

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is

DOI:10.2151/jmsj.2022-028

J-STAGE Advance published date: March 10th, 2022 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

1	The roles of local circulation and boundary layer
2	development in tracer transport over complex
3	topography in central Taiwan
4	
5	Min-Ken HSIEH
6	Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
7	Central Weather Bureau, Taipei, Taiwan
8	
9	Yu-Wen CHEN
10	Research Center for Environmental Change, Academia Sinica, Taipei, Taiwan
11	
12	Yi-Chun CHEN
13	Research Center for Environmental Change, Academia Sinica, Taipei, Taiwan
14	
15	and
16	Chien-Ming WU ¹
17	Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
18	

19	
20	
21	
22	
23	
24	
25	
26	February 1, 2022
27	
28	
29	
30	1) Corresponding author: Chien-Ming WU, No. 1, Sec. 4, Roosevelt Rd., Taipei
31	10617, Taiwan (R.O.C.).
32	Email: mog@as.ntu.edu.tw
33	Tel: +886-2-3366-3905
34	Fax: +886-2-2363-3642
35	
36	
37	

Abstract

39	
55	

40	We applied tracer transport simulations using Taiwan vector vorticity equation cloud-
41	resolving model (TaiwanVVM) to evaluate the effects of the local circulation associated
42	with the lee vortex and the planetary boundary layer development on the transport and
43	accumulation of the pollutants on a diurnal time scale in central Taiwan. The wind
44	directions of crucial synoptic northeast monsoon are idealized as the initial conditions
45	of the simulations to examine the impact of the lee vortex on the pollutants transport.
46	The primary local non-traffic emission sources are taken as the tracer emission sites so
47	that the experiment results could be a good proxy of the realistic scenarios. With the
48	local circulation over complex topography being resolved explicitly, the impact of the
49	boundary layer development on the tracer transport of the Puli basin is discussed. The
50	simulation results clarify the contribution of the sea breeze and the lee vortex to the
51	tracer transport in central Taiwan. We conclude that high tracer concentration at Puli at
52	night is due to the tracer being trapped by the thinning of the mixed layer depth in the
53	evening. The sensitivity of the local tracer transport to the change of the synoptic wind
54	direction shows that under northeasterly due east (due north) environment, the pollutant
55	transports from the southern source (northern source) of central Taiwan are most likely
56	to induce high concentration in Puli at night. This is the first study to distinguish the

57	contribution of the sea breeze and the lee vortex in pollutants transport in Taiwan. The
58	results obtained from idealized experiments provide the possible mechanism of
59	pollutants transport, which could be taken as an insight to interpret the observations and
60	guide the design of field experiment to further establish the fundamental principles of
61	the pollution transports in central Taiwan.
62	
63	Keywords: pollutant transport, local circulation, lee vortex, planetary boundary layer,

64 large eddy simulation

1. Introduction

67	The fine particulate matter ($PM_{2.5}$; particles with a diameter of 2.5 micrometers or
68	less) pollution is a serious environmental issue in Taiwan. Several studies conducted in
69	Taiwan discussed the possible pollutants transport mechanism associated with the local
70	circulation: Tsai et al. (2008) investigated the influences of the land-sea breeze on the
71	transport of gaseous air pollutants around the coastal region of Southern Taiwan. They
72	showed that ambient air pollutants could be transported back and forth across the
73	coastline by the land-sea breeze. Hsu and Cheng (2016, hereafter HC16) showed that
74	the pollution on the west plain of Taiwan is prone to be high under the land-sea breeze
75	embedded in the weak synoptic weather during wintertime. While these studies
76	emphasized the role of the land-sea breeze on the pollutants transport under the weak
77	synoptic weather, the high aerosol concentration distributed on the leeside of the central
78	mountain range of Taiwan under the prevailing winds also came to attention. Chuang
79	et al. (2008) pointed out that while the weak winds and the high atmospheric stability
80	are crucial factors to promote the high aerosol concentration in the Taipei basin, the
81	terrain blocking effect on the leeside of the prevailing winds could also cause aerosol
82	accumulation. Hsu and Cheng (2019) also showed that southwestern Taiwan situated
83	on the leeside of the central mountain range often exhibits the worst air pollution under
84	the prevailing northeasterly monsoon. These studies suggested that the interaction

85	between the topography of Taiwan and the prevailing wind should be taken into account
86	when inspecting the pollutants' transport mechanism. Lai and Lin (2020, hereafter LL20)
87	further proposed that the lee vortex, which is induced by the prevailing winds blocked
88	by the central mountain range of Taiwan, is a crucial factor to the pollutant transport
89	mechanism in Taiwan. After inspecting the composite of more than 300 simulations of
90	the pollution events and the aerosol concentration observation, they concluded that the
91	location of the induced lee vortex is sensitive to the pitching angle of prevailing winds,
92	which is defined as the angle between the axis of the central mountain range and the
93	prevailing wind direction. The location of the lee vortex and its evolution consequently
94	impact the areas of the severe pollution areas in the island scale, such as in central or
95	southern Taiwan. Despite the importance of the lee vortex to the local pollutant
96	distribution in Taiwan claimed by LL20, there is little observation examination of the
97	lee vortex under the high pollution events in their study. The existence of the lee vortex
98	could be clearly identified in some pollution cases of Taiwan (see Appendix as an
99	example), which implies that the crucial pollutants transport mechanism should be
100	associated with the lee vortex. However, it is challenging to clarify the transport
101	contribution by the lee vortex in the observation considering that the local $PM_{2.5}$ is the
102	result of the pollutants being transported from all kinds of emission sources in Taiwan.
103	In this study, a large-eddy simulation approach is employed to evaluate the effects of

the lee vortex on the pollutants transport and to identify possible emission sources
responsible for the local pollutant distribution under the synoptic condition revealed by
HC16 and LL20.

107 While the aforementioned studies indicated the importance of the local circulation associated with the land-sea breeze and the lee vortex on the pollutants transport, the 108 109 evolution of the local circulation under different prevailing wind directions and its impact on the pollutants transport are still not clear. The contribution of the land-sea 110 111 breeze and the lee vortex to the pollutants transport under different synoptic conditions also need to be examined quantitatively. Moreover, the distribution of the pollutants 112 discussed in these studies mainly focused on the plain areas of Taiwan. Regarding the 113 114 mechanism of the pollutants transport and accumulation over the mountain area, the 115 local circulation associated with the topography, such as the mountain valley wind system, could also play a role in the pollutants transport, which is rarely discussed 116 before. The details of the aerosol concentration distribution across the plains and 117 mountain areas are also interesting. For example, HC16 also pointed out that the Puli 118 119 site, a basin situated at the mountain area of the central mountain range, recorded the second-highest average PM_{2.5} concentration from the year 2014-2015. Since the non-120 traffic pollution sources such as chemical industry factories and power plants are 121 primarily located in the coastal area, the mechanism of the pollutants transported to and 122

accumulated in the Puli basin is worthy of being further investigated.

124	Considering the pollutants transport and accumulation over complex topography,
125	the vertical dispersion of the pollutants related to the characteristics of the planetary
126	boundary layer (PBL) development is also a key factor in determining the local
127	pollutant concentration. Chang et al. (2006) analyzed the microwave temperature
128	profiler data of the pollution episodes in Taiwan. They suggested that the mixed layer
129	depth and its diurnal variation are essential to the evolution of local pollution. The local
130	pollutant concentration is modulated by the local flow and the vertical mixing processes
131	simultaneously. In the Puli basin, which is located on the west side of the central
132	mountain range with complex surrounding topography, the PBL development should
133	be carefully evaluated to clarify its role in pollutant transport.
134	In this study, we aim to understand the mechanism responsible for the local
135	circulation that causes high pollutant concentration at the Puli basin using idealized
136	simulations. As Lesouef et al. (2011) demonstrated, the idealized numerical experiment
137	is suitable to investigate the local scale transport and dispersion of pollutants emitted
138	from local sources in the context of a uniform maritime flow obstructed by a
139	mountainous island.

Arnold et al. (2012a, 2012b) showed that the modeling framework with nested-domain generally causes problems over complex topography, including the noise

142 produced at the nest boundaries, the spin-up needed for the high-resolution domain, and the boundary of the nested domain. To avoid these issues, the domain boundaries of the 143 144 numerical simulation should be far enough from the region of interest. In this study, a high-resolution (500 m) single domain covering the whole of Taiwan is used in the 145 numerical simulation framework to simulate the local circulation and PBL development 146 147 over complex topography in Taiwan. The high horizontal resolution single domain 148 design is to avoid the nested-domain simulation problems mentioned above meanwhile still capable of capturing flow around ridges and valleys of Taiwan. A series of idealized 149 tracer transport simulations are carried out to clarify the roles of the land-sea breeze 150 and the lee vortex on the transport of pollutants to the Puli basin. The tracer emission 151 152 sites are configured on the west coast of Taiwan to evaluate the tracer transport processes on the west plain of Taiwan. In PBL, high vertical resolution (100 m) within 153 4 km is used to better capture the evolution of PBL development. In our experiments, 154 the synoptic northeasterly monsoon with different prevailing wind directions is also 155 considered in the tracer transport simulations to discuss the evolution of the lee vortex 156 157 under different synoptic conditions in the distribution of the tracer concentration. The goals of this study are: 1) to identify the role of the lee vortex in the tracer transport 158 mechanism; 2) to evaluate the impact of the prevailing wind direction of northeasterly 159 monsoon on the evolution of the lee vortex circulation; and 3) to understand how the 160

161	local tracer concentration at Puli be modulated by the development of the PBL and the
162	local circulation. The statistic of the observation data is presented in section 2. The
163	model and the experiment design are presented in section 3, which includes the
164	description of TaiwanVVM and the numerical setup of the idealized simulations. The
165	examination of the simulation results is presented in section 4, in which the mechanism
166	associated with the lee vortex and the development of the PBL is discussed. A summary
167	and discussion are given in section 5.
160	

169 2. Observational Basis

Inspired by LL20, we first analyze the relationship between the prevailing winds 170 171 and the pollution of central Taiwan in the observations. We follow the definition of the 172 prevailing winds in LL20 and take the winds of the lowest level in the sounding data at 173 Ishigakijima of Japan at 00:00 UTC of each day to represent the synoptic winds. Figure 1 shows the geographic locations of Taiwan and Ishigakijima (yellow asterisk), as well 174 as the major local non-traffic emission sources (red squares, Taichung Power Plant 175 (TPP), and Sixth Naphtha Cracker (SNC)) and the observation sites (blue triangles, 176 Zhushan and Puli) in central Taiwan we focused on in this study. It is worth noting that 177 the Puli basin is on the west side of the central mountain range. The height of the 178 179 surrounding mountains of the Puli basin ranges from 800 to 2000 m. Zhushan is situated

180	at the fringe of the western plain of Taiwan, which is also next to the foothill of the
181	central mountain range. Figure 2 shows the windroses of the synoptic winds in 2005-
182	2015. While the day-by-day prevailing wind directions can vary from northeasterly due
183	north (NNE) to southerly as shown in Fig. 2a, the wind directions are mostly confined
184	between 20° to 80° when only considering the pollution days at Puli (Fig. 2b). Figure
185	2b also shows that the highest frequency of the pollution days at Puli is under the NNE
186	synoptic winds and followed by the northeasterly (NE) and northeasterly due east (ENE)
187	winds. The windroses indicate that although the west plain of Taiwan is mainly under
188	the weak wind condition during the northeasterly monsoon, which favors the pollution
189	transport by the land-sea breeze as suggested by HC16, the slight change of the synoptic
190	wind direction still impacts the pollution of the Puli basin. The sensitivity of the Puli
191	pollution days to the synoptic wind direction also implies that the local circulation
192	associated with the lee vortex could result in the different pollutants transport scenarios
193	on a finer scale than LL20 suggested.

To elaborate on the characteristics of the pollution distribution associated with the local circulation in central Taiwan, we further choose Zhushan along with Puli as the examining sites of the aerosol concentration and the local flow in this section. As HC16 pointed out, the major non-traffic emission sources are located in the coastal area, and the land-sea breeze could promote the pollutants being transported inland. Under this

199	circumstance, Zhushan is taken upstream of the Puli basin when examining the
200	transport processes of the pollutants emitted from the coastal area. Figure 3 shows the
201	diurnal variations of the aerosol concentration and the local winds at Zhushan and Puli
202	of the composite of the 310 pollution days at Puli from 2005 to 2015. Figure 3a shows
203	that there is a profound diurnal cycle of the aerosol concentration at both Zhushan and
204	Puli. The timing of the highest concentration at Zhushan is at 18:00 LST while it at Puli
205	is 3 hours later, which indicates that the pollutants could be transported from plain to
206	mountain area by sea breeze as HC16 suggested. The aerosol concentration at Puli at
207	night is higher than the highest concentration at Zhushan, which indicates that the
208	processes of the pollutants accumulation could be another important factor to explain
209	the pollution at Puli. While the profound diurnal variation and the high concentration
210	at Puli at night could be attributed to the decrease of the PBL height after sunset, the
211	stronger diurnal variation amplitude of the concentration at Puli compared with that at
212	Zhushan indicates that the impact of the PBL development on local pollutants
213	accumulation could be different between plain and mountain areas, which is worthy of
214	being further evaluated by numerical simulation. The signature of the sea breeze is also
215	evident in Fig 3b. Considering the coastline is west of the plains and mountain areas in
216	central Taiwan, the robust westerly in the daytime at Zhushan and Puli is due to the sea
217	breeze initiates and develops from the coastal area to the plain and mountain areas.

218 Figure 3b also shows that the land breeze is weak at night compared to the sea breeze. The westerly sea breeze in the daytime accompanied with mild northerly is shown in 219 220 Fig. 3c, which might be associated with the slant coastline as shown in Fig. 1. The characteristics and evidence of the local circulation associated with the lee vortex are 221 little discussed in the aforementioned studies, which is probably because that the sea 222 223 breeze signature is much profound in the composite of the observation as we shown in Figs. 3b and 3c. Since the formation of the lee vortex and its movement results in a 224 varying flow pattern locally, it is difficult to evaluate the lee vortex by the mixed results 225 of the local winds at a single point. However, it is worth noting that the deviation from 226 the composite meridional wind in Fig. 3c indicates that the day-to-day meridional wind 227 228 of the local flow could change from northerly to southerly in the pollution days at Puli. 229 The variability of the meridional wind component could be taken as the consequences of the local circulation modulated by the lee vortex, which is not a uniform flow but 230 tends to change the directions along with the cyclonic circulation of the lee vortex. To 231 clarify the contribution of the land-sea breeze and the lee vortex to the pollutants 232 233 transport as well as the effects of the PBL development on the pollutants accumulation, we performed a series of idealized tracer transport experiments. In contrast to the case 234 study, the initial synoptic winds are idealized to three different uniform flows according 235 236 to the windrose in Fig. 1 to better understand the tracer transport and accumulation processes. The examination of the tracer transport mechanism in the simulations andthe numerical experiment setup are presented in the next section.

239

240 **3. Model and experiment design**

241 **3.1 TaiwanVVM**

242 It is very challenging for numerical models to simulate the pollution transport over the complex topography using PBL schemes that are designed in one dimension or flat 243 surfaces (Goger et al. 2018, 2019). Using different PBL schemes in the model could 244 influence both the strength of the land-sea breeze and the PBL height, consequently 245 resulting in different concentrations of the pollutants in Taiwan (Cheng et al. 2012). 246 247 In this study, we use TaiwanVVM following Wu et al. (2019) and Chang et al. 248 (2021) to capture the tracer transport in the boundary layer. Idealized simulations in 249 these studies help understand the fundamental mechanisms associated with flow over 250 complex topography in Taiwan. TaiwanVVM uses high horizontal (500 m) and vertical (100 m) resolution with simple eddy diffusion turbulence closure to explicitly simulate 251 the PBL development over complex topography. In addition, the Noah land surface 252 253 model (LSM) is implemented in TaiwanVVM with corresponding realistic land surface data of Taiwan (Wu et al. 2019). A unique aspect of the TaiwanVVM is that the model 254 predicts the horizontal components of vorticity and diagnoses the vertical velocity using 255

256	a three-dimensional elliptic equation (Jung and Arakawa 2008). Therefore, the pressure
257	gradient force is eliminated, and the horizontal vorticities can respond directly to the
258	buoyancy force to better capture the local-scale circulations associated with the
259	substantial heating difference, such as the land-sea breeze or mountain-valley wind
260	system. The complex topography with steep slopes in Taiwan is modeled through the
261	immersed boundary method in height coordinate (Wu and Arakawa 2011; Chien and
262	Wu 2016), which allows us to simulate the interaction between prevailing winds and
263	the topography such as lee vortex. This model has been used to study the unified
264	parameterization for deep convection (Arakawa and Wu, 2013; Wu and Arakawa, 2014),
265	stratocumulus transition (Tsai and Wu, 2016), aggregated convection (Tsai and Wu,
266	2017; Chen and Wu, 2019), and afternoon thunderstorms over complex topography
267	(Kuo and Wu, 2019; Wu et al., 2019; Chang et al., 2021). The detailed TaiwanVVM
268	setup in this study is presented in Table 1, which follows the numerical setup in Chang
269	et al. (2021) except for the initial condition.

271 **3.2 Idealized experiments**

The idealized experiment aims to isolate the most crucial mechanism governing the distribution of the pollutant on the west plain of Taiwan. Therefore, the synoptic environment is idealized as the initial condition with a uniform background flow over

275	the whole domain so that we can focus on the interactions between the lee vortex and
276	the local circulation. Figure 4 shows the initial condition of the simulation. The
277	potential temperature, water vapor mixing ratio, and wind profiles are set to a typical
278	winter condition, which is idealized from the sounding data upstream of Taiwan at
279	Ishigakijima of Japan at 00 UTC on Dec. 21, 2017, as shown in Figs. 4a and 4b. The
280	environment is stable with moderate moisture below 2000 m. We smooth the strength
281	of the inversion in the idealized initial conditions to represent the general stratification
282	characteristics of the atmosphere around Taiwan under northeasterly monsoon in the
283	winter. The stratified atmosphere prohibits the vertical mixing of the pollutants by the
284	synoptic-scale forcing. The distribution of the pollutants could only rely on the local
285	circulation and the vertical eddy mixing initiating from the surface. To inspect the
286	mechanism of the different prevailing wind directions resulting in the observation
287	statistics obtained in Fig. 1, we idealized the initial near-surface background flow to
288	20°, 50°, and 80° (NE20, NE50, and NE80) uniformly in the horizontal domain. The
289	initial wind profiles below 3000 m in these three experiments are shown in Figs. 4c, 4d,
290	and 4e to emphasize the different prescribed northeasterly monsoon wind directions on
291	the lowest 850 m. The specific wind directions are then veering upward to the westerly
292	at the level of 3000 m in the initial condition of the simulation to represent the typical
293	shallow northeasterly monsoon wind fields near Taiwan. For inspecting the land-sea

breeze evolution and the PBL development over Taiwan's topography within a diurnal
time scale, the simulations initiate at 6 AM of the local standard time (LST), which is
2 hours prior to the sounding data we idealized from, and are integrated for 18 hours.
We take the first 2 hours as the spinning up period, and the simulation results from 8
LST (00 UTC) to midnight (24 LST) are examined to understand the tracer transport
associated with the local effects.

To better understand the details of the local tracer transport under the blocked 300 northeasterly monsoon synoptic condition, we focus on the simulation results in central 301 302 Taiwan. The tracer emission sites are configured on the coastal area of central Taiwan, which are Taichung Power Plant (TPP) and Sixth Naphtha Cracker (SNC), as shown in 303 304 Fig. 1. These sites represent the major local non-traffic emission sources of central Taiwan so that our idealized experiment results could be a good proxy of the realistic 305 scenarios. The tracer site's emission is normalized to unity at 100 m above the ground 306 every time step. The tracers could then be transported with the local circulation under 307 the blocked northeasterly monsoon flow. The tracers are considered as gaseous 308 309 emission, and therefore the deposition is ignored in the simulations.

In the following analyses, we first examine the local circulation starts from an
island scale (~100 km) to identify the lee vortex under different initial background wind
directions. The domain is then zoomed into central Taiwan (as the area shown in Fig.

313	1) to inspect the tracer transport processes associated with the local circulation and the
314	resulting evolution of the tracer concentrations in Zhushan and Puli. The PBL
315	development and the local flow pattern are then analyzed to discuss how the diurnal
316	variation of the PBL development and the flow over complex terrain impact the local
317	tracer concentrations.
318	
319	4. Simulation results
320	4.1 Local circulation associated with the lee vortex under the northeast monsoon
321	The simulation results show that the slight change of the northeasterly monsoon
322	wind direction leads to the different scenarios of the lee vortex evolution and modulates
323	the local circulation. Figure 5 presents the characteristics of the local circulation
324	associated with the lee vortex in three experiments at noon (12:00 LST) and night
325	(22:00 LST). It shows that from NE20 to NE80, the blocking effects of the central
326	mountain range become stronger, and consequently, the lee vortex becomes more
327	profound. In NE20, the background synoptic flow is mostly parallel with the axis of the
328	central mountain range so that there are few blocking effects of the central mountain
329	range. The local circulation is mainly composed of the synoptic northeasterly monsoon
330	flow and the sea breeze induced locally in the daytime (Fig. 5a). While the
331	characteristics of the sea breeze is profound at noon in NE20, the flow turns to several

332	small vortices on the plain area at 22:00 LST (Fig. 5d), which indicates that the local
333	circulation becomes rather weak and more turbulent at night and there is little evidence
334	of the land breeze at night. The signature of the uneven strength of the land-sea breeze
335	is consistent with the observation shown in Fig. 3b earlier. With the increase of the
336	easterly component of the background flow, the local circulation is no longer only
337	attributed to the sea breeze and the synoptic flow. The local circulation of NE50 at 12:00
338	LST (Fig. 5b) shows that a cyclonic swirl stretches along the coastline, and the
339	stretching swirl results in a rather profound southerly wind on the west plain of Taiwan
340	compared to NE20. The southerly proceeds at night, as shown in Fig. 5e, which is
341	evident that the central mountain range's mild blocking effect can impact the local
342	circulation even when the lee vortex is difficult to identify. In NE80, the lee vortex is
343	identified under the strongest blocking effects among the experiments. Figure 5c shows
344	that two lee vortices are located at the northwest coast and the southwest sea of Taiwan
345	at noon. The northern one then moves offshore toward the north of Penghu island, while
346	the southern one moves westward out of the domain throughout the day (Fig. 5f). As
347	the lee vortices form at noon, the circulation associated with the lee vortices dominates
348	the local circulation. It shows that the lee vortex induces the profound westerly in
349	central Taiwan at noon. With the northern lee vortex moving southwestward, the local
350	flow in central Taiwan turns southerly at night.

351	To evaluate the impact of the lee vortex on the local circulation, we further inspect
352	the evolutions of the mean 10 m winds in the plain area of central Taiwan in all
353	experiments (Fig. 6). While the characteristics of the intensified westerly in the daytime,
354	which is consistent with the observational analysis, exist in all the experiments (Fig.
355	6a), the mechanism behind these phenomena could be different among these three
356	experiments. As shown in Fig. 5c, the westerly in the daytime in NE80 is mainly due
357	to the circulation associated with the lee vortices. The combination of the cyclonic flow
358	of the north vortex and the anti-cyclonic circulation of the south vortex leads to a robust
359	westerly in central Taiwan. The local winds vary along with the drifting of these lee
360	vortices. After the southern vortex moves out of the domain, the local flow in central
361	Taiwan is controlled solely by the northern lee vortex offshore (Fig. 5d). The weakening
362	of the westerly at night is because the local flow veers from westerly to the south-
363	southwesterly (SSW) as the vortex moves from north to west to central Taiwan. In
364	contrast, the westerly in NE20 and NE50 is most likely attributed to the sea breeze in
365	the daytime. The cease of the sea breeze in these two experiments at night also agrees
366	with the observation. Figure 6a also indicates that the intensity of the westerly induced
367	by the lee vortex, which reaches 2.5 m s ⁻¹ at 14:30 LST, is generally about 1 m s ⁻¹
368	stronger than the westerly induced by the sea breeze. The maximum westerly in NE20
369	and NE50 is about 1.5 to 2 m s ⁻¹ , which is comparable to the observation shown in Fig.

370	3b. Regarding the evolution of the meridional component of the mean surface winds in
371	the plain of central Taiwan, the results among these three experiments show more
372	variability (Fig. 6b). It shows that even the meridional winds are similar in the first few
373	hours after spin-up, the evolutions of the meridional winds are distinctly different under
374	the different blocking effects of the central mountain range. The sustained northerly
375	wind throughout the day in the NE20 experiment indicates that there are few changes
376	from the prevailing northeasterly monsoon when only considering the meridional flow
377	in central Taiwan. As the northeasterly monsoon veers to easterly with stronger
378	blocking effects, it shows that the northerly wind turns southerly along with the leeside
379	effects in the plain area of central Taiwan. Figure 6b shows that the initiation of the
380	southerly is as early as 14:00 LST in NE80, and it delays for 6 hours in NE50.
381	Considering the center of the lee vortex is mostly located on the coastal area or over the
382	sea, the southerly on the plain area is due to the cyclonic circulation of the north lee
383	vortex. The modeling results indicate that the crucial impact of the different leeside
384	effects on the local circulation is the timing of the initiation of the southerly in the plain
385	of central Taiwan. With the synoptic flow veering from NNE to ENE, the leeside effect
386	is getting more apparent. The blocking effect of the central mountain range under
387	different northeasterly monsoon wind directions changes the timing of the lee vortex
388	formation. It modulates the evolution of the local circulation, which leads to the local

389	tracer concentration at Zhushan and Puli being sensitive to the prevailing wind
390	directions. In the next subsection, we elaborate on the tracer transport scenarios at
391	Zhushan and Puli to clarify the roles of the local circulation on the modulation of the
392	local tracer concentration at Puli.

394 4.2 Tracer transport processes in central Taiwan

We first present the time evolution of the tracer concentration in Zhushan and Puli 395 in Fig. 7. Within only 40 km between TPP and SNC, the transport downstream in 396 Zhushan and Puli has distinct different evolution under similar background 397 environments. Besides, relative high tracer concentration exists in Puli at night in NE20 398 399 (NE80) from TPP (SNC). Regarding the tracer transport from TPP, the peak time of 400 pollution concentration at Zhushan/Puli tends to delay as the synoptic wind veers 401 toward northerly anti-clockwise. Their concentrations are also higher (Fig. 7a). The peak time at Puli is always 2.5 to 3.5 hours later than Zhushan because Zhushan is 402 upstream to Puli when the tracer is transported from TPP to the mountain area by the 403 404 westerly. In NE80, the peak time can be as early as 11 AM at Zhushan, and in NE20, it delays for 2 hours, which is due to the weaker westerly shown in Fig. 6a. After the peak 405 time at Zhushan/Puli, the tracer concentration decreases quickly in NE50 and NE80, 406 while in NE20, the concentration at Zhushan decreases slowly after reaching its peak 407

at 13:00 LST. When the concentration at Puli reaches its peak at 16:30 LST, the TPP
tracer concentration at Zhushan even increases slightly. The concentrations at Zhushan
then decrease after 17:30 LST while it at Puli remain higher than 0.005 throughout the
day. The overall concentration at Zhushan/Puli after 18:00 LST is higher compared with
it in NE50 or NE80.

413 The time evolution of the tracer transport from SNC is distinctly different from TPP in that only NE50 and NE80 can reach Zhushan, and only NE80 can reach Puli (Fig. 414 415 7b). In addition, the timing of tracer transport from SNC approaching Zhushan and Puli is generally later than that from TPP. In NE80, the peak time of the SNC tracer 416 concentration at Zhushan is at 15:30 LST, while it is at 18:30 LST in NE50. The 417 418 downstream relationship between Zhushan and Puli does not exist in NE50 regarding 419 tracer transport from the SNC, which indicates that in addition to local circulation, the diurnal evolution of the PBL could also play an important role. To further demonstrate 420 the tracer transport scenarios in central Taiwan, we examine the evolution of the tracer 421 concentration along with the local circulation development. The results show that the 422 423 streak structure of the tracer concentration follows the local circulation before entering the mountain area. Figure 8 shows the evolution of the surface concentration of the 424 tracer emitted from TPP in three experiments. In the morning (11:00 LST), the lee 425 vortex promotes the earlier eastward transport of the tracer. This feature can be 426

427	visualized in the NE80 experiment in which the streak structure of the tracer reaches
428	the east of TPP (Fig. 8c), while in other experiments, the tracer streak spreads southward
429	(Figs. 8a and 8b). In the afternoon (14:00 LST), the lee vortex north to TPP in the NE50
430	experiment (Fig. 8e) also induces the southwesterly flow to transport tracer
431	northeastward. The tracer distribution in NE50 and NE80 shows that when the primary
432	tracer streak swipes quickly following the cyclonic circulation associated with the lee
433	vortex, the tracer concentration in the mountains around Puli stays relatively low values
434	at 18:00 LST (Figs. 8h and 8i), compared with the high tracer concentration at Puli in
435	the NE20 experiment (Fig. 8g). In NE20, the tracer concentration increases
436	dramatically as the tracer transports into the mountain area, and it is the highest among
437	all experiments at night at Zhushan and Puli in NE20 (Fig. 7a), which can be related to
438	the PBL development as discussed in the following subsection.
439	Figure 9 shows the evolution of the surface tracer concentration emitted from SNC
440	in the three experiments. Although the evolution of the lee vortex is identical, the
441	location of SNC (40 km south of TPP) prevents the direct influence from the lee vortex.
442	The tracer transport from SNC is mostly southward and southeastward from 11:00 (Figs.
443	9a, 9b, and 9c) to 14:00 (Figs. 9d, 9e, and 9f) LST. In the NE20 experiment (Figs. 9a,
444	9d, and 9g), the tracer from SNC is transported southward by the coastal northeasterly
445	monsoon flow. The sea breeze only spreads the tracer eastward slightly at 18:00 LST,

446	and the tracer cannot reach Zhushan and Puli in the whole simulation. The result is in
447	sharp contrast to tracer transport from TPP simply due to the location of the lee vortex.
448	The cyclonic circulation in NE50 and NE80 is evident in the evening (Figs. 9h and 9i)
449	and promotes the tracer transported eastward. In the NE80 experiment (Figs. 9c, 9f, and
450	9i), the local circulation around SNC turns eastward the earliest in the morning, and the
451	flow veers to the northeastward in the evening, which leads to the direct transport of
452	the tracer to the mountain area produces high tracer concentration at Puli.
453	The examination of the horizontal tracer distribution shows that the local circulation
454	controls the timing of the streak structure of the tracer approaching Zhushan and Puli,
455	as demonstrated in Fig. 7. The timing of the tracer transported to the mountains further
456	impact the local concentration evolution at night. To interpret the variation of the tracer
457	concentration at Zhushan and Puli at night, we analyze the development of the PBL and
458	discuss its impacts on tracer transport and accumulation in the next subsection.
459	
460	4.3 Impact of the thinning of mixed-layer depth in the evening
461	While the local circulation associated with the lee vortex impacts the tracer
462	transport scenarios, the development of PBL also plays a role in the modulation of the
463	trace concentration at Puli. There are several approaches to estimating PBL depth. In
464	this study, we use a simple well-mixed assumption to estimate the mixed-layer depth as

465	an index to describe the diurnal evolution of PBL. The mixed-layer depth is defined as
466	the depth at which the potential temperature equals the surface potential temperature
467	plus 0.5 K. This definition links the mixed-layer depth to solely the near-surface
468	potential temperature profile so that the mixed-layer depth could be a good indicator of
469	the activity of the thermals initiated by the surface heating in the daytime. A clear
470	diurnal cycle of the mixed-layer depth exists for both Zhushan and Puli in all the
471	experiments (Figure not shown). As demonstrated in the last subsection, the local
472	circulation under different strengths of the blocking effect results in the different TPP
473	tracer transport scenarios. Due to the variation of the lee vortex in these experiments,
474	the timing of the tracer streak approaching Zhushan and Puli is the latest in NE20 (Fig.
475	7a). The simulation results in NE50 and NE80 show that the local circulation turns
476	southwesterly earlier so that the tracer is either accumulated near the emission site (Fig.
477	8h) or transported northward (Fig. 8i) by the circulation of the lee vortex at 18:00 LST.
478	On the other hand, a rather robust westerly over the plain area of central Taiwan in
479	NE20 spreads the TPP tracer to Zhushan and Puli and results in the highest tracer
480	concentration in central Taiwan in the evening (Fig. 8g). With the help of the inactive
481	vertical mixing of the PBL in the evening, the high TPP tracer concentration at Puli at
482	night and its evolution (Fig. 7a) can be further explained using the mixed-layer depth
483	and the local scale downslope winds. Figure 10 shows the vertical cross-section from

484	the coastline to the mountain area at 18:30 LST. The time evolution of the TPP tracer
485	concentration and the local circulation along with the mixed-layer depth is also
486	presented in supplementary material 1. It shows that the timing of the tracer streak
487	across the hill between Zhushan and Puli in NE20 is the latest among all these
488	experiments. As the thinning of mixed-layer depth occurs in the evening, the tracer
489	could be trapped in the Puli basin by the topography. This hypothesis is supported by
490	Fig. 10. The tracer is confined in the Puli basin in NE20 due to the thinning of mixed-
491	layer depth in the evening so that the tracer concentration at Puli is highest among all
492	three experiments.

The results also show that the tracer is transported back and forth on the right 493 494 (north) slope of the Puli basin after trapping in the basin during the night as presented 495 in Supplementary material 1. It corresponds with the secondary peak of tracer 496 concentration at Puli occurring at around 21:00 LST in NE20 shown in Fig. 7a. The result indicates that the local upslope/downslope wind has to be taken into account 497 when discussing the tracer transport in the complex topography like the Puli basin. 498 While the local circulation in the plain area of central Taiwan is controlled by the lee 499 vortex, the simulated local flow over mountain areas is more turbulent (Figs. 8 and 9), 500 which might indicate that the local upslope/downslope winds over the complex 501 502 topography could be more dominate. Figure 11 presents the snapshot of the vertical 503 cross-section of tracer transport from TPP along the north slope of the Puli basin (red dotted line in Fig. 1) for NE20 at 08:00 and 20:00 LST. The evolution of the local flow 504 505 and the tracer concentration is also shown in supplementary material 2. The results show that the diurnal variation of the wind system is consistent with the 506 upslope/downslope wind system in the mountainous area (Whiteman, 2000). The 507 508 nighttime tracer transport at Puli could be attributed to the downslope wind on the northern slope of the Puli basin. The results suggest that the analysis of the fine structure 509 caused by the local flow over complex topography is necessary to further evaluate its 510 511 impact on tracer transport. It is worth noting that the mixed-layer depth over the hilltop is always thinner than 512 513 it is on the plain or Puli basin the whole time of the simulation. Since the tracer mainly 514 propagates in the boundary layer, the mixed-layer depth can also be a good indication 515 of the horizontal tracer distribution over the mountain area. The thinning of the mixed-

516 layer depth on the mountain area in the evening could prevent tracer transport across 517 the hilltop. This effect results in the opposite scenarios of the SNC tracer transport in 518 NE50 and NE80. The evolution of the SNC tracer concentration and the local 519 circulation along with the mixed-layer depth is presented in supplementary material 3, 520 and snapshots at 18:30 LST for NE50 and NE80 are presented in Fig. 12. The time is 521 selected when the SNC tracer concentration in Zhushan reaches its peak in NE50. As

522	shown in Fig. 7b, the tracer from SNC is transported eastward to Zhushan at 15:30 LST
523	(NE80) and 18:30 LST (NE50). When the tracer streak approaches Zhushan in NE50,
524	the thinning of mixed-layer depth in the evening indicates that the tracer can barely
525	cross the hilltop to the Puli basin. Consequently, the tracer accumulates on the foothill.
526	On the other hand, the tracer from SNC can transport across the hilltop to the Puli basin
527	in the experiment NE80, causing a high concentration of tracer being trapped in the Puli
528	basin.
529	Figure 13 presents the hovemoller diagram of the surface tracer concentration from
530	SNC and the mixed-layer depth from the coast to the mountain in NE50. The results
531	show that a minimum mixed-layer depth of 250 m is necessary for the tracer to transport
532	across the hill between Zhushan and Puli. The results suggest that the role of PBL
533	development in the tracer transport mechanism is much more important in the mountain
534	area. The local circulation associated with the lee vortex and the diurnal development
535	of the PBL are crucial factors in controlling the distribution of the tracer over complex
536	topography.
537	

5. Summary and Discussion 538

With the idealized TaiwanVVM simulations performed in this study, the tracer 539 transport and accumulation from coastal emission sources (Taichung Power Plant (TPP) 540

541	and Sixth Naphtha Cracker (SNC)) to the mountain area (Zhushan and Puli) in central
542	Taiwan are examined. We idealized the wind directions of crucial synoptic weather
543	northeast monsoon as the initial conditions to study the mechanisms responsible for the
544	diurnal evolution of the tracer concentration in Zhushan and Puli. The idealization is
545	based on the observed pollution days in Puli in which the major wind directions are
546	northeasterly due north (NE20), northeasterly (NE50), and northeasterly due east
547	(NE80). The results show that the island-scale circulation associated with the sea breeze
548	and the lee vortex controls the timing of the tracer transport to the front edges of the
549	mountain area in the diurnal time scale. As the tracer approaches the mountain area, the
550	evolution of the PBL also determines whether the tracer could be transported across the
551	hills near Zhushan and Puli and consequently impacts the tracer concentration in Puli
552	at night. Once the tracer transports into the Puli basin, the thinning of the mixed layer
553	depth and the topography could trap the tracer, resulting in a high concentration through
554	the night. The sensitivity of the local tracer transport to the change of the synoptic wind
555	direction shows that in NE80 (NE20), the pollutant transports from SNC (TPP) are most
556	likely to induce high concentrations in Puli at night.
557	Regarding the local circulation, the simulation results in this study clarified the

- 558 contribution of the sea breeze and the lee vortex in pollutants transport in central Taiwan.
- 559 The conclusion provides an insight to interpret the intensification of the westerly in

560	central Taiwan. As the prevailing winds turn from northerly to easterly (described as a
561	larger pitching angle in LL20), the impact of the lee vortex in terms of the robust
562	westerly becomes more profound. In this circumstance, the local circulation is mainly
563	controlled by the evolution of the lee vortex so that the role of the sea breeze in tracer
564	transport is minor. Moreover, the results indicate that the local meridional flow
565	associated with the lee vortex tends to be more transient. It varies following the
566	movement of the lee vortex. It is more challenging to identify the effects of the lee
567	vortex by the composite of the observations or simulations. The design of the
568	experiments in this study provides a novel approach to evaluate the evolution of the
569	interaction between the topography of Taiwan and the prevailing synoptic winds. With
570	only the crucial factors prescribed in the numerical setup of the idealized simulation,
571	the complexity of the reality is trimmed to a more focusing framework so that the
572	response of the local flow to the synoptic condition could be evaluated more precisely.
573	The conclusion in this study also suggests that there could be some information hidden
574	in the variability of the observed meridional component of the local flow, which needs
575	to be further inspected. While the focusing area of this study is in central Taiwan, we
576	believe that the effects of the PBL development on the pollutants transport and
577	accumulation over the mountain area are more general. The mechanism of the tracer
578	transport revealed in this study should be applied to other areas of Taiwan or other

579 islands with complex topography.

Regarding the improvement of the simulation framework, the ongoing work is to 580 implement the chemical processes into this model so that the distribution of the 581 chemical species could be evaluated to better understand the role of chemical reactions 582 during the pollutants transport. Additional idealized simulations will be performed 583 584 based on soundings at Ishigakijima, such as prevailing wind speed or the strength of the temperature inversion to better understand the variabilities of the lee vortex and the 585 586 boundary layer processes. The results can be used to construct conceptual models that determine the pollution scenarios at Puli and further establish the foundations of the 587 storyline approach (Shepherd et al., 2018) to study the impact of climate change on the 588 589 pollution distribution in Taiwan. 590 Considering that the local PM_{2.5} concentration at Puli is the result of chemical 591 processes and the transport of the pollutants emitted from all the emission sources, it is challenging to clarify the cause of high pollution in Puli. The results obtained from 592 idealized experiments in this study, however, provide possible pathways from the view 593 594 of pollutants transport. Based on the conclusion of this study, we can propose a tracer transport field experiment in the future to precisely measure the tracer concentrations 595

596 under the impact of the lee vortex according to the synoptic wind directions. The

597 deployment of the tracer emission and the capture instruments can be arranged across

600 Appendix: A pollution episode in Taiwan with the existence of the lee vortex on

601 March 27th, 2012

 $602 Figure A1 ext{ shows a snapshot of the PM}_{2.5} ext{ concentration observations in Taiwan along}$

- 603 with the 10 m wind surrounding Taiwan from ERA5 reanalysis datasets (Hersbach et
- al., 2020) in a pollution episode at 8:00 LST on March 27th, 2012. A lee vortex, which
- 605 is located on the Taiwan Strait, is accompanied by the high aerosol concentration in
- 606 central Taiwan under the prevailing easterly. This event provides direct observation
- 607 evidence of the existence of the lee vortex in the pollution events in Taiwan, which is
- not discussed in LL20. The observation along with the reanalysis of wind fields support
- the motivation of this study and inspire the design of the idealized experiments.

610

611 Data Availability Statement

612 The model results of TaiwanVVM used in this study can be made available by

613 contacting the author through the e-mail: <u>miles0919@gmail.com</u>.

614

615 Supplement

616 Supplementary 1 shows the time evolution of the TPP tracer concentration and the local

617	circulation along the vertical cross-section from the coastline to the mountain area in
618	all experiments. Supplementary 2 shows the diurnal evolution of the local flow and the
619	TPP tracer concentration along the north slope of the Puli basin. Supplementary 3 shows
620	the time evolution of the SNC tracer concentration and the local circulation along the
621	vertical cross-section from the coastline to the mountain area in NE50 and NE80.
622	
623	Acknowledgments
624	This study is jointly supported by the Ministry of Science and Technology in Taiwan
625	through Grant 107-2111-M-002-010-MY4 and Academia Sinica through Grant AS-TP-
626	109-M11 to National Taiwan University. We appreciate Ms. Tzu-Han Hsu to provide
627	Fig. A1 in this manuscript as the observation evidence of the lee vortex in a pollution
628	event in Taiwan.
629	
630	References
631	
632	1. Arakawa, A., Wu, CM., 2013. A Unified Representation of Deep Moist
633	Convection in Numerical Modeling of the Atmosphere. Part I. Journal of the
634	Atmospheric Sciences 70, 1977–1992. https://doi.org/10.1175/JAS-D-12-0330.1

635	2.	Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M.W., Horvath, K.,
636		Dudhia, J., Satomura, T., Müller, M., Zängl, G., Takemi, T., Serafin, S., Schmidli,
637		J., Schneider, S., 2012a. High Resolution Modelling in Complex Terrain, in:
638		Report on HiRCoT 2012 Workshop. Presented at the HiRCoT 2012 Workshop,
639		Vienna, p. 42.
640	3.	Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M.W., Horvath, K.,
641		Dudhia, T., Satomura, T., Müller, M., Zängl, G., Takemi, T., Serafin, S., Schmidli,
642		J., Schneider, S., 2012b. ISSUES IN HIGH-RESOLUTION ATMOSPHERIC
643		MODELING IN COMPLEX TOPOGRAPHYTHE HIRCOT WORKSHOP.
644		Hrvatski meteorološki časopis 47, 3–11.
645	4.	Chang, CM., Chang, LN., Hsiao, HC., Lu, FC., Shieh, PF., Chen, CN., Lu,
646		SC., 2006. A Further Study of High Air Pollution Episodes in Taiwan Using the
647		Microwave Temperature Profiler (MTP-5HE). JSME International Journal Series
648		B Fluids and Thermal Engineering 49, 60–64. https://doi.org/10.1299/jsmeb.49.60
649	5.	Chang, YH., Chen, WT., Wu, CM., Moseley, C., Wu, CC., 2021. Tracking
650		the influence of cloud condensation nuclei on summer diurnal precipitating
651		systems over complex topography in Taiwan. Atmospheric Chemistry and Physics

652 Discussions 1–28. https://doi.org/10.5194/acp-2021-113

35

653	6.	Chen, YT., Wu, CM., 2019. The Role of Interactive SST in the Cloud-Resolving
654		Simulations of Aggregated Convection. Journal of Advances in Modeling Earth
655		Systems 11, 3321–3340. https://doi.org/10.1029/2019MS001762
656	7.	Cheng, FY., Chin, SC., Liu, TH., 2012. The role of boundary layer schemes in
657		meteorological and air quality simulations of the Taiwan area. Atmospheric
658		Environment 54, 714–727. https://doi.org/10.1016/j.atmosenv.2012.01.029
659	8.	Chien, MH., Wu, CM., 2016. Representation of topography by partial steps
660		using the immersed boundary method in a vector vorticity equation model (VVM):
661		VVM PARTIAL STEP. Journal of Advances in Modeling Earth Systems 8, 212-
662		223. https://doi.org/10.1002/2015MS000514
663	9.	Chuang, MT., Chiang, PC., Chan, CC., Wang, CF., Chang, EE., Lee, CT.,
664		2008. The effects of synoptical weather pattern and complex terrain on the
665		formation of aerosol events in the Greater Taipei area. Science of The Total
666		Environment 399, 128-146. https://doi.org/10.1016/j.scitotenv.2008.01.051
667	10.	Goger, B., Rotach, M.W., Gohm, A., Fuhrer, O., Stiperski, I., Holtslag, A.A.M.,
668		2018. The Impact of Three-Dimensional Effects on the Simulation of Turbulence
669		Kinetic Energy in a Major Alpine Valley. Boundary-Layer Meteorol 168, 1–27.
670		https://doi.org/10.1007/s10546-018-0341-y

671	11.	Goger, B., Rotach, M.W., Gohm, A., Stiperski, I., Fuhrer, O., Morsier, G. de, 2019.
672		A New Horizontal Length Scale for a Three-Dimensional Turbulence
673		Parameterization in Mesoscale Atmospheric Modeling over Highly Complex
674		Terrain. Journal of Applied Meteorology and Climatology 58, 2087-2102.
675		https://doi.org/10.1175/JAMC-D-18-0328.1
676	12.	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,
677		J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,
678		S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De
679		Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,
680		Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm,
681		E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de
682		Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, JN., 2020. The ERA5
683		global reanalysis. Quarterly Journal of the Royal Meteorological Society 146,
684		1999–2049. https://doi.org/10.1002/qj.3803.
685	13.	Hsu, CH., Cheng, FY., 2019. Synoptic Weather Patterns and Associated Air
686		Pollution in Taiwan. Aerosol Air Qual. Res. 19, 1139–1151.

- 687 https://doi.org/10.4209/aaqr.2018.09.0348
- 14. Hsu, C.-H., Cheng, F.-Y., 2016. Classification of weather patterns to study the
 influence of meteorological characteristics on PM2.5 concentrations in Yunlin

- 690 County, Taiwan. Atmospheric Environment 144, 397–408.
 691 https://doi.org/10.1016/j.atmosenv.2016.09.001
- 5. Jung, J.-H., Arakawa, A., 2008. A Three-Dimensional Anelastic Model Based on
 the Vorticity Equation. Mon. Wea. Rev. 136, 276–294.
- 694 https://doi.org/10.1175/2007MWR2095.1
- 695 16. Kuo, K.-T., Wu, C.-M., 2019. The Precipitation Hotspots of Afternoon
- 696 Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. Journal
- 697 of the Meteorological Society of Japan. Ser. II 97, 501–517.
 698 https://doi.org/10.2151/jmsj.2019-031
- 699 17. Lai, H.-C., Lin, M.-C., 2020. Characteristics of the upstream flow patterns during
- 700 PM2.5 pollution events over a complex island topography. Atmospheric
- 701 Environment 227, 117418. https://doi.org/10.1016/j.atmosenv.2020.117418
- 18. Lesouëf, D., F, G., Delmas, R., Escobar, J., 2011. Numerical simulations of local
- circulations and pollution transport over Reunion Island. Annales Geophysicae 29.
- 704 https://doi.org/10.5194/angeo-29-53-2011
- 19. Shepherd, T.G., Boyd, E., Calel, R.A., Chapman, S.C., Dessai, S., Dima-West,
- 706 I.M., Fowler, H.J., James, R., Maraun, D., Martius, O., Senior, C.A., Sobel, A.H.,
- 707 Stainforth, D.A., Tett, S.F.B., Trenberth, K.E., van den Hurk, B.J.J.M., Watkins,
- N.W., Wilby, R.L., Zenghelis, D.A., 2018. Storylines: an alternative approach to

709		representing	uncertainty	in physica	l aspects of climat	e change. C	limatic Change
710		151, 555–571	. https://do	oi.org/10.10	07/s10584-018-231	17-9	
711	20.	Tsai, H.H., Ti	, T.H., Yua	n, CS., Hu	ıng, CH.J., Lin, C.	, 2008. Effe	cts of Sea-Land
712		Breezes on th	e Spatial a	nd Tempora	al Distribution of G	aseous Air I	Pollutants at the
713		Coastal Regio	on of South	ern Taiwar	. J. Environ. Eng. M	Manag. 18, 3	387–396.
714	21.	Tsai, JY., V	Vu, CM.,	2016. Cri	tical transitions of	f stratocum	ulus dynamical
715		systems due	to pertu	rbation ir	free-atmosphere	moisture.	Dynamics of
716		Atmospheres		and	Oceans	76,	1–13.
717		https://doi.org	g/10.1016/j	.dynatmoce	e.2016.08.002		
718	22.	Tsai, WM.,	Wu, CM.	, 2017. The	e environment of ag	ggregated de	eep convection.

- Journal of Advances in Modeling Earth Systems 9, 2061–2078.
 https://doi.org/10.1002/2017MS000967
- 721 23. Whiteman, C.D., 2000. Mountain Meteorology: Fundamentals and Applications.
- 722 Oxford University Press.
- 723 24. Wu, C.-M., Arakawa, A., 2014. A Unified Representation of Deep Moist
- 724 Convection in Numerical Modeling of the Atmosphere. Part II. Journal of the
- 725 Atmospheric Sciences 71, 2089–2103. https://doi.org/10.1175/JAS-D-13-0382.1
- 726 25. Wu, C.-M., Arakawa, A., 2011. Inclusion of Surface Topography into the Vector
- 727 Vorticity Equation Model (VVM): INCLUSION OF SURFACE TOPOGRAPHY

728	INTO THE VVM. Journal of Advances in Modeling Earth Systems 3, n/a-n/
729	https://doi.org/10.1029/2011MS000061
730	26. Wu, CM., Lin, HC., Cheng, FY., Chien, MH., 2019. Implementation of the
731	Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Stud
732	its Impact on Afternoon Thunderstorms over Complex Topography in Taiwa
733	Asia-Pacific J Atmos Sci 55, 701-717. https://doi.org/10.1007/s13143-01
734	00116-x
735	List of Figures
736	
737	Fig. 1 The geographic locations of Taiwan and Ishigakijima of Japan, and the sites
738	the tracer emission and the concentration to be examined in central Taiwan based of
739	the topography used in TaiwanVVM. The red squares represent emission sites
740	Taipower Power Plant (TPP) and Sixth Naphtha Cracker (SNC), which are major no
741	traffic emission sites on the west coast of Taiwan. The blue triangles mark the loc
742	PM _{2.5} observation sites and the simulated tracer concentration we examined. The th
743	line following the topography is the contour of 700 m height above the sea level, which
744	shows the geographic situation of the Puli basin. The black dashed line and the re-
745	dotted line represent the cross-section of the vertical circulation and the tracer transpo
746	examined in this study.

Fig. 2 The windroses of the synoptic winds in (a) all days and (b) pollution days at Puli 748 749 in 2005-2015. The number on the windroses represents percentages of the events. The 750 wind of the lowest level in the sounding data at Ishigakijima of Japan at 00:00 UTC of the day is taken to represent the synoptic winds. The definition of the pollution day at 751 Puli is that the daily mean $PM_{2.5}$ concentration exceeds 54.5 µg m⁻³, described as 752 753 unhealthy by the EPA of Taiwan. 754 Fig. 3 The diurnal evolution of the (a) $PM_{2.5}$ concentration, (b) zonal wind, and (c) 755 meridional wind at Zhushan and Puli in 310 pollution days at Puli from 2005 to 2015. 756 757 The red(blue) lines and shaded areas present the composite of the 310 cases and its 758 standard deviation at Puli(Zhushan). 759 Fig. 4 The initial (a) potential temperature, (b) water vapor mixing ratio, and wind 760 profiles in (c) NE20, (d) NE50, and (e) NE80 experiments. The initial potential 761 temperature and moisture profiles of all experiments (red lines in subfigures (a) and (b)) 762 763 are idealized from the sounding data at Ishigakijima of Japan at 00 UTC on Dec. 21, 2017 (blue lines in subfigures (a) and (b)). The initial wind direction below 850 m (red 764 765 dashed lines in subfigures (c) (d) (e)) are set to 20° , 50° , and 80° in (c) NE20, (d) NE50,

766 and (e) NE80, respectively.

767

Fig. 5 The streamlines of the 10 m wind associated with the lee vortex at 12:00 LST for 768 (a) NE20, (b) NE50 and (c) NE80 and at 22:00 LST for (d)NE20, (e) NE50 and (f) 769 NE80. 770 771 Fig. 6 The evolution of the (a) zonal component and (b) meridional component of the 772 mean 10 m wind in the plain area of central Taiwan. The red, green, and blue lines 773

central Taiwan is defined as the grid points over land where the elevation is less than 775 200 m in the domain of Fig. 1.

represent the wind speed in experiments NE20, NE50, and NE80. The plain area of

776

777

774

778 Fig. 7 The time evolution of the local tracer concentration emitted from (a) TPP and (b) SNC in the experiments. The solid (dash) lines represent the concentration at Puli 779 (Zhushan). The red, green, and blue lines represent concentration in experiments NE20, 780 NE50, and NE80. The timing of the highest concentration at Zhushan and Puli is also 781 782 shown in the figure.

783

Fig. 8 The near-surface concentration and the 10 m wind evolution of the tracer emitted 784

785	from TPP in three experiments. The green-colored shading represents the topography
786	of Taiwan. The streamlines represent the near-surface flow as defined in Fig. 6. The
787	flow pattern and the tracer concentration are shown in (a) NE20, (b) NE50, and (c)
788	NE80 at 11:00 LST. The subfigures (d) (e) (f) and (g) (h) (i) present the flow patterns
789	and the tracer concentration for all experiments at 14:00 and 18:00LST, respectively.
790	The near-surface concentration is defined as the concentration at the lowest model level
791	above the surface.
792	
793	Fig. 9 Similar to Fig. 8 except for the tracer emitted from SNC.
794	
795	Fig. 10 The vertical cross-section of tracer concentration from TPP and the local
796	circulation at 18:30 LST along the black dashed line in Fig. 1 in experiments (a) NE20,
797	(b) NE50, and (c) NE80. The red dashed lines represent the mixing layer depth.
798	
799	
800	Fig. 11 The vertical cross-section of the TPP tracer concentration and the mountain-
801	valley wind circulation at the north slope of Puli basin (the red dotted line shown in Fig.
802	1) in experiment NE20. Subfigures (a) and (b) represent the concentration and the
803	circulation at 08:00 LST and 20:00 LST. The black dashed lines represent the mixing

804 layer depth.

805

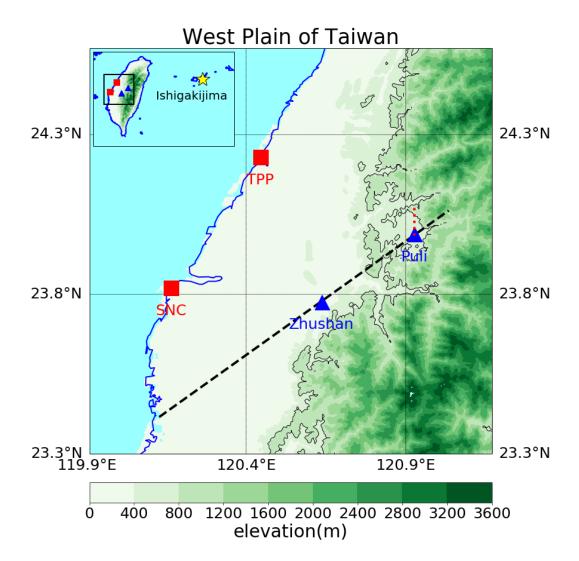
806	Fig. 12 The verti	ical cross-section c	of SNC tracer	concentration and	the local	circulation
-----	-------------------	----------------------	---------------	-------------------	-----------	-------------

- at 18:30 LST along the black dashed line in Fig. 1 in experiments (a) NE50 and (b)
- 808 NE80. The red dashed lines represent the mixing layer depth.

809

```
Fig. 13 The hovemuller diagram of the surface SNC tracer concentration and the mixed-
```

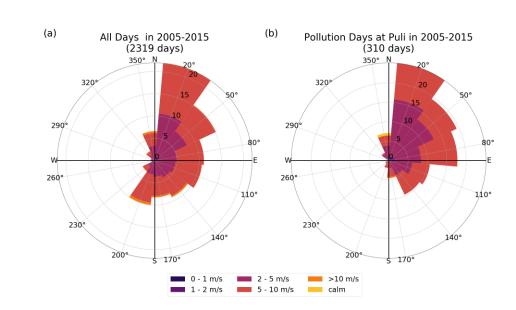
811 layer depth along the dashed line in Fig. 1 in NE50. The hatched patches represent the


areas in which the mixed-layer depth is thinner than 250 m.

813

Fig. A1 The PM_{2.5} concentration of Taiwan and the 10 m wind field around Taiwan in

- a pollution episode at 8:00 LST on March 27th, 2012. The wind field is obtained from
- the ERA5 reanalysis dataset.


817

819

Fig. 1 The geographic locations of Taiwan and Ishigakijima of Japan, and the sites of 820 821 the tracer emission and the concentration to be examined in central Taiwan based on the topography used in TaiwanVVM. The red squares represent emission sites at 822 Taipower Power Plant (TPP) and Sixth Naphtha Cracker (SNC), which are major non-823 traffic emission sites on the west coast of Taiwan. The blue triangles mark the local 824 PM_{2.5} observation sites and the simulated tracer concentration we examined. The thin 825 line following the topography is the contour of 700 m height above the sea level, which 826 shows the geographic situation of the Puli basin. The black dashed line and the red 827

828 dotted line represent the cross-section of the vertical circulation and the tracer transport

829 examined in this study.

830

Fig. 2 The windroses of the synoptic winds in (a) all days and (b) pollution days at Puli in 2005-2015. The number on the windroses represents percentages of the events. The wind of the lowest level in the sounding data at Ishigakijima of Japan at 00:00 UTC of the day is taken to represent the synoptic winds. The definition of the pollution day at Puli is that the daily mean $PM_{2.5}$ concentration exceeds 54.5 µg m⁻³, described as unhealthy by the EPA of Taiwan.

838

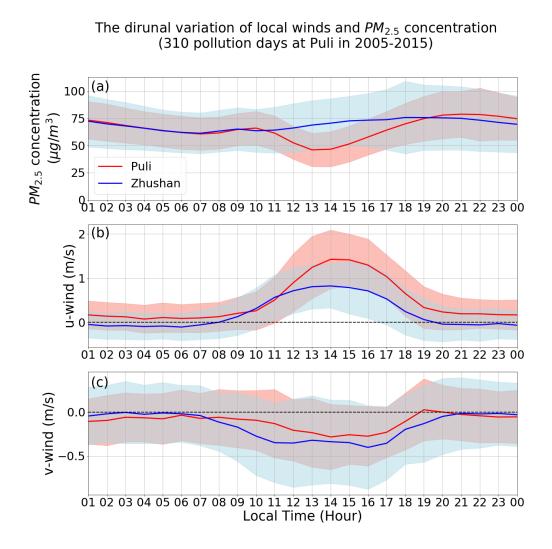
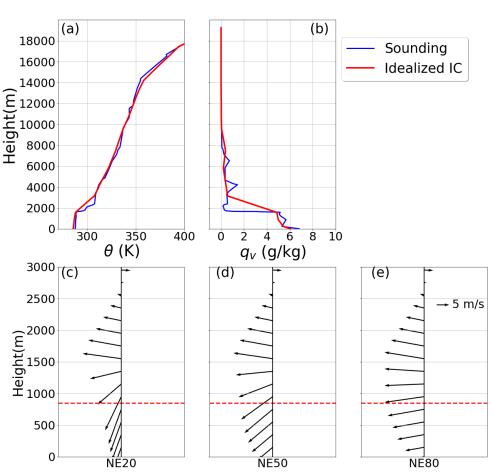



Fig. 3 The diurnal evolution of the (a) PM_{2.5} concentration, (b) zonal wind, and (c)
meridional wind at Zhushan and Puli in 310 pollution days at Puli from 2005 to 2015.
The red(blue) lines and shaded areas present the composite of the 310 cases and its
standard deviation at Puli(Zhushan).

Initial Condition of Idealized Simulation

Fig. 4 The initial (a) potential temperature, (b) water vapor mixing ratio, and wind profiles in (c) NE20, (d) NE50, and (e) NE80 experiments. The initial potential temperature and moisture profiles of all experiments (red lines in subfigures (a) and (b)) are idealized from the sounding data at Ishigakijima of Japan at 00 UTC on Dec. 21, 2017 (blue lines in subfigures (a) and (b)). The initial wind direction below 850 m (red dashed lines in subfigures (c) (d) (e)) are set to 20°, 50°, and 80° in (c) NE20, (d) NE50, and (e) NE80, respectively.

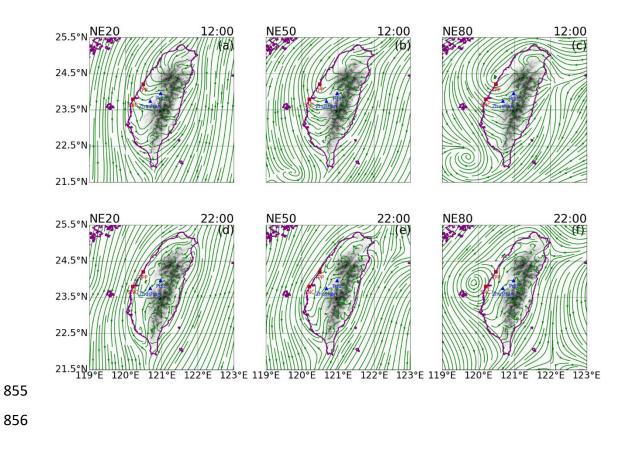
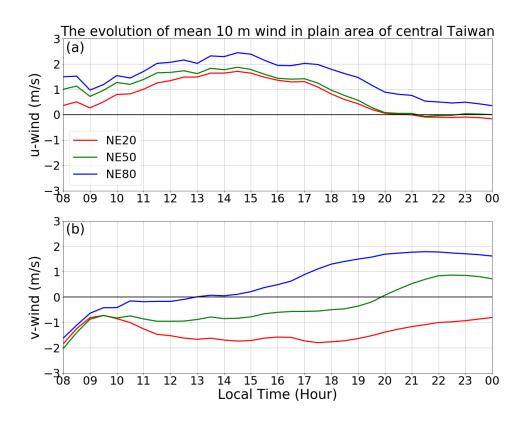



Fig. 5 The streamlines of the 10 m wind associated with the lee vortex at 12:00 LST for(a) NE20, (b) NE50 and (c) NE80 and at 22:00 LST for (d)NE20, (e) NE50 and (f)

859 NE80.

861

Fig. 6 The evolution of the (a) zonal component and (b) meridional component of the mean 10 m wind in the plain area of central Taiwan. The red, green, and blue lines represent the wind speed in experiments NE20, NE50, and NE80. The plain area of central Taiwan is defined as the grid points over land where the elevation is less than 200 m in the domain of Fig. 1.

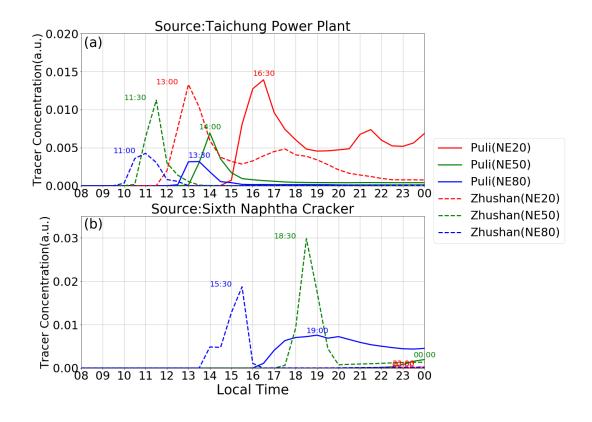


Fig. 7 The time evolution of the local tracer concentration emitted from (a) TPP and (b)
SNC in the experiments. The solid (dash) lines represent the concentration at Puli
(Zhushan). The red, green, and blue lines represent concentration in experiments NE20,
NE50, and NE80. The timing of the highest concentration at Zhushan and Puli is also
shown in the figure.

Taichung Power Plant NE50 11:00 NE20 11:00 NE80 11:00 (c)(b 24.2°N(a 0.020 23.8°N 0.018 0.016 23.4°N NE50 0.01 NE20 14:00 14:00 NE80 14:00 (e) 24.2°N(d) (f) āt 0.012 <u>S</u> 0.010 23.8°N 0.008ပိ 0.006 23.4°N NE20 18:00 NE50 <u>NE8</u>0 18:00 18:00 0.004 24.2°N(g) (h (i) 0.002 23.8°N 0.000 23.4°N 121.1°E 120.3°E 120.7 121.1°E 120.3°E 120.7°E 121.1°E

Fig. 8 The near-surface concentration and the 10 m wind evolution of the tracer emitted 876 877 from TPP in three experiments. The green-colored shading represents the topography of Taiwan. The streamlines represent the near-surface flow as defined in Fig. 6. The 878 flow pattern and the tracer concentration are shown in (a) NE20, (b) NE50, and (c) 879 880 NE80 at 11:00 LST. The subfigures (d) (e) (f) and (g) (h) (i) present the flow patterns and the tracer concentration for all experiments at 14:00 and 18:00LST, respectively. 881 The near-surface concentration is defined as the concentration at the lowest model level 882 883 above the surface.

884

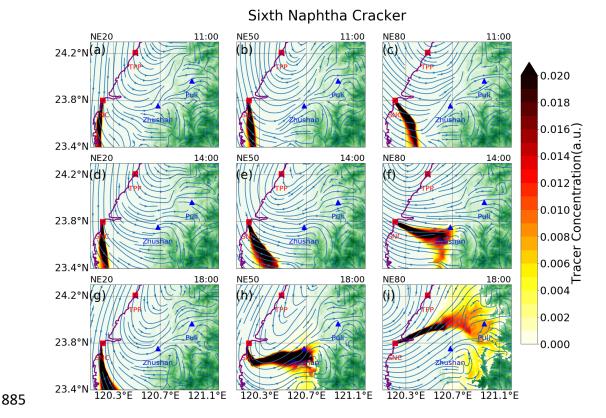


Fig. 9 Similar to Fig. 8 except for the tracer emitted from SNC.

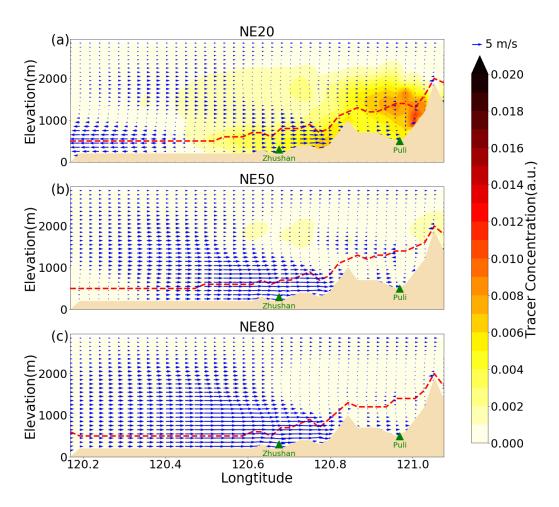
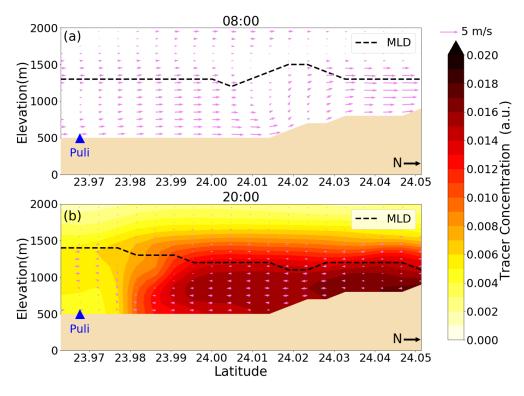
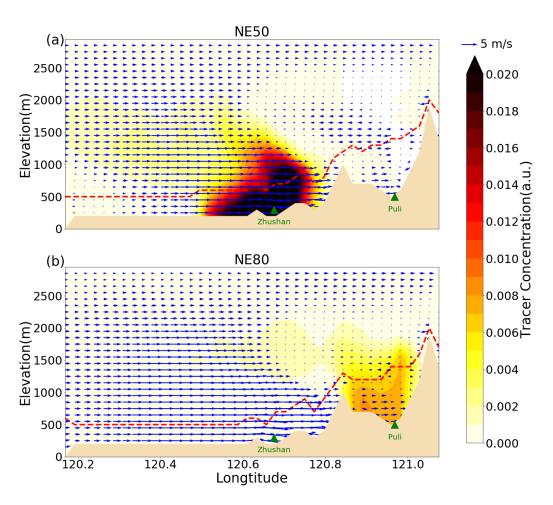



Fig. 10 The vertical cross-section of tracer concentration from TPP and the local
circulation at 18:30 LST along the black dashed line in Fig. 1 in experiments (a) NE20,
(b) NE50, and (c) NE80. The red dashed lines represent the mixing layer depth.



Source: Taichung Power Plant [NE20]

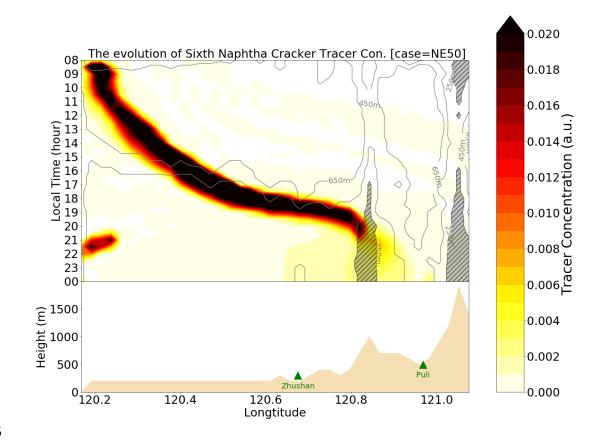
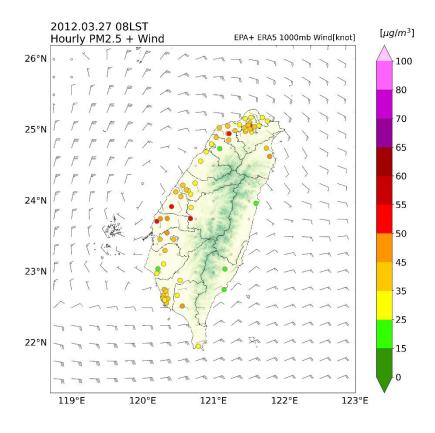


Fig. 11 The vertical cross-section of the TPP tracer concentration and the mountainvalley wind circulation at the north slope of Puli basin (the red dotted line shown in Fig.
1) in experiment NE20. Subfigures (a) and (b) represent the concentration and the
circulation at 08:00 LST and 20:00 LST. The black dashed lines represent the mixing
layer depth.


901 Fig. 12 The vertical cross-section of SNC tracer concentration and the local circulation
902 at 18:30 LST along the black dashed line in Fig. 1 in experiments (a) NE50 and (b)
903 NE80. The red dashed lines represent the mixing layer depth.

906 Fig. 13 The hovemuller diagram of the surface SNC tracer concentration and the mixed-

907 layer depth along the dashed line in Fig. 1 in NE50. The hatched patches represent the

areas in which the mixed-layer depth is thinner than 250 m.

911 Fig. A1 The PM_{2.5} concentration of Taiwan and the 10 m wind field around Taiwan in

a pollution episode at 8:00 LST on March 27th, 2012. The wind field is obtained from

913 the ERA5 reanalysis dataset.

915	List of Tables
916	
917	Table 1. The setup of TaiwanVVM simulation

919 Table 1. The setup of TaiwanVVM simulation

Horizontal Resolution	500 m		
Westing Develoption	100 m under 3900 m		
Vertical Resolution	Stretch up to 914 m at model top		
	$1024 \times 1024 \times 70$ grids		
Domain	512 km × 512 km × 19260 m		
Time Step	10 seconds		
Simulation Duration	18 h (06:00 – 24:00)		
Lateral Boundary Condition	Double periodic		