov et al., 2012; Bocquet and Sakov, 2013, 74 

2014; Bocquet, 2016). However, the IEnKF/IEnKS need much larger computational cost due 75 

to the iterative application of the EnKF/EnKS and the use of a long assimilation window.  76 

Recent developments in machine learning, in particular in deep learning (Le cum et al., 77 

2015), have demonstrated impressive skills in various fields. Data-driven modeling, 78 

including data-driven parametrizations, based on machine learning has been extensively 79 

explored for improving simulations and predictions of nonlinear dynamical systems. Dueben 80 

and Bauer (2018) discussed the question of whether models that were based on deep 81 

learning and trained on atmospheric data could compete with weather and climate models 82 

that were based on physical principles. Reichstein et al. (2019) advocated a hybrid modeling 83 

approach in which physical process models were coupled with machine learning to further 84 

improve understanding and predictive ability in earth system science. Abarbanel et al. (2018) 85 

and Geer (2020) showed an equivalence in formulation between data assimilation and deep 86 

learning. Lists of literature of recent studies are available in Reichstein et al. (2019) and 87 

Chattopadhyay et al. (2020), for instance. Quite recently the combination of data assimilation 88 

and machine learning has been explored to address sparse and noisy observations in data-89 

driven modeling (Brajard et al., 2020a; Bocquet et al., 2020; Tomizawa and Sawada, 2020; 90 

Gottwald and Reich, 2021; Wikner et al., 2021), data-driven parametrizations (Brajard et al., 91 

2020b), and model error correction (Farchi et al., 2021).  92 
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Research on the application of deep learning to data assimilation itself has also started. 93 

Arcucci et al. (2021) proposed a method for integrating variational data assimilation with 94 

deep learning, in which a recurrent neural network is trained on the state of a dynamical 95 

model and the result of data assimilation. Silva et al. (2021) proposed the use of a generative 96 

adversarial network to make prediction and to assimilate observations by using a low-97 

dimensional space for the spatial distribution of the simulated state. However, it is difficult to 98 

directly apply those methods to data assimilation in high-dimensional systems such as 99 

atmospheric models for numerical weather prediction. 100 

In this study, we present an ensemble data assimilation method combining the EnKF 101 

and deep learning as an alternative to the PF for high-dimensional systems. The additional 102 

computational cost to assimilate observations is a very small fraction of that of the EnKF. 103 

Since a deep neural network (DNN) can learn a data assimilation method for a specific 104 

dynamical system and a specific observing system by training, we could expect this method 105 

to work with a relatively small ensemble size even in strongly nonlinear regimes. However, 106 

data assimilation in meteorology is generally a large-scale problem, and the background 107 

error covariance and the distribution of radar and satellite data change with the analysis time. 108 

The EnKF, as well as the PF and 4D-Var, can properly deal with this nonstationarity in data 109 

assimilation. On the other hand, deep learning is based on the minimization of the sum of 110 

errors over many samples. In addition, it would be difficult to provide sufficient information 111 

on the forecast error covariance to a DNN, because the feasible size of a DNN is limited, 112 
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where we define the size of a DNN as the total number of weights including bias parameters 113 

to be optimized by training. If the output of a DNN is not well optimized for each analysis 114 

time, the analysis accuracy may deteriorate in assimilation cycles. However, since the EnKF 115 

does not work very well in strongly nonlinear regimes, we could expect data assimilation by 116 

deep learning to outperform the EnKF in such regimes.  117 

 The purpose of this study is to propose a nonlinear data assimilation method based on 118 

deep learning that is locally embedded in an EnKF and to investigate its performance 119 

through data assimilation experiments in both perfect and imperfect model scenarios using 120 

toy models. By applying deep learning in combination with an EnKF, we can reduce the size 121 

of a DNN and address the nonstationarity in data assimilation. This method is named the 122 

deep learning-ensemble Kalman filter (DL-EnKF). 123 

The remainder of this paper is organized as follows. Section 2 introduces the method of 124 

DL-EnKF. Section3 describes the design of experiments in both perfect and imperfect model 125 

scenarios. Section 4 presents the results of these experiments. Summary and discussion 126 

are mentioned in Section 5.  127 

 128 

2. Method 129 

Since data assimilation is generally a large-scale problem, it is desirable to keep the 130 

size of a DNN as small as possible. For instance, the size of a feedforward neural network 131 

with m layers with n nodes per layer is about n2(m-1) and a greater number of samples 132 
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would be required for training. If we directly apply deep learning to data assimilation, the 133 

number of input nodes is at least the sum of the number of observations and the degrees of 134 

freedom of a numerical model, and the number of output nodes is the degrees of freedom 135 

of the model, while the number of nodes of a hidden layer is usually required to be larger 136 

than the number of input or output nodes. For high-dimensional systems such as 137 

atmospheric models, the size of a DNN would become too large to be stored in the memory 138 

of a computer and to prepare sufficient training samples. To apply deep learning to data 139 

assimilation for atmospheric models, we need to introduce a localization procedure and to 140 

train a DNN to have some versatility so that it is applicable to each grid point in a certain 141 

range of geographical areas. 142 

Figure 1a shows the workflow of the DL-EnKF, in which deep learning is locally 143 

embedded in an EnKF. The “EnKF” box in this figure represents the analysis step of the 144 

EnKF, and “Deep Learning” box consists of an ensemble of several DNNs. The inputs of 145 

DNNs to create the DL-EnKF analysis at a grid point are the EnKF analysis, forecast, 146 

observations, availability of observations in binary, and pseudo-observations that 147 

supplement missing observations. The EnKF analysis and forecast are the ensemble means 148 

of each ensemble. We do not explicitly use the information contained in the forecast 149 

ensemble other than the ensemble mean to reduce the size of DNNs. Since observational 150 

data for which the DNN has input nodes may be sometimes missing, it is necessary to 151 

provide the information on the availability of observations to DNNs. The pseudo-152 

Fig. 1 
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observations are prepared by using the EnKF analysis and the observation operators of the 153 

missing observations. Those input data are extracted from a small domain centered at the 154 

analysis grid point. The radius of this domain is hereafter referred to as the input radius, and 155 

it is assumed that this value is smaller than the covariance localization radius of the EnKF. 156 

According to Hsieh and Tang (1998), the DL-EnKF analysis is the average of outputs from 157 

the ensemble of DNNs. The individual outputs from DNNs would be scattered in phase 158 

space due to multiple minima of a loss function of deep learning, and we would likely obtain 159 

a better DL-EnKF analysis by averaging those individual outputs. 160 

The analysis ensemble {𝒙𝑚
𝑎 }𝑚=1

𝑀  , where 𝑀  is the ensemble size, is created by 161 

modifying the EnKF analysis ensemble {𝒙EnKF,  𝑚
𝑎 }

𝑚=1

𝑀
 such that its ensemble mean is equal 162 

to the DL-EnKF analysis 𝒙DL−EnKF
𝑎  as follows: 163 

𝒙𝑚
𝑎 = 𝒙DL−EnKF

𝑎 + 𝛼(𝒙EnKF,  𝑚
𝑎 −  𝒙EnKF

𝑎 ),     (1) 164 

where 𝒙EnKF
𝑎  is the EnKF analysis and 𝛼 is a parameter for adjusting the spread of the 165 

analysis ensemble. If adaptive covariance inflation is used in the EnKF, we can set 𝛼 to 1 166 

since the effect of tuning 𝛼 is almost canceled by this procedure. However, if we conduct 167 

ensemble forecasts using the analysis ensemble, we may need to adjust the value of 𝛼. 168 

The members of the analysis ensemble thus generated are evolved by the time integration 169 

of a numerical model to prepare the forecast ensemble for the next analysis time. 170 

For the training of a DNN, we use the EnKF analysis and forecast provided by an EnKF 171 

run as shown in Fig. 1b. The weights including bias parameters are optimized by reducing 172 
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a loss function that measures a difference between the output of the DNN and the target of 173 

training. We prepare several DNNs by randomly initializing the weights before the training.  174 

One of the reasons for including the EnKF analysis in the inputs of DNNs is that this 175 

analysis at a grid point contains some information on the forecast, observations, and 176 

forecast error covariance in a domain within the covariance localization radius, so that we 177 

can reduce the input radius of DNNs and implicitly utilize some information of the forecast 178 

error covariance. In addition, even if DNNs cannot deal with some observational data 179 

because the input nodes for these observations are absent, they are assimilated by the 180 

EnKF part of DL-EnKF and their information is partly provided to the deep learning part 181 

through the EnKF analysis. 182 

We can prepare pseudo-observations by other methods. However, it is easily shown by 183 

the sequential assimilation method (e.g., Houtekamer and Mitchell, 2001) that if observation 184 

errors are independent of each other the additional assimilation of pseudo-observations 185 

does not change the EnKF analysis. Therefore, it can be considered that the pseudo-186 

observations thus created are assimilated in the EnKF part of DL-EnKF along with the real 187 

observations, and that the same observations including the pseudo-observations are 188 

provided to the deep learning part. In this sense, the method adopted in this study may be 189 

a natural choice, although it may not be optimal and spurious correlations and biases will be 190 

generated. We could expect that DNNs will learn to properly deal with this problem by 191 

training. 192 
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Lawson and Hansen (2004) showed that an analysis ensemble generated by a 193 

deterministic EnKF tends to retain multi-modality that may appear in a forecast ensemble, 194 

while this is not the case for a stochastic EnKF. Therefore, a stochastic EnKF is better than 195 

a deterministic EnKF for generating an analysis ensemble of the DL-EnKF. However, it is 196 

well known that if the ensemble size is relatively small, a stochastic EnKF is inferior in terms 197 

of the accuracy of the ensemble mean due to random perturbations that are added to 198 

observations (e.g., Sakov and Oke, 2008; Bowler et al., 2013), so that we adopt a 199 

deterministic EnKF for the EnKF part in the present paper. 200 

 201 

3. Design of experiments 202 

3.1. Outline 203 

The performance of the DL-EnKF is investigated through both perfect and imperfect 204 

model experiments using three versions of the 40-variable Lorenz 96 models (Lorenz, 1996) 205 

and the serial ensemble square root filter (EnSRF; Whitaker and Hamill, 2002), which is one 206 

of the deterministic EnKFs. The ensemble size of the serial EnSRF is set to 10, because we 207 

are interested in the performance of the DL-EnKF with a relatively small ensemble. In this 208 

and the next sections, the EnKF means the serial EnSRF unless otherwise stated. The 209 

purpose of the perfect model experiments is to clarify the basic performance of the DL-EnKF, 210 

while that of the imperfect model experiments is to gain insight into the performance of the 211 

DL-EnKF when applied to data assimilation in the real atmosphere.  212 
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The experiments consist of two phases: the training phase of DNNs and the test phase 213 

using data assimilation experiments. In the training phase, we run the models and the EnKF 214 

to prepare training and validation datasets, which are used to train DNNs and to verify the 215 

accuracy of the output of DNNs, respectively. The length of period and time interval of these 216 

datasets are 1 000 and 1, respectively. This large time interval is taken to ensure that each 217 

data is almost independent of each other. In the test phase, we run the models to prepare a 218 

test dataset for the data assimilation experiments. The length of period of this dataset is also 219 

1 000. The accuracy of the DL-EnKF analysis is compared with the deep learning and EnKF 220 

analyses to evaluate the performance of the DL-EnKF. The workflow to create the deep 221 

learning analysis is the same as that of the DL-EnKF analysis except for the absence of 222 

feedback from the deep learning part to the EnKF part (Fig. 2). The analysis accuracy is 223 

evaluated by the RMSE that is the square root of the squared error averaged over the grid 224 

points and the period of the test dataset at a time interval of 1.  225 

In the perfect model experiments, we use the original 40-variable Lorenz 96 model and 226 

conduct two types of experiments, Exp-PA and Exp-PB, in which the targets of training are 227 

different. The target in Exp-PA is the true state generated by the model, while the target in 228 

Exp-PB is an analysis by the stochastic EnKF (Evensen, 1994; Burgers et al., 1998) with an 229 

ensemble size of 1 000. This analysis is hereafter referred to as the EnKF1000 analysis. 230 

Although this ensemble size may be unrealistic for the 40-variable model, the purpose of 231 

Exp-PB is to examine the performance of the DL-EnKF when an analysis with a high 232 

Fig. 2 
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accuracy is used as a target. 233 

In the imperfect model experiments, the two-scale Lorenz 96 model with 40 large-scale 234 

variables and 400 small-scale variables is used as a substitute of the real atmosphere, while 235 

a parameterized Lorenz 96 model with a parameterization of large-scale forcing by small-236 

scale variables is used as a substitute of a numerical model of the real atmosphere. We 237 

conduct two types of experiments, Exp-IA and Exp-IB. In Exp-IA, we train DNNs using the 238 

simulation data generated by the parameterized model, and conduct the data assimilation 239 

experiment using observations generated by the two-scale model. The idea behind Exp-IA 240 

is that if a dynamical system and a observing system that are used for the taining of a DNN 241 

resemble the real-world systems, we could expect that a data assimilation method the DNN 242 

has learned by training also works in the real-world applications. In Exp-IB, the two-scale 243 

Lorenz 96 model is used for the training and data assimilation experiments in a perfect model 244 

scenario for comparison to Exp-IA.  245 

Table 1 summarizes the models used in the training and test phases of the experiments. 246 

The following subsections describe further details of the experimental design. 247 

 248 

3.2. Models 249 

The governing equations of the Lorenz 96 model for the perfect model experiments are 250 

𝑑𝑋𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹,      (2) 251 

for 𝑘 = 1, ⋯ , 𝐾 , satisfying periodic boundary conditions: 𝑋−1 = 𝑋𝐾−1 , 𝑋0 = 𝑋𝐾 , and 𝑋1 =252 

Table 1 
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𝑋𝐾+1 . The number of variables 𝐾  and the forcing parameter 𝐹  are set to 40 and 8, 253 

respectively. Note that since the number of positive Lyapunov exponents of the model is 13 254 

for those parameter values (Lorenz and Emanuel, 1998), the ensemble size of 10 is not very 255 

small. The leading Lyapunov exponent corresponds to a doubling time of 0.42 (Lorenz and 256 

Emanuel, 1998). When the nonlinearity in data assimilation is controlled by changing the 257 

time interval between observations as in the present study, this value can be used as a 258 

reference for estimating the degree of nonlinearity. The fourth-order Runge-Kutta scheme is 259 

adopted for the time integration of the model with a time step 0.01. 260 

The governing equations of the two-scale Lorenz 96 model for the imperfect model 261 

experiments are 262 

𝑑𝑋𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹 −

ℎ𝑐

𝑏
∑ 𝑌𝑗, 𝑘

𝐽
𝑗=1 ,    (3) 263 

𝑑𝑌𝑗, 𝑘

𝑑𝑡
= −𝑐𝑏𝑌𝑗+1, 𝑘(𝑌𝑗+2, 𝑘 − 𝑌𝑗−1, 𝑘) − 𝑐𝑌𝑗, 𝑘 +

ℎ𝑐

𝑏
𝑋𝑘,    (4) 264 

for 𝑘 = 1, ⋯ , 𝐾 and 𝑗 = 1, ⋯ , 𝐽, where {𝑋𝑘} are large-scale variables and {𝑌𝑗, 𝑘} are small-265 

scale variables, satisfying periodic boundary conditions: 𝑋−1 = 𝑋𝐾−1, 𝑋0 = 𝑋𝐾, 𝑋1 = 𝑋𝐾+1, 266 

𝑌0,1 = 𝑌𝐽,𝐾 , 𝑌𝐽+1,𝐾 = 𝑌1,1 , and 𝑌𝐽+2,𝐾 = 𝑌2,1 . To make Eq. (4) meaningful, we further define 267 

𝑌0,𝑘 = 𝑌𝐽,𝑘−1 , 𝑌𝐽+1,𝑘 = 𝑌1,𝑘+1 , and 𝑌𝐽+2,𝑘 = 𝑌2,𝑘+1 . Large- and small-scale variables interact 268 

with each other through the last terms on the right-hand side of Eqs. (3) and (4). We set the 269 

parameters as follows: 𝐾 = 40, 𝐽 = 10, 𝐹 = 10, ℎ = 1, 𝑐 = 10, and 𝑏 = 10. These values 270 

are the same as the ones used by Lorenz (1996) except for 𝐾 . Note that the forcing 271 

parameter 𝐹 is larger than in the perfect model experiments. The fourth-order Runge-Kutta 272 
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scheme is adopted for the time integration of the model with a time step 0.005. 273 

We also need the parameterized Lorenz 96 model in the imperfect model experiments. 274 

Although advanced parametrization methods such as stochastic parametrization (e.g., Wilks, 275 

2005) and machine learning-based parametrization (e.g., Schneider et al., 2017) are 276 

available, a simple function fitting is adopted in the present study; the last term on the right-277 

hand side of Eq. (3) is approximated by a linear function of 𝑋𝑘. The reason we adopt such 278 

a simple approach is that we intend to demonstrate that even an unsophisticated imperfect 279 

model works well for the training of a DNN. Then the governing equations of the 280 

parameterized Lorenz 96 model are  281 

𝑑𝑋𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹 + (𝑎1𝑋𝑘 + 𝑎0),    (5) 282 

for 𝑘 = 1, ⋯ , 𝐾 , satisfying periodic boundary conditions: 𝑋−1 = 𝑋𝐾−1 , 𝑋0 = 𝑋𝐾 , and 𝑋1 =283 

𝑋𝐾+1 . The number of variables 𝐾  and the forcing parameter 𝐹  were set to 40 and 10, 284 

respectively, to be consistent with the two-scale Lorenz 96 model. The constants 𝑎1 and 285 

𝑎0 are to be determined by the function fitting. The fourth-order Runge-Kutta scheme is 286 

adopted for the time integration of the model with a time step 0.01. 287 

The three models are integrated from 𝑡 = 0 to 𝑡 = 2 050 for preparing the training and 288 

validation datasets. The initial condition at each grid point is 𝐹 plus an independent random 289 

number drawn from the normal distribution with the mean 0 and the variance 1, except that 290 

the small-scale variables of the two-scale Lorenz 96 model are set to 0 at the initial time. 291 

The data from 𝑡 = 51 to 𝑡 = 1 050 are used for preparing the training dataset, and those 292 
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from 𝑡 = 1 051  to 𝑡 = 2 050  for the validation dataset. The other time integration of the 293 

models from 𝑡 = 0 to 𝑡 = 1 050 with initial conditions generated by using another random 294 

number sequence is conducted for preparing the test dataset, and the state variables from 295 

𝑡 = 51 to 𝑡 = 1 050 are used as the true state (target) for computing the analysis error. 296 

 297 

3.3. Observations 298 

Observations are generated by adding random errors to the results of the time 299 

integration of the models. The observation errors are independent random draws from the 300 

normal distribution with the mean 0 and the variance 1, so that the standard deviation of 301 

observation errors is 1. Observations used in the imperfect experiments are of large-scale 302 

variables of the two-scale Lorenz 96 model except for the training phase of Exp-IA, in which 303 

observations are prepared by the parameterized Lorenz 96 model.  304 

Nonlinearity in data assimilation is controlled by changing the time interval between 305 

observations ∆𝑡. All experiments are performed for three values of ∆𝑡: 0.05, 0.20, and 0.50. 306 

The case of ∆𝑡 = 0.05  corresponds to a weakly nonlinear case, and that of ∆𝑡 = 0.50 307 

corresponds to a strongly nonlinear one. Note that the latter value is close to the doubling 308 

time 0.42 mentioned in Subsection 3.2, and that Penny and Miyoshi (2016) used ∆𝑡 = 0.50 309 

for their experiments of a local PF. All observations are prepared such that observations at 310 

the same analysis time are the same regardless of the time interval between observations. 311 

For the spatial distribution of observations, two cases are examined. In one case, 312 
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observations are available at all grid points, and the number of observations is always 40. 313 

In other words, observations are available at each grid point with a probability of 1. In the 314 

other case, observations are available at each grid point with a probability of 1/2. It is 315 

assumed that events that an observation exists are independent of each other in space and 316 

time so that the spatial distribution of observations randomly changes at every observation 317 

time. The average number of observations is 20, and the standard deviation of the number 318 

of observations is √40 ∙ (1/2)2 ≈ 3.16. Hence, the number of pseudo-observations used by 319 

deep learning is about the same as that of observations. The probability of observations is 320 

hereafter denoted by 𝑝. 321 

 322 

3.4. Data assimilation by EnKF 323 

Covariance localization and covariance inflation are needed to optimize the performance 324 

of the EnKF. The correlation function defined by Eq. (4.10) of Gaspari and Cohn (1999) is 325 

taken for covariance localization. The parameter 𝑐  in this equation is regarded as the 326 

localization radius 𝑟𝐿  (unit: grid intervals) in the present study, at which radius the 327 

correlation coefficient decreases to 5/24. An adaptive inflation method proposed by Li et al. 328 

(2009) is used for multiplicative covariance inflation. This method is based on the innovation 329 

statistics by Desroziers et al. (2005). Li et al. (2009) imposed lower and upper limits in the 330 

“observed” inflation factor ∆̃𝑜 before applying a smoothing procedure: 0.9 ≤ ∆̃𝑜≤ 1.2. Since 331 

we conduct data assimilation over a much wider range of the time interval between 332 
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observations ∆𝑡, we optimize the upper limit of ∆̃𝑜 for each set of parameters (𝑟𝐿, ∆𝑡, 𝑝) 333 

leaving the lower limit at 0.9. The candidates of the upper limit are 1.2, 1.3, 1.4, 1.5, 2.0, 3.0, 334 

5.0, and no limit. In addition, although Li et al. (2009) set the error growth parameter 𝜅 to 335 

1.03, we adopt a larger value 𝜅 = 1.1 because this value leads to a better analysis in the 336 

present study. A set of values of 𝑟𝐿 and the upper limit of ∆̃𝑜 with the best analysis accuracy 337 

is hereafter referred to as the optimal parameters. We determine the optimal parameters for 338 

each pair of (∆𝑡, 𝑝) in Exp-PA and Exp-IA by data assimilation experiments using the target 339 

and observations in each training dataset. The optimal parameters thus determined are also 340 

used in Exp-PB and Exp-IB, respectively, unless otherwise stated. 341 

In Exp-PB, the target of training is the EnKF1000 analysis that is yielded by the 342 

stochastic EnKF with an ensemble size of 1 000, as mentioned in Subsection 3.1. The 343 

reason we adopt the stochastic EnKF is that when an ensemble size is very large the 344 

accuracy of the serial EnSRF tends to deteriorate and to become less accurate than the 345 

stochastic EnKF. We can avoid this problem with the serial EnSRF by applying the mean-346 

preserving random rotation of an analysis ensemble (Sakov and Oke, 2008), but an 347 

additional computational cost is very large for the random rotation of a 1000-member 348 

ensemble. Figure 3 compares the analysis accuracy of the two EnKFs for ensemble sizes 349 

of 10 (in cold colors) and 1 000 (in warm colors), plotting the RMSEs averaged over the 350 

period from 𝑡 = 51 to 𝑡 = 1050. This result is obtained by using the target and observations 351 

in the training datasets of Exp-PA. The localization radius and the upper limit of ∆̃𝑜 are 352 

Fig. 3 
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optimized in the case of the ensemble size 10, while no covariance localization is applied 353 

and the upper limits of ∆̃𝑜 is set to 1.2 in the case of the ensemble size 1 000. It is found 354 

from Fig. 3 that in the latter case the RMSE of the stochastic EnKF is smaller than that of 355 

the serial EnSRF for all values of the time interval between observations ∆𝑡 and probability 356 

of observations  𝑝. Note that the serial EnSRF with an ensemble size 10 outperforms the 357 

serial EnSRF with an ensemble size 1 000 in the three cases: (∆𝑡, 𝑝) = (0.05, 1), (0.05, 1/2), 358 

and (0.20, 1).  359 

In Exp-IB, the two-scale Lorenz 96 model is used to assimilate observations of large-360 

scale variables. As noted by Tsuyuki (2019), when the ensemble size is relatively small, 361 

forecast correlations between large- and small-scale variables are not reliable. Hence, these 362 

forecast correlations are neglected in the EnKF, and the analysis ensemble of small-scale 363 

variables is left unchanged from the forecast ensemble at each analysis time.   364 

 365 

3.5. Deep learning 366 

A simple feedforward neural network with the same number of nodes for all hidden layers 367 

is adopted for the deep learning part of the DL-EnKF. As we assume that the input radius of 368 

DNNs is relatively small, a convolutional neural network would not be needed. We could use 369 

a recurrent neural network instead of the feedforward neural network to utilize the 370 

information obtained by the previous processing in deep learning, but it is not adopted in the 371 

present study for simplicity.  372 
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The inputs of a DNN are the EnKF analysis using the optimal parameters, forecast, 373 

observations, availability of observations, and pseudo-observations in a small domain 374 

centered on an analysis grid point within the input radius 𝑟𝐼  (unit: grid intervals). The 375 

availability of observation at a grid point is set to 1 if the observation is available and set to 376 

-1 if not available. The DNN assumes that observations are always available at all grid points, 377 

and we supplement missing observations with pseudo-observations. Since the availability 378 

of observations is not necessary in the case of 𝑝 = 1, the input layer of the DNN has 3(2𝑟𝐼 +379 

1) nodes for 𝑝 = 1, and 4(2𝑟𝐼 + 1) nodes for 𝑝 = 1/2. The number of hidden layers is set 380 

to 5 or 10 and the number of nodes per hidden layer is optimized as will be mentioned later. 381 

Since the balance of analysis (Kalnay, 2003) is not a serious issue in Lorenz 96 models, we 382 

let the output of the DNN be the analysis value at the analysis grid point only. For Exp-IB in 383 

which the two-scale Lorenz 96 model is used in the EnKF part of DL-EnKF, the input and 384 

output of the DNN are of large-scale variables only.  385 

Table 2 summarizes the architecture and training of the DNN. All input and output data 386 

except for the availability of observations are normalized by using the mean and standard 387 

deviation of the target state in the training dataset of Exp-PA for the perfect model 388 

experiments and of Exp-IB for the imperfect model experiments. Since the statistical 389 

behavior of the models does not depend on the location of a grid point, the data at all grid 390 

points are used to prepare the training and validation datasets. Hence, the number of 391 

samples of each dataset is 40 × 1 000 = 40 000 . The training dataset is split into small 392 

Table 2 
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batches called mini-batches that are used to compute the loss function and update the 393 

weights of the DNN. Learning rate decay is adopted in the training to avoid the situation in 394 

which the DNN converges towards minima in a noisy manner and ends up oscillating far 395 

away from actual minima. The number of epochs is the number of times each element in the 396 

training dataset is used by the DNN for optimizing the weights. For most of the cases, 397 

iterations almost converge within 10 epochs. We use PyTorch (Paszke et al., 2019) as the 398 

deep learning software. 399 

To determine the optimal number of nodes per hidden layer, we train two DNNs with 5 400 

and 10 hidden layers by changing the number of nodes using the training and validation 401 

datasets of Exp-PA. Figure 4 plots the RMSEs of the two DNNs against the input radius 𝑟𝐼 402 

for the case of ∆𝑡 = 0.50  and 𝑝 = 1 . The RMSEs are computed by using the validation 403 

datasets. For the DNN with 10 hidden layers and 5 nodes per hidden layer, the training fails 404 

for six values of the input radius, so that the RMSE of this case is not plotted in Fig. 4b. 405 

Since the RMSE is not very different between 5 and 10 hidden layers, we adopt the DNN 406 

with 5 hidden layers. It is found from Fig. 4 that when the input radius and number of nodes 407 

are large to some extent, the RMSE tends to increase due to the generalization error of deep 408 

learning. Since the DNN with 20 nodes per hidden layer has the smallest RMSE for most of 409 

the input radii, we set the optimal number of nodes to 20 for the case of ∆𝑡 = 0.50 and 𝑝 =410 

1.  411 

The optimal numbers of nodes of the DNN with 5 hidden layers are summarized in Fig. 412 Fig. 5 

Fig. 4 
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5 by blue bars for 𝑝 = 1 and by cyan bars for 𝑝 = 1/2. They tend to increase as the time 413 

interval between observations increases because the estimation of state variables becomes 414 

more difficult as nonlinearity increases. Although this result is obtained for Exp-PA, those 415 

number of nodes are used in all experiments. We also compute the optimal numbers of 416 

nodes for the case where the EnKF analysis is not included in the inputs of the DNN. The 417 

RMSEs for this case are plotted in Fig. 5 by red bars for 𝑝 = 1 and by orange bars for 𝑝 =418 

1/2. It is found that the inclusion of the EnKF analysis tends to reduce the optimal number 419 

of nodes. This is probably because the EnKF analysis plays the role of a first guess and 420 

makes it easier to estimate state variables.  421 

The appendix discusses the impacts of the increase in the ensemble size of EnKF and 422 

the sample size for training on the accuracy of output of a DNN. The result of experiments 423 

shows that when the ensemble size of EnKF is increased to 40 the improvement by deep 424 

learning is considerably reduced, and that we need to increase the sample size much larger 425 

to obtain a larger improvement. 426 

 427 

3.6 Data assimilation by DL-EnKF 428 

In the data assimilation experiments with the DL-EnKF, the EnKF part of DL-EnKF 429 

adopts the optimal parameters, and the DL-EnKF analysis is the average of outputs of 5 or 430 

10 DNNs. Since the adaptive covariance inflation is used in the EnKF part, the parameter 431 

𝛼 in Eq. (1) is set to 1. In the test phase of Exp-IB, the deep learning part receives only 432 
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large-scale variables from the EnKF part and generates the DL-EnKF analysis of large-scale 433 

variables. The analysis ensemble of large-scale variables is modified by using this analysis,  434 

while the analysis ensemble of small-scale variables is left unchanged from the one 435 

generated by the EnKF part. The RMSEs of the DL-EnKF, deep learning, and EnKF analysis 436 

in Exp-IB are computed by using large-scale variables only. 437 

 438 

4. Results 439 

4.1 perfect model experiments 440 

The first issue to be clarified is whether deep learning can outperform the EnKF in terms 441 

of analysis accuracy. The EnKF is close to optimal in weakly nonlinear regimes, and the 442 

deep learning part of DL-EnKF does not explicitly utilize the forecast error covariance. Figure 443 

6a compares the analysis accuracy between deep learning and the EnKF in Exp-PA for all 444 

values of ∆𝑡 and 𝑝, in which the RMSEs are plotted against the RMSE of EnKF for the 445 

input radius of 2 grid intervals. The dots indicate the RMSEs of a single DNN, and the short 446 

horizontal bars indicate the RMSE of the average of outputs from 5 DNNs. It is found from 447 

this figure that all RMSEs of deep learning analysis are the same for each case and that 448 

deep learning outperforms the EnKF when ∆𝑡 = 0.50. Note that since the EnKF analysis is 449 

included in the inputs of DNNs, the accuracy of deep learning analysis does not become 450 

worse than that of the EnKF analysis if sufficient training samples are available. 451 

The second issue is whether the accuracy of the DL-EnKF analysis is better than that 452 

Fig. 6 
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of the EnKF and deep learning analyses. As mentioned in the introduction, the analysis by 453 

deep learning is based on the minimization of the sum of errors over many samples and not 454 

optimized for each analysis time. Hence, the analysis accuracy may deteriorate during 455 

assimilation cycles by the DL-EnKF. Figure 6b compares the analysis accuracy between the 456 

DL-EnKF and EnKF for Exp-PA. The dots indicate the RMSEs of DL-EnKF when the output 457 

of a single DNN is used as the DL-EnKF analysis, and the horizontal bars indicate the ones 458 

when the average of outputs from 5 DNNs is used as the DL-EnKF analysis. It is found that 459 

when ∆𝑡 = 0.05 the RMSEs of DL-EnKF based on a single DNN are scattered and larger 460 

than that of EnKF. In other words, the accuracy of the deep learning analysis shown in Fig. 461 

6a is not maintained during assimilation cycles in a weakly nonlinear case. Taking the 462 

average over 5 DNNs does not improve the accuracy very well. When ∆𝑡 = 0.20 and 0.50, 463 

on the other hand, the RMSEs of DL-EnKF based on a single DNN become almost the same 464 

for each case and taking the average over 5 DNNs slightly improves the accuracy in the 465 

case of ∆𝑡 = 0.50. In addition, a comparison of Fig. 6a and 6b shows that the RMSE of DL-466 

EnKF is smaller than that of deep learning when ∆𝑡 = 0.50  due to positive feedback in 467 

assimilation cycles.  468 

We conduct additional experiments in which the ensemble size of DNNs is increased to 469 

10 in Exp-PA. The initial conditions of weights used for the training are different from the 470 

ones used in the case of 5 DNNs. Results are presented in Figs. 6c and 6d, and the former 471 

figure looks the same as Fig. 6a. The benefit of taking the average over 10 DNNs for the 472 
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DL-EnKF is evident when ∆𝑡 = 0.05, although its analysis accuracy is still lower than that of 473 

EnKF. When ∆𝑡 = 0.20 and ∆𝑡 = 0.50, the RMSEs of DL-EnKF are almost the same as in 474 

the case of 5 DNNs. This suggests that an ensemble size of 5 is sufficient except for a 475 

weakly nonlinear case. Then, all the results shown below are based on the average of 476 

outputs from 5 DNNs, because our interest is primarily in the performance of the DL-EnKF 477 

in strongly nonlinear regimes.  478 

Figure 7 compares the time sequences of RMSEs of the EnKF (red line) and the DL-479 

EnKF (green line) in the case of 𝑝 = 1 . When ∆𝑡 = 0.05  (Fig. 7a), the DL-EnKF is 480 

outperformed by the EnKF during the whole period. When ∆𝑡 = 0.20 (Fig. 7b), the analysis 481 

accuracy of the two methods is close; the correlation coefficient between the two RMSEs 482 

computed for the period from 𝑡 = 51 to 𝑡 = 1 050 is 0.761. When ∆𝑡 = 0.50 (Fig. 7c), the 483 

EnKF sometimes exhibits a significant deterioration of accuracy, but the DL-EnKF does not 484 

show such a tendency. This result demonstrates an excellent performance of the DL-EnKF 485 

in strongly nonlinear regimes. 486 

The third issue is whether the optimal input radius of deep learning is smaller than the 487 

optimal localization radius of the EnKF. Figure 8 plots the RMSEs of EnKF (orange lines), 488 

deep learning (green lines), and DL-EnKF (blue lines) analysis against the input radius for 489 

all cases of Exp-PA (solid lines) and Exp-PB (broken lines). The RMSE of EnKF in Exp-PB 490 

is the same as the one in Exp-PA. An orange broken line indicates the RMSE of the 491 

EnKF1000 analysis that is used for the training in Exp-PB. The optimal localization radius is 492 

Fig. 7 

Fig. 8 
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plotted by a red arrow, except for the case of (∆𝑡, 𝑝) = (0.05, 1/2)  where the optimal 493 

localization radius is 11 grid intervals. The RMSEs of EnKF and deep learning overlap in 494 

Figs. 8a and 8b, and the RMSEs except for the EnKF1000 analysis almost overlap in Figs. 495 

8c and 8d.  496 

When ∆𝑡 = 0.05  (Figs. 8a and 8b), the DL-EnKF is outperformed by the EnKF. 497 

Reflecting that an ensemble of 5 DNNs is not sufficient (see Fig. 5b), the graphs of the DL-498 

EnKF are not smooth due to large sampling errors. When ∆𝑡 = 0.20 (Fig. 8c and 8d) the 499 

two data assimilation methods exhibit almost the same accuracy while when ∆𝑡 = 0.50 500 

(Figs. 8e and 8f) the DL-EnKF outperforms the EnKF irrespective of the input radius. The 501 

accuracy of the DL-EnKF analysis is higher than that of the deep learning analysis for the 502 

latter case due to positive feedback in assimilation cycles. We can conclude that the input 503 

radius of 2 grid intervals is sufficient to attain the best accuracy of the DL-EnKF analysis. 504 

This value is smaller than the optimal localization radii for both 𝑝 = 1 and 𝑝 = 1/2. Even if 505 

the input radius is further increased, the accuracy of the DL-EnKF and deep learning 506 

analysis remains almost the same, although slight degradations are seen due to the 507 

generalization error of deep learning. This small sensitivity of RMSEs on the input radius 508 

indicates that the information at distant grid points contributes little to the DL-EnKF analysis 509 

even within the localization radius of the EnKF. The inclusion of the EnKF analysis in the 510 

inputs of DNNs also contributes to this insensitivity. 511 

Another point to be noted in Figs. 8e and 8f is that even if DNNs are trained on the 512 
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EnKF1000 analysis, the accuracy of the DL-EnKF analysis is not very different from the one 513 

trained on the true state. Given the large errors of the EnKF1000 analysis shown in Figs. 8e 514 

and 8f, this result may look surprising. That is probably because this analysis well represents 515 

the basic dynamics of the Lorenz 96 model despite the large errors. If the difference in the 516 

ensemble size between the DL-EnKF and the target analysis is decreased, the accuracy of 517 

the DL-EnKF analysis in Exp-PB is more deteriorated. For instance, according to an 518 

additional experiment in which the ensemble size of the DL-EnKF is set to 40 for the case 519 

of ∆𝑡 = 0.50 and 𝑝 = 1 (see the appendix), the RMSEs of the EnKF analysis and DL-EnKF 520 

analyses in Exp-PA and Exp-PB are 0.682, 0.617, and 0.638, respectively, for the input 521 

radius of 2 grid intervals. The corresponding values for the ensemble size of 10 are 0.798, 522 

0.675, and 0.689 (see Fig. 8e), so that the deterioration of accuracy in Exp-PB is still not 523 

very large. 524 

Finally, we examine the impact of including the EnKF analysis in the inputs of DNNs on 525 

the accuracy of the deep learning analysis using the test datasets of Exp-PA. Figure 9 plots 526 

the RMSE of deep learning in which the EnKF analysis is not included (cyan line) and the 527 

one in which the EnKF analysis is included (green line) against the input radius. The green 528 

lines are the same as in Fig. 8, and the two RMSEs overlap in Fig. 9f. For comparison, the 529 

RMSE of EnKF of which localization radius is not optimized is also plotted by an orange line 530 

against the localization radius with the upper limit of ∆̃𝑜  optimized for each localization 531 

radius. Note that the RMSE of EnKF does not always attain the minimum at the optimal 532 

Fig. 9 
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localization radius indicated by a red arrow, because the values of the optimal parameters 533 

are determined by using the training datasets.  534 

We can see from Fig. 9 that the accuracy of the deep learning analysis is improved by 535 

including the EnKF analysis in the inputs of DNNs except for Fig. 9f, in which the EnKF 536 

analysis is too inaccurate to be useful. It is also found in Figs. 9c and 9e for 𝑝 = 1 that this 537 

procedure reduces the dependence of the analysis accuracy on the input radius. This is 538 

because the EnKF analysis contains some information on the forecast ensemble and 539 

observations in a domain within the localization radius. Such a reduction in the dependence 540 

brought about by including the EnKF analysis is not clearly seen in Figs. 9d and 9f for 𝑝 =541 

1/2, since deep learning partly utilizes the EnKF analysis through pseudo-observations.  542 

 543 

4.2 Imperfect model experiments 544 

The parametrization procedure for the parameterized Lorenz 96 model is described in 545 

Subsection 3.2. Figure 10 is the scatter plot between the large-scale variables and the 546 

forcing. The initial condition is the same as that used for preparing the training dataset of 547 

Exp-IB. The number of samples is 40 000 and the result of linear function fitting is plotted by 548 

a straight line. The values of constants in Eq. (5) are 𝑎1 = −0.320 and 𝑎0 = −0.165. Since 549 

the slope of this line is negative, the forcing acts on large-scale variables as negative 550 

feedback. Figure 11 compares the Hovmöller diagrams of the Lorenz 96 model, 551 

parameterized Lorenz 96 model, and large-scale variables of the two-scale Lorenz 96 model. 552 

Fig. 10 

Fig. 11 
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The initial condition is the same as that used in Fig. 10. Note that the forcing parameter 𝐹 553 

is larger than in the perfect model experiments. A comparison of the three panels in Fig. 11 554 

shows that the parameterization works well, although the parametrized Lorenz 96 model 555 

evolves a little more regularly than the two-scale Lorenz 96 model. Stochastic 556 

parameterizations could remedy this defect (Wilks, 2005). 557 

Figure 12 plots the RMSEs of EnKF (orange lines), deep learning (green lines), and DL-558 

EnKF (blue lines) analysis against the input radius for all cases of Exp-IA (solid lines) and 559 

Exp-IB (broken lines). Note that Exp-IA is conducted in an imperfect model scenario, while 560 

Exp-IB is conducted in a perfect model scenario for comparison. Unlike Fig. 8, an orange 561 

broken line indicates the RMSE of EnKF using the two-scale Lorenz 96 model. The optimal 562 

localization radius of the EnKF is indicated by a red arrow. The RMSEs of EnKF and deep 563 

learning for each case overlap in Figs. 12a-12d. It is found that the RMSE of EnKF using 564 

the two-scale Lorenz 96 model is smaller than the one using the parameterized Lorenz 96 565 

model. We can confirm that the basic performance of the DL-EnKF is the same as in the 566 

perfect model experiments; the DL-EnKF is inferior to the EnKF in a weakly nonlinear case 567 

(Figs. 12a and 12b), while the opposite is true in a strongly nonlinear case (Figs. 12e and 568 

12f), in which the optimum input radius is smaller than the optimum localization length. A 569 

difference from the perfect model experiments is that when ∆𝑡 = 0.20 (Figs. 12c and 12d), 570 

the accuracy of the DL-EnKF analysis is a little worse than that of the EnKF analysis for 𝑝 =571 

1 and a little better for small values of the input radius for 𝑝 = 1/2.  572 

Fig. 12 
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An important point to be noted in Figs. 12e and 12f is that even if DNNs are trained on 573 

the training dataset prepared by the parameterized Lorenz 96 model, the improvement in 574 

analysis accuracy introduced by the DL-EnKF is not very different from the case where the 575 

training dataset is prepared by the two-scale Lorenz 96 model. The former model is run in 576 

the data assimilation experiments in the test phase of Exp-IA without any trouble, implying 577 

that this model well represents the basic dynamics of large-scale variables of the two-scale 578 

Lorenz 96 model. When we use the Lorenz 96 model with 𝐹 = 10, of which evolution is 579 

shown in Fig.11a, in the above data assimilation experiments, we often experience failures.  580 

 581 

5. Summary and discussion 582 

An ensemble data assimilation method based on deep learning was presented, in which 583 

an ensemble of DNNs was locally embedded in an EnKF. This method was named the DL-584 

EnKF. The inputs of a DNN were the EnKF analysis, forecast, observations, availability of 585 

observations, and pseudo-observations in a small domain centered on an analysis grid point. 586 

Missing observations were supplemented with the pseudo-observations created from the 587 

EnKF analysis. The DL-EnKF analysis was the average of outputs from an ensemble of 588 

DNNs. The DL-EnKF analysis ensemble was generated from the DL-EnKF analysis and the 589 

EnKF analysis deviation ensemble. The members of the DL-EnKF analysis ensemble thus 590 

generated were evolved by the time integration of a numerical model to prepare the forecast 591 

ensemble for the next analysis time. 592 
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The performance of the DL-EnKF was investigated through data assimilation 593 

experiments in both perfect and imperfect model scenarios using three versions of the 594 

Lorenz 96 model and the serial EnSRF with an ensemble size of 10. The target of training 595 

in the perfect model experiments was the true state generated by the Lorenz 96 model or 596 

the EnKF1000 analysis generated by the stochastic EnKF with an ensemble size of 1000. 597 

In the imperfect model experiments, the true state and observations were provided by the 598 

two-scale Lorenz 96 model, while the training dataset was prepared by using the 599 

parameterized Lorenz 96 model. Nonlinearity in data assimilation was controlled by 600 

changing the time interval between observations.  601 

The DL-EnKF was outperformed by the serial EnSRF in a weakly nonlinear case, but it 602 

was superior to the serial EnSRF in terms of analysis accuracy in a strongly nonlinear case 603 

despite such a small ensemble size. The DL-EnKF analysis was more accurate than the 604 

output of deep learning due to positive feedback in assimilation cycles in the latter case. 605 

Even if the target of training was the EnKF1000 analysis or the simulation by the 606 

parametrized Lorenz 96 model, the improvement introduced by the DL-EnKF was not very 607 

different from the case where the target of training was the true state. The inclusion of EnKF 608 

analysis in the inputs of DNNs not only improved the accuracy of the deep learning analysis 609 

but also reduced the optimal number of nodes per hidden layer and the dependence of the 610 

accuracy on the input radius. 611 

Although the above results were obtained from experiments using toy models, they 612 
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suggest that the DL-EnKF may be a promising methods for data assimilation in strongly 613 

nonlinear regimes. The DL-EnKF works with a relatively small ensemble size compared to 614 

the PF, and we can prepare a training dataset for deep learning from simulation data by a 615 

numerical model used in data assimilation. Observational data and EnKF analysis data 616 

generated with a large ensemble could be used for this purpose, but a huge computational 617 

cost may be needed to obtain sufficient samples and a period when observations are 618 

available is limited.  619 

The DL-EnKF may be suitable for data assimilation in cloudy or convective regions in 620 

the atmosphere to assimilate radar and satellite observations. We need to extend the inputs 621 

and output of DNNs in the vertical to assimilate satellite radiance data, since they are 622 

nonlocal observations. As for radial wind data by a Doppler radar, the direction and distance 623 

of a radar site differ depending on a grid point. However, if the radar site position relative to 624 

the grid point is included in the inputs of a DNN, we can train the DNN collectively regardless 625 

of the grid point as in the present study.   626 

There are a couple of issues to be addressed before applying the DL-EnKF to data 627 

assimilation in the atmosphere. In the data assimilation experiments using Lorenz 96 models, 628 

the analysis value at a single grid point is sufficient for the output of a DNN, but we need to 629 

take the balance of analysis into account for atmospheric data assimilation. One of the 630 

methods for ensuring the balance is to extend the output of a DNN to include analysis values 631 

at surrounding grid points. Then the target of training consists of the target state in a small 632 
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domain centered on an analysis grid point. Since the target state is usually well balanced, 633 

the DNN could learn the balance. Adding a penalty term for suppressing imbalance to a loss 634 

function of the DNN may help enhance the balance. In addition, taking a weighting average 635 

of the outputs in adjacent domains may be effective in improving analysis accuracy.  636 

This study demonstrates that the DL-EnKF is inferior to the EnKF in a weakly nonlinear 637 

case. It is found that an increase in the ensemble size of DNNs can mitigate this problem, 638 

but it would be difficult to increase the ensemble size sufficiently, given the computational 639 

cost needed for the training of DNNs. We may need a criterion for replacing the EnKF 640 

analysis with the corresponding DL-EnKF analysis in DL-EnKF assimilation cycles. An 641 

advanced DNN such as a recurrent neural network would be useful for improving the 642 

performance of DL-EnKF in weakly nonlinear regimes as well as in strongly nonlinear ones. 643 
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Appendix 658 

In this study, we perform the experiments using the serial EnSRF with 10 members and 659 

the 40 000 training samples. It may be of interest to examine how the accuracy of output of 660 

a DNN changes when the ensemble size and the sample size are increased. This appendix 661 

presents some results of additional experiments in which the ensemble size of EnKF is set 662 

to 10 and 40 and the sample size is set to 40 000, 160 000 and 640 000. These experiments 663 

correspond to Exp-PA for ∆𝑡 = 0.50. The ensemble size of 40 is the same as the degrees 664 

of freedom of the Lorenz 96 model and, according to Fig. 5 of Penny and Miyoshi (2016), 665 

an EnKF still outperforms a local PF with this ensemble size. The periods of time integration 666 

of the model for preparing the training and validation datasets are 2 050, 8 050, and 32 050 667 

with the first periods of 50 in length are discarded.  668 

Figure A1 shows the optimum numbers of nodes per hidden layer of a DNN, obtained 669 

by using the validation datasets. The maximum number of nodes is limited to 100. Although 670 

we choose the number of nodes that performs the best for the various input radius, the 671 

determination of the optimal number becomes difficult with the increase of the sample size. 672 

Fig. A1 
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When the number of training samples is increased, the generalization error of deep learning 673 

tends to reduce and, therefore, the optimal number of nodes per hidden layer tends to 674 

increase.  675 

Figure A2 compares RMSE between the serial EnSRF and the output of a DNN obtained 676 

by using the test datasets of Exp-PA. Note that they are not the average over 5 DNNs, so 677 

that the RMSEs shown by green lines in Figs. A2a and A2b are different from those in Figs. 678 

8e and 8f, respectively. The optimal localization radius of the serial EnSRF in Fig. A2c is 12 679 

grid intervals. It is found from this figure that the improvement by deep learning is 680 

considerably reduced for the ensemble size of 40. When the sample size is increased, the 681 

RMSE of the output of a DNN is reduced, but we need much more training samples to obtain 682 

a large improvement.  683 
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Fig. 1   (a) Workflow of DL-EnKF and (b) workflow to train a DNN for DL-EnKF. See text 817 
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Fig. 2   Workflow to generate deep learning analysis. 820 
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Fig. 3   Comparison of RMSEs between the serial EnSRF (abscissa) and stochastic EnKF 822 

(ordinate) for the training dataset of Exp-PA. Dots in cold colors are for an ensemble size 823 

10 and dots in warm colors are for an ensemble size 1 000. Dots in dark colors are for 824 

the probability of observations 1 and dots in light colors are for the probability of 825 

observations 1/2. The three dots in the same color correspond to the observation time 826 

intervals 0.05, 0.20, and 0.50 from left to right. 827 
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Fig. 4   Comparison of RMSEs of a single DNN with 5 (light green), 10 (orange), 20 (red), 829 

30 (green), 40 (cyan), and 50 (blue) nodes per hidden layer for the validation dataset of 830 

Exp-PA. The RMSEs are plotted against the input radius. The number of hidden layers is 831 

(a) 5 and (b) 10. The observation time interval is 0.50 and the probability of observations 832 

is 1. 833 
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Fig. 5   The optimal number of nodes per hidden layer of a DNN with 5 hidden layers. The 835 

abscissa is the observation time interval. Blue and cyan bars are for the case of including 836 

EnKF analysis in input for the probability of observations 1 and 1/2, respectively. Red and 837 

orange bars are for the case of not including EnKF analysis in input for the probability of 838 

observations 1 and 1/2, respectively.  839 

 840 

Fig. 6   Comparison of RMSEs between (a) EnKF (abscissa) and deep learning with 5 841 

DNNs (ordinate), (b) EnKF and DL-EnKF with 5 DNNs, (c) EnKF and deep learning with 842 

10 DNNs, and (d) EnKF and deep learning with 10 DNNs for Exp-PA. The probability of 843 

observations 1 is in blue and 1/2 in red, and the input radius is 2 grid intervals. Dots 844 

indicate RMSEs based on a single DNN, and short horizontal bars indicate RMSEs based 845 

on an ensemble of DNNs. The three groups of dots and a horizontal bar in the same color 846 

correspond to the observation time intervals 0.05, 0.20, and 0.50 from left to right.  847 

 848 

Fig. 7   Time sequences of RMSEs of EnKF (red lines) and DL-EnKF (blue lines) for 849 

observation time interval (a) 0.05, (b) 0.20, and (c) 0.50 for Exp-PA. The probability of 850 

observations is 1 and the input radius is 2 grid intervals.  851 

 852 

Fig. 8   Comparison of RMSEs of EnKF (orange lines), deep learning (green lines), and 853 

DL-EnKF (blue lines) for Exp-PA (solid lines) and Exp-PB (broken lines). An orange 854 
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broken line indicates the RMSE of EnKF1000 analysis used for training in Exp-PB. The 855 

RMSEs are plotted against the input radius, and a red arrow indicates the optimal 856 

localization radius of EnKF. The observation time interval and the probability of 857 

observations are (a) 0.05 and 1, (b) 0.05 and 1/2, (c) 0.20 and 1, (d) 0.20 and 1/2, (e) 858 

0.50 and 1, and (f) 0.50 and 1/2, respectively. 859 

 860 

Fig. 9   Comparison of RMSEs of EnKF (orange line), deep learning not including EnKF 861 

analysis in input (cyan line), and deep learning including the EnKF analysis in input 862 

(green line) for Exp-PA. The RMSE of EnKF is computed for each localization radius. The 863 

abscissa is the input radius for deep learning and the localization radius for the EnKF. A 864 

red arrow indicates the optimal localization radius. The observation time interval and the 865 

probability of observations are (a) 0.05 and 1, (b) 0.05 and 1/2, (c) 0.20 and 1, (d) 0.20 866 

and 1/2, (e) 0.50 and 1, (f) 0.50 and 1/2, respectively. 867 

 868 

Fig. 10   Scatter plot between large-scale variables (abscissa) and large-scale forcing by 869 

small-scale variables (ordinate) of the two-scale Lorenz 96 model. A solid line is the result 870 

of linear function fitting.  871 

 872 

Fig. 11   Hovmöller diagrams of (a) the Lorenz 96 model, (b) the parametrized Lorenz 96 873 

model, and (c) large-scale variables of the two-scale Lorenz 96 model.  874 
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 875 

Fig. 12   Same as Fig. 8 except for Exp-IA (solid lines) and Exp-IB (broken lines) and that 876 

an orange broken line indicates the RMSE of EnKF using the two-scale Lorenz 96 model. 877 

 878 

Fig. A1   The optimal number of nodes per hidden layer of a DNN with 5 hidden layers for 879 

the time interval between observations of 0.50. The abscissa is the number of samples. 880 

Blue and cyan bars are for the EnKF ensemble size of 10 for the probability of 881 

observations 1 and 1/2, respectively. Red and orange bars are for the EnKF ensemble 882 

size of 40 for the probability of observations 1 and 1/2, respectively. 883 

 884 

Fig. A2   Comparison of RMSE between EnKF (orange lines) and the output of a DNN with 885 

the number of samples of 40 000 (green lines), 160 000 (blue), and 640 000 (cyan) for 886 

the observation time interval of 0.50. The ensemble size of EnKF and the probability of 887 

observations are (a) 10 and 1, (b) 10 and 1/2, (c) 40 and 1, (d) 40 and 1/2, respectively. 888 

The RMSEs are plotted against the input radius, and a red arrow indicates the optimal 889 

localization radius of EnKF. 890 
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 896 

Fig. 1   (a) Workflow of DL-EnKF and (b) workflow to train a DNN for DL-EnKF. See text 897 

for details.  898 

  899 
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 900 

Fig. 2   Workflow to generate deep learning analysis.  901 
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 903 

 904 

Fig. 3   Comparison of RMSEs between the serial EnSRF (abscissa) and stochastic EnKF 905 

(ordinate) for the training dataset of Exp-PA. Dots in cold colors are for an ensemble size 906 

10 and dots in warm colors are for an ensemble size 1 000. Dots in dark colors are for 907 

the probability of observations 1 and dots in light colors are for the probability of 908 

observations 1/2. The three dots in the same color correspond to the observation time 909 

intervals 0.05, 0.20, and 0.50 from left to right. 910 

911 
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(a) 912 

(b) 913 

 914 

Fig. 4   Comparison of RMSEs of a single DNN with 5 (light green), 10 (orange), 20 (red), 915 

30 (green), 40 (cyan), and 50 (blue) nodes per hidden layer for the validation dataset of 916 

Exp-PA. The RMSEs are plotted against the input radius. The number of hidden layers is 917 

(a) 5 and (b) 10. The observation time interval is 0.50 and the probability of observations 918 

is 1. 919 

  920 
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 921 

Fig. 5   The optimal number of nodes per hidden layer of a DNN with 5 hidden layers. The 922 

abscissa is the observation time interval. Blue and cyan bars are for the case of including 923 

EnKF analysis in input for the probability of observations 1 and 1/2, respectively. Red and 924 

orange bars are for the case of not including EnKF analysis in input for the probability of 925 

observations 1 and 1/2, respectively.  926 

927 
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(a)                                            (b) 928 

 929 

(c)                                            (d) 930 

 931 

Fig. 6   Comparison of RMSEs between (a) EnKF (abscissa) and deep learning with 5 932 

DNNs (ordinate), (b) EnKF and DL-EnKF with 5 DNNs, (c) EnKF and deep learning with 933 

10 DNNs, and (d) EnKF and deep learning with 10 DNNs for Exp-PA. The probability of 934 

observations 1 is in blue and 1/2 in red, and the input radius is 2 grid intervals. Dots 935 

indicate RMSEs based on a single DNN, and short horizontal bars indicate RMSEs based 936 

on an ensemble of DNNs. The three groups of dots and a horizontal bar in the same color 937 

correspond to the observation time intervals 0.05, 0.20, and 0.50 from left to right.  938 

939 
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 (a)  940 

(b) 941 

(c) 942 

 943 

Fig. 7   Time sequences of RMSEs of EnKF (red lines) and DL-EnKF (blue lines) for 944 

observation time interval (a) 0.05, (b) 0.20, and (c) 0.50 for Exp-PA. The probability of 945 

observations is 1 and the input radius is 2 grid intervals.  946 

  947 
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(a)                                          (b) 948 

(c)                                          (d) 949 

(e)                                         (f) 950 

Fig. 8   Comparison of RMSEs of EnKF (orange lines), deep learning (green lines), and 951 

DL-EnKF (blue lines) for Exp-PA (solid lines) and Exp-PB (broken lines). An orange 952 

broken line indicates the RMSE of EnKF1000 analysis used for training in Exp-PB. The 953 

RMSEs are plotted against the input radius, and a red arrow indicates the optimal 954 

localization radius of EnKF. The observation time interval and the probability of 955 

observations are (a) 0.05 and 1, (b) 0.05 and 1/2, (c) 0.20 and 1, (d) 0.20 and 1/2, (e) 956 

0.50 and 1, and (f) 0.50 and 1/2, respectively. 957 

958 
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(a)                                       (b) 959 

(c)                                        (d) 960 

(e)                                        (f) 961 

Fig. 9   Comparison of RMSEs of EnKF (orange line), deep learning not including EnKF 962 

analysis in input (cyan line), and deep learning including the EnKF analysis in input 963 

(green line) for Exp-PA. The RMSE of EnKF is computed for each localization radius. The 964 

abscissa is the input radius for deep learning and the localization radius for the EnKF. A 965 

red arrow indicates the optimal localization radius. The observation time interval and the 966 

probability of observations are (a) 0.05 and 1, (b) 0.05 and 1/2, (c) 0.20 and 1, (d) 0.20 967 

and 1/2, (e) 0.50 and 1, (f) 0.50 and 1/2, respectively.   968 
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 969 

Fig. 10   Scatter plot between large-scale variables (abscissa) and large-scale forcing by 970 

small-scale variables (ordinate) of the two-scale Lorenz 96 model. A solid line is the result 971 

of linear function fitting.  972 
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(a)                                              (b) 974 

 975 

(c) 976 

 977 

Fig. 11   Hovmöller diagrams of (a) the Lorenz 96 model, (b) the parametrized Lorenz 96 978 

model, and (c) large-scale variables of the two-scale Lorenz 96 model.  979 
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(a)                                        (b) 981 

(c)                                         (d) 982 

(e)                                         (f) 983 

 984 

Fig. 12   Same as Fig. 8 except for Exp-IA (solid lines) and Exp-IB (broken lines) and that 985 

an orange broken line indicates the RMSE of EnKF using the two-scale Lorenz 96 model. 986 

987 
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 988 

Fig. A1   The optimal number of nodes per hidden layer of a DNN with 5 hidden layers for 989 

the time interval between observations of 0.50. The abscissa is the number of samples. 990 

Blue and cyan bars are for the EnKF ensemble size of 10 for the probability of 991 

observations 1 and 1/2, respectively. Red and orange bars are for the EnKF ensemble 992 

size of 40 for the probability of observations 1 and 1/2, respectively.  993 
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(a)                                         (b) 995 

(c)                                         (d) 996 

 997 

Fig. A2   Comparison of RMSE between EnKF (orange lines) and the output of a DNN with 998 

the number of samples of 40 000 (green lines), 160 000 (blue), and 640 000 (cyan) for 999 

the observation time interval of 0.50. The ensemble size of EnKF and the probability of 1000 

observations are (a) 10 and 1, (b) 10 and 1/2, (c) 40 and 1, (d) 40 and 1/2, respectively. 1001 

The RMSEs are plotted against the input radius, and a red arrow indicates the optimal 1002 

localization radius of EnKF. 1003 

  1004 
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Table 1   Models used in the training and test phases in the experiments. 1011 

 1012 

(a) Perfect model experiments 1013 

     Exp-PA     Exp-PB  1014 

   Training Test   Training Test 1015 

Target   L  L   Analysis L 1016 

Observations  L  L   L  L 1017 

Forecast ensemble L  L   L  L 1018 

L: Lorenz 96 model 1019 

(b) Imperfect model experiments 1020 

     Exp-IA     Exp-IB  1021 

   Training Test   Training Test 1022 

Target   P  T   T  T 1023 

Observations  P  T   T  T 1024 

Forecast ensemble P  P   T  T 1025 

P: parameterized Lorenz 96 model,   T: two-scale Lorenz 96 model 1026 

  1027 
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Table 2   Architecture and training of the feedforward neural network.  1028 

 1029 

No. of nodes of input layer   3(2𝑟𝐼 + 1) for 𝑝 = 1 1030 

4(2𝑟𝐼 + 1) for 𝑝 = 1/2 1031 

No. of hidden layers     5 1032 

No. of nodes per hidden layer   5, 10, or 20 (optimized) 1033 

No. of nodes of output layer    1 1034 

Activation function               ReLU 1035 

Loss function     Sum of squared error 1036 

Gradient descent method        Adam* 1037 

Learning rate               0.01 to 0.0001 (linear decay) 1038 

No. of samples               40 000 1039 

Mini-batch size                100 1040 

No. of epochs                100 1041 

*: Kingma and Ba (2014) 1042 

 1043 


