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Abstract 1 

The Dynamical–Statistical–Analog Ensemble Forecast model for landfalling 2 

typhoon precipitation (the DSAEF_LTP model) identifies tropical cyclones (TCs) 3 

from history data that are similar to a target TC, and then assembles the 4 

precipitation amounts and distributions of those identified to obtain those of the 5 

target TC. Two original ensemble methods in the DSAEF_LTP model, mean 6 

and maximum, tend to under- and over-forecast TC precipitation, respectively. 7 

In addition, these two methods are unable to forecast precipitation at stations 8 

beyond their maxima. To overcome the shortcomings and improve the forecast 9 

performance of the DSAEF_LTP model, the following five new ensemble 10 

methods are incorporated: optimal percentile, fuse, probability matching mean, 11 

equal difference-weighted mean, and TSAI (Tropical cyclone track Similarity 12 

Area Index)-weighted mean. Then, model experiments for landfalling TCs over 13 

China in 2018 are conducted to evaluate the forecast performance of the 14 

DSAEF_LTP model with the new ensemble methods. Results show that the 15 

overall performance of the optimal percentile (the 90th percentile) ensemble 16 

method is superior, with the false alarm rate lower than that of the original 17 

ensemble methods. As compared to five operational numerical weather 18 

prediction models, the improved DSAEF_LTP model shows advantages in 19 

predicting accumulated rainfall, especially with the rainfall of over 250 mm. 20 

When implementing the experiments, above results, however, it is found that 21 

the model forecast performance varies, depending on the type of TC tracks. 22 
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That is, the accumulated rainfall forecast for westbound TCs is significantly 23 

better than that of northbound TCs. To address this issue, different schemes 24 

are used to forecast the accumulated rainfall of TCs with the two different track 25 

types. The precipitation forecast performance for westbound and northbound 26 

TCs, using the 90th percentile and the probability-matched ensemble mean 27 

ensemble method, respectively, is much better than that using a single 28 

ensemble method for all the TCs.  29 

Keywords: landfalling tropical cyclone, heavy precipitation forecast, 30 

dynamical statistical model, ensemble forecast   31 
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1. Introduction 32 

China is the country with the world’s most frequent landfalling tropical cyclones 33 

(TCs, also known as typhoons in the western North Pacific) and TC-related disasters 34 

(Chen and Meng, 2001; Zhang et al., 2009) that include strong winds, storm surges, and 35 

heavy rainfall. TC-related strong winds and surges primarily occur in coastal areas near 36 

the landfall sites of TCs, while the rainfall of TCs can cause widespread and significant 37 

damage, even affecting the hinterland (Chao et al., 2005; Chen et al., 2010; Luitel, 38 

2016). Besides, many studies have shown that, although the number of landfalling TCs 39 

(LTCs) in China has decreased (Ren et al., 2011; Gu et al., 2016; Knutson et al., 2020), 40 

the number of disasters caused by the LTCs has increased (Emanuel et al., 2005; Chan 41 

et al., 2008; Barthel et al., 2012; Weinkle et al., 2012). The mechanisms and forecasts 42 

of TC precipitation have attracted much attention (Chen et al., 2006; Woo et al., 2014; 43 

Rogers, 2018). 44 

Numerical weather prediction (NWP) models are the main tools for LTC 45 

precipitation forecast. The continuous development of key techniques in NWP has 46 

improved NWP-based precipitation prediction for LTCs significantly. There are two 47 

main categories of these studies. The first one focuses on the improvement of the initial 48 

fields of the NWP models by assimilation technology. Many studies（Xiao et al., 2007; 49 

Zhao et al., 2012; Zhang and Pu, 2014; Zhu et al., 2016）showed that the forecast 50 

performance could be improved by using assimilation techniques. The second one 51 

focuses on the improvement of the parameterization of different physical processes. Ma 52 

and Tan (2009) and Yu et al. (2013) improved the forecast performance for the typhoon 53 
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precipitation by Kain-Fritsch convective parameterization scheme; Xue et al. (2007) 54 

improved the parameterization scheme suitable for the forecast of the typhoon 55 

precipitation in Zhejiang and Fujian provinces. However, overall, the ability of NWP 56 

models to forecast LTC precipitation remains limited (Marchok et al., 2007; Wang et 57 

al., 2012; Ma, 2014). Thus, some researchers have explored alternative methods other 58 

than NWP models for forecasting LTC precipitation. In this regard, the dynamical–59 

statistical method has received considerable attention (Zhong et al., 2009; Wei, 2012a, 60 

b; Li et al., 2015). Recently, Ren et al. (2020) proposed the Dynamical–Statistical–61 

Analog Ensemble Forecast (DSAEF) model and then applied it to LTC precipitation 62 

forecasts (DSAEF_LTP). This model searches for TCs that are similar to a target TC in 63 

accordance with the similarity of the generalized initial value (GIV) that contains the 64 

value of some factors affecting TC precipitation. TC track and landing season are 65 

considered as the two major factors in the first version of the DSAEF_LTP model. The 66 

word of “generalized” means that both the observed value before the time to forecast 67 

(initial time) and the forecasted value after the initial time are included. Then, the 68 

accumulated precipitation data of TCs that are similar to the target TC are treated as an 69 

ensemble precipitation forecast for the target TC. The model has been further improved 70 

on its forecasting performance by considering the GIV of a new variable (i.e., TC 71 

intensity) and modify parameter ranges of the existing parameters (Ding et al., 2020; 72 

Jia et al., 2020).  73 

In recent years, quantitative precipitation forecast (QPF) techniques based on 74 

ensemble techniques have been developed rapidly (Ebert, 2001; Clark et al., 2017; 75 
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Sofiati and Nurlatifah, 2019), and have also been applied to LTC precipitation forecasts 76 

(Cheung et al., 1999; Zhang et al., 2007; Chen et al., 2016). Among the various 77 

ensemble prediction methods, an important class is the integration of ensemble 78 

members or multi-model predictions, including the probability matching mean (PM) 79 

(Clark et al., 2012; Fang et al., 2013; Surcel et al., 2014), multi-model similar 80 

integration (Chen et al., 2005; Lin et al., 2013), optimal percentile (Dai et al., 2016), 81 

and ensemble pseudo-bias-corrected QPF (Novak et al., 2014; Alexander et al., 2019; 82 

Binh et al., 2020) methods, which yield the most possible single-value forecast by 83 

extracting or overlaying valid information.  84 

Ensemble forecast is a key technology of the DSAEF_LTP model because it 85 

determines the forecast performance when similar TCs are selected. However, this 86 

model only contains mean and maximum ensemble methods, which have their 87 

disadvantages in terms of the high rates of misses and false alarms, respectively. 88 

Besides, the largest predicted rainfall in a given station may reach is the maximum 89 

historical TC precipitation of the station. Thus, there remains considerable room for the 90 

ensemble methods of the DSAEF_LTP model to improve. Applying new ensemble 91 

methods to the DSAEF_LTP model is likely to further improve its forecast performance. 92 

Therefore, the goal of this study is to develop new ensemble methods in the 93 

DSAEF_LTP model and evaluate whether its forecast performance can be further 94 

improved. 95 

The paper is structured as follows: The next section describes the data and methods. 96 

Section 3 presents experiment design. Section 4 analyzes the results. A summary and 97 
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discussion are given in the final section. 98 

2. Data and methods 99 

2.1 Data 100 

  The data used in this paper include historical observed precipitation data during 101 

1960–2018 that were archived at 24-h intervals at 1200 UTC by the China 102 

Meteorological Administration (CMA). The data are from 2027 rain gauge stations 103 

covering most of China (2006 on mainland China and 21 on Taiwan Island). 104 

  To compare the forecast performance of the DSAEF_LTP model with NWP models, 105 

we employ three global models and two regional models—namely, the European Centre 106 

for Medium-Range Weather Forecasts (ECMWF) model; the Global Forecast System 107 

(GFS) of the National Centers for Environmental Prediction; the Global/Regional 108 

Assimilation and Prediction System (GRAPES) model run by the CMA (cma.gov, 109 

2011); Shanghai Meteorological Service WRF ADAS Real-Time Modeling System 110 

(SMS-WARMS) (Xu et al., 2016); and Rapid-refresh Multi-scale Analysis and 111 

Prediction System (RMAPS) developed by Institute of Urban Meteorology, CMA (Tao 112 

et al., 2019). The corresponding rainfall forecast data of these models are obtained with 113 

the grid spacing of 0.1° × 0.1°. 114 

The historical best-track data at 6-h intervals during 1960–2018, including the 115 

position and strength of TCs, are from the Shanghai Typhoon Institute (Ying et al., 116 

2014). Additionally, the operational NWP model-forecast tracks of 10 TCs, whose 117 

precipitation amounts are to be forecast, are obtained from the CMA. 118 

 119 
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2.2 Methods  120 

The Objective Synoptic Analysis Technique for partitioning TC precipitation (Ren et 121 

al., 2001 and 2007; Wang et al., 2006) is used in this paper. This method can identify 122 

the precipitation generated by TCs from daily observed precipitation data based on the 123 

distance between the stations and the precipitation centers. There are 1041 TCs from 124 

1960 to 2018 being identified through this method. The onshore precipitation period in 125 

China during one single TC, which is named after influence period, is obtained as well. 126 

The precipitation discussed in this paper, whether observed or predicted by the 127 

DSAEF_LTP model or NWP models, is the total process precipitation during the 128 

influence period. 129 

The DSEAF_LTP model is used to identify historical TCs that are similar to a target 130 

TC. These identified TCs occurred before the target TC are named as analogs. Then, 131 

the DSEAF_LTP model uses these analogs’ precipitation to obtain ensemble forecast. 132 

The specific steps of the DSAEF_LTP model are given in section 3.2. 133 

To identify TCs whose tracks are similar to the target TC, the objective TC track 134 

Similarity Area Index (TSAI) (Ren et al., 2018) is used. The principle of the TSAI is to 135 

calculate the area enclosed by the track of the historical TCs and the target TC over a 136 

certain region. The smaller the TSAI value is, the higher is the similarity. 137 

The threat score (𝑇𝑇𝑇𝑇) and bias score (𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇), which are widely used in the operational 138 

weather prediction, are the two basic criteria for determining the forecast performance 139 

in this study. TS is defined as 𝑇𝑇𝑇𝑇 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑚𝑚𝑖𝑖

, indicating the fraction of 140 

correctly predicted forecast events. It varies from 0 to 1. The closer it is to 1, the higher 141 
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is the hit rate. BIAS is defined as 𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇 =  ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑚𝑚𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖

 , indicating whether the 142 

forecast system has a tendency to underestimate (𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇 < 1) or overestimate (𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇 >143 

1). 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 denotes the number of stations which the event is forecast to occur, and does 144 

occur; 𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻 is the number of stations which the event is forecast not to occur, but 145 

does occur; 𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑚𝑚𝐻𝐻  is the number of stations which the event is forecast to 146 

occur, but does not occur. 147 

Since 100 and 250 mm are important thresholds used in the operational forecasts 148 

of extreme precipitation for LTCs in China, and since the DSAEF_LTP model shows 149 

advantages in predicting extreme precipitation (Ren et al., 2020), the two values are 150 

used for the precipitation thresholds of interest for this study. 𝑇𝑇𝑇𝑇100(𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇100) and 151 

𝑇𝑇𝑇𝑇250 (𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇250) are 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇) defined as the two thresholds above 100 and 250 152 

mm, respectively. To evaluate the forecast performances at the two thresholds, we apply 153 

𝑇𝑇𝑇𝑇𝐻𝐻𝑇𝑇𝑚𝑚 =  𝑇𝑇𝑇𝑇100 +  𝑇𝑇𝑇𝑇250 ; 𝐵𝐵𝑇𝑇𝐻𝐻𝑇𝑇𝑚𝑚 =  ± (|𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇100 − 1| + |𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇250 − 1|) , 154 

where the symbol depends on whether (𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇100 +  𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇250 − 2)  is positive or 155 

negative; namely, positive values indicate overprediction while negative values indicate 156 

underprediction. Accordingly, a larger TSsum or a smaller absolute value of BSsum 157 

indicates a better forecast performance of the DSAEF_LTP model at these two 158 

thresholds. 159 

 160 

3. Experiment design 161 

3.1 Experiment samples 162 

Ten LTCs that occurred in 2018 over China from June to September are selected as 163 
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samples. Usually, seven or eight LTCs occur during this period; however, in 2018, there 164 

were ten LTCs. These LTCs caused widespread heavy precipitation over the coastal 165 

areas of China, which posed a great challenge in terms of precipitation forecast. Figure 166 

1 shows the observed tracks of the 10 LTCs selected for the experiment and their TC 167 

numbers. The intensities of these 10 TCs range from tropical storm (wind speed≥168 

17.2m/s) to super typhoon (wind speed≥51.0 m/s). The single-station maximum 169 

precipitation during one TC varies greatly from 116.4 to 618.9 mm. They made landfall 170 

in South or East China, and moved westward or northward afterward. 171 

 172 

3.2 Steps in applying the DSAEF_LTP model 173 

  The DSAEF_LTP model used to perform accumulated precipitation simulation 174 

experiments involves four steps (Ren et al., 2020) as shown in Figure 2. Table 1 lists 175 

the parameters (i.e., P1 to P8) of the DSAEF_LTP model. Specific steps are given as 176 

follows. 177 

(1) Obtaining the forecast TC track. As shown in Table 1, the initial time (P1) is 178 

determined by the landfall day of a target TC. The first step is to combine the observed 179 

track of the target TC before the initial time and the forecast track after the initial time 180 

into its complete track. The observed track is the historical best track data of the 181 

Shanghai Typhoon Institute, as mentioned in section 2.1. The forecast TC track can be 182 

obtained by the NWP model. 183 

(2) Constructing the GIV. The second step involves constructing the GIV for 184 

variables that have impacts on LTC precipitation, which includes TC track, landfall 185 
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season, and intensity. For example, both the observed and predicted tracks for the target 186 

TC are treated as the GIV. 187 

(3) Identifying m analogs. The third step is to discriminate the similarity of the GIV 188 

constructed in the second step between the target TC and the historical TCs, and then 189 

select m top analogs that resemble most the target TC. Parameters P2 to P6 are used in 190 

this step. P2 limits the region where similar tracks are found; and P3 and P4 are used to 191 

determine the bend and degree of overlap of two tracks respectively. TSAI can be 192 

calculated only if the values of P3 and P4 meet certain conditions. Thus, P1 to P4 193 

determine the track similarity. The similarity between TC landfall seasons and 194 

intensities can be divided into different types, as defined by P5 and P6 in Table 1 195 

respectively.  196 

For example, if P1 is 1, the initial time is 1200 UTC on the day of TC precipitation 197 

occurring on land. If P2 is 2, P3 is 3 and P4 is 4, the TSAI are calculated in the second 198 

similarity region when the bending degree of TC tracks is less than 0.3 and the degree 199 

of longitude (latitude) overlap of TC tracks is greater than 0.6. Then, historical TCs are 200 

ranked according to the TSAI. If P5 is 5 and P6 is (1,4), the ranked TCs, whose landfall 201 

times are 15 days different from the target TC and average intensity on the first rainy 202 

day are the same grades as the target TC, can be seen as analogs. Ultimately, m 203 

(depending on P7) analogs with the GIVs that are most similar to the GIV of the target 204 

TC could be selected, and their accumulated precipitation amounts are the ensemble 205 

members of the DSAEF_LTP model. 206 

(4) Finding the ensemble LTP of the analogs. The final step is to derive the target TC 207 
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accumulated precipitation by assembling the ensemble members with the ensemble 208 

methods decided by P8 in Table 1 and Table 2, as described in detail in section 3.3.  209 

 210 

3.3 Ensemble methods in the DSAEF_LTP model 211 

This study uses the DSAEF_LTP model with new ensemble methods to perform 212 

simulation experiments. The previous version of the DSAEF_LTP model only had two 213 

ensemble methods (i.e., mean and maximum). The forecast rainfall at a station can be 214 

the maximum or mean value of rainfall of the m analogs at that station. In this study, 215 

five new ensemble methods have been added, namely, optimal percentile, fuse, PM, 216 

equal difference-weighted mean (ED-WM), and TSAI-weighted mean (TSAI-WM).  217 

The specific calculation steps of the seven ensemble methods are given in Table 2. 218 

The mean and maximum ensemble methods forecast the precipitation at each station by 219 

calculating the average and max precipitation, respectively, at each station of the 220 

selected analogs. Since these two methods always tend to underestimate and 221 

overestimate precipitation, respectively, percentiles were introduced. To get the optimal 222 

percentile of the best forecast performance, the 60th to 95th percentiles, at 5 percentile 223 

intervals, are applied to simulating the precipitation of the 10 LTCs. Results show that 224 

the 90th percentile is the optimal one. Thus, the 90th percentile is adopted in this study.  225 

The fuse ensemble method is also adopted to obtain the target TC's precipitation by 226 

employing different percentile ensemble methods determined by the precipitation of m 227 

analogs in order to achieve better forecast performance. This method can be 228 

implemented by following the calculation rules shown in Table 2. The criteria in the 229 
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fuse are checked in order. If one criterion is met, the rest will not be checked.  230 

Because the forecasted precipitation at a station by using these four methods (i.e., 231 

mean, maximum, 90th percentile and fuse) only ensemble m analogs’ precipitation at 232 

the station, the forecast precipitation of a certain station cannot be affected by data from 233 

other stations. These methods are called station-based ensemble methods. However, 234 

they have two drawbacks: First, they are unable to forecast precipitation at a certain 235 

station beyond the historical maximum of itself. Second, they greatly reduce the amount 236 

of historical data that can be used in the precipitation forecast at a certain station. Thus, 237 

three field-based ensemble methods were added to take advantage of information from 238 

all stations. 239 

Historical precipitation data from the remaining stations are directly used when using 240 

PM to forecast the precipitation at a station. By using this method, the higher the 241 

average precipitation of the selected analogs at a certain station, the higher is the 242 

forecasted precipitation. The forecast values, whose algorithm is given in Table 2, 243 

depend on the precipitation of the similar TCs selected at all stations.  244 

The ED-WM ensemble method can be achieved by assigning equal differential 245 

weights to the precipitation amounts of the selected m analogs in order of similarity. 246 

That is, the higher the similarity is, the more weight will be given to the precipitation 247 

of that analog is. Thus, the weight of precipitation for each similar TC selected is 248 

𝑊𝑊(𝐻𝐻) = (2×𝑚𝑚−𝐻𝐻)×2
(3×𝑚𝑚−1)×𝑚𝑚 (𝐻𝐻 = 1,2, . . ,𝑚𝑚).  249 

TSAI-WM takes an important indicator of TSAI as the similarity between TCs into 250 

account. Thus, it may be more valid than simply considering the similarity rank. Since 251 
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the smaller the TSAI is, the higher is the degree of similarity, taking the reciprocal of 252 

the TSAI for each selected m analog to obtain 𝐵𝐵(𝐻𝐻) =  1
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)

(𝐻𝐻 = 1,2, . . ,𝑚𝑚) and further 253 

obtain the precipitation weight of these analogs, 𝑊𝑊(𝐻𝐻) = 𝐵𝐵(𝐻𝐻)
∑ 𝐵𝐵(𝐻𝐻)𝑚𝑚
𝐻𝐻=1

. The sum of the weights 254 

of m analogs of the ED-WM and TSAI-WM ensemble methods are both 1. The 255 

ensemble forecast precipitation is Prep, 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 = ∑ 𝑊𝑊(𝐻𝐻) × 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻)𝑚𝑚
𝐻𝐻=1 .  The weights of 256 

ED-WM and TSAI-WM depend on the rank of analogs, which is determined from the 257 

data of all stations, and thus affect the forecast results.  258 

See section 4 for the performances of these seven ensemble methods. 259 

 260 

3.4 Steps for selecting the best scheme 261 

As each parameter in the DSAEF_LTP model has several different options, thousands 262 

of combinations are possible. Each combination is referred to as a forecast scheme. The 263 

purpose of the experiment is to determine the best scheme with the highest TSsum when 264 

an ensemble method was chosen, and then compare the highest TSsum under seven 265 

ensemble methods. Thus, seven experiments are designed in this study by applying 266 

different ensemble methods.  267 

Steps for selecting the best scheme in an experiment were as follows: First, the TS100 268 

and TS250 of every scheme are calculated when simulating a single TC. Due to the 269 

short impact period of some TCs, some options of the initial time (P1) and similarity 270 

region (P2) could not be chosen. Thus, the number of valid schemes for a TC is always 271 

less than or equal to the total number of the schemes given in Table 1. The second step 272 

is to select the schemes that could yield forecast for all the 10 LTCs. These schemes are 273 
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called common schemes. The third step was to calculate the TS100, TS250 and TSsum 274 

of each common scheme, i.e., the mean TS100, TS250 and TSsum of each common 275 

scheme for the 10 LTCs. The common scheme with the maximum TSsum in each 276 

experiment could then be regarded as the best scheme in that experiment.  277 

It should be mentioned that, with the different ensemble methods, the values of the 278 

remaining parameters of the best scheme can be different. Since the ensemble methods 279 

in every experiment are different, we represent an experiment by the name of the 280 

ensemble method used in that experiment. The performance of an ensemble method 281 

refers to the performance of the best scheme in the experiment with this ensemble 282 

method. 283 

 284 

4. Results 285 

4.1 Comparison of results in seven experiments 286 

  Seven experiments are conducted and the best scheme was selected for each 287 

experiment. The best scheme of an experiment was determined by their maximum 288 

TSsum. Table 3 and Fig. 3 show the choice of parameters and TS (including TSsum, 289 

TS100, and TS250) for the best schemes of the seven experiments respectively. It is 290 

evident from Table 3 that the parameter values of the best scheme with different 291 

ensemble methods are similar. The criteria used by the model to select similar TCs are 292 

similar. This means that there is always a criterion for selecting similar TCs that makes 293 

the DSAEF_LTP model better forecast performance. In other words, the stability of the 294 

model is satisfactory. Especially, these values appear to be the same between the 295 
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maximum and fuse methods, as well as the ED-WM and TSAI-WM methods. However, 296 

the TS values in Fig.3 are different. That is, if parameters P1 to P7 are assigned values, 297 

the forecast performance is determined by the ensemble method (P8). This indicates 298 

that the ensemble method plays an important role in determining the forecast 299 

performance of the DSAEF_LTP model.  300 

As can be seen from Fig.3, the station-based ensemble methods (the first four 301 

ensemble methods in Table 2) show better forecast performance than the field-based 302 

ensemble methods; the overall forecast performance of the 90th percentile is the best, 303 

i.e., the TSsum of the best scheme with the 90th percentile ensemble method is the 304 

highest. This may be due to the fact that the precipitation distribution of the selected 305 

analogs by the DSAEF_LTP model is very similar to that of the target TC. Therefore, 306 

obtaining the ensemble forecast using the precipitation of the station itself performs 307 

better. The fuse and maximum ensemble schemes rank the second. They have the same 308 

TSsum value because they obtain the same forecast of precipitation of more than 100 309 

mm. A difference between the two methods is that the fuse scheme reduces the rate of 310 

misses for less than 100 mm precipitation. The TS250 is maximized when the 90th 311 

percentile is adopted, while the TS100 is the highest when the ensemble method is fuse 312 

or maximum. This is consistent with the conclusion of some previous studies (e.g., 313 

Chen et al., 2015; Li et al., 2018). This shows that for different levels of precipitation 314 

forecast, using different percentile of precipitation of selected analogs might improve 315 

forecast performance. Besides, the different TSsum values of the first four ensemble 316 

methods from those of the last three ensemble methods are mainly reflected in 317 
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predicting the precipitation of over 100 mm. The advantage of using the station-based 318 

ensemble methods in terms of the forecast performance of over 250 mm is small, which 319 

may be due to the fact that over 250 mm rainfall of analogs is relatively scattered in 320 

distribution. Besides, the forecast performance of PM is better than that of the other two 321 

field-based ensemble methods. This is because only this method directly uses the 322 

precipitation data of all stations to obtain forecast at a certain station of concern. 323 

The TS for individual TCs by the best schemes in the seven experiments is given 324 

in Fig.4, showing that generally, the station-based ensemble methods outperform the 325 

field-based ensemble methods. This is most evident in TC1823, in which the TSsum of 326 

the 90th percentile is 0.369 higher than that of the TSAI-WM ensemble method, 327 

followed by TC1816, in which the TSsum of fuse is 0.348 higher than that of the PM 328 

value. Figure 4 also shows that the forecast performance of each ensemble method for 329 

TC1808 is significantly different from that for the other LTCs. The 90th percentile and 330 

fuse predictions, which perform better than the other ensemble methods, are less 331 

effective, while the field-based ensemble method performs better. This is because 332 

precipitation at the other stations can be used as ensembles in the field-based ensemble 333 

methods, which leads to the forecasted precipitation exceeding the historical extreme 334 

value. The field-based ensemble method makes up for the fact that the station-based 335 

ensemble method cannot predict extreme precipitation that exceeds the historical record 336 

at certain stations. 337 

 338 

4.2 Forecast comparison between the DSAEF_LTP model and five NWP models 339 
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  As shown in Fig. 3, the TSsum and TS250 values of the best schemes in the seven 340 

experiments exceed those of the three NWP and two regional NWP models. However, 341 

for the prediction of precipitation exceeding 100 mm, only the fuse, 90th percentile, 342 

and maximum method outperform the performances of all the NWP models except for 343 

the GFS. 344 

  Figure 4 compares the forecast performance of the DSAEF_LTP model in the seven 345 

experiments to that of the NWP models for 10 LTCs. The TSsum of the 90th percentile 346 

ensemble method ranks top three while simulating most of the LTCs’ accumulated 347 

precipitation. Three LTCs (i.e., 1810, 1812, and 1814) are poorly predicted by the 90th 348 

percentile ensemble method. The single-station observed maximum total rainfall 349 

amounts of these three LTCs are the three smallest among the 10 LTCs, with values of 350 

182.7, 224.8, and 295.7 mm, respectively, as indicated by dotted lines in Fig. 4. The 351 

advantage of the forecasts by the DSAEF_LTP model in this experiment is mainly in 352 

the prediction of precipitation for LTCs with the large amounts of accumulated 353 

precipitation. 354 

 355 

4.3 DSAEF_LTP model track-type experiments and results 356 

Figure 4 demonstrates that even the best scheme for each experiment poorly 357 

simulates the precipitation of TC1810, TC1812, TC1814, and TC1818, which are all 358 

northbound TCs (Fig. 1). Since the best scheme for the current experiments produces 359 

relatively poor simulations of the northbound TCs compared to the westbound ones, 360 

different schemes for TCs with different track types are considered for the simulation 361 
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of the accumulated precipitation. Thus, the track-type experiments are conducted, in 362 

which the 10 LTCs are grouped into two based on their tracks. Namely, westbound TCs 363 

(i.e., TC1804, TC1809, TC1816, TC1822, and TC1823) and northbound TCs (i.e., 364 

TC1808, TC1810, TC1812, TC1814, and TC1818). The common schemes of the five 365 

TCs in each experiment are first selected, and then the TS100, TS250, and TSsum values 366 

for the common schemes of the two experiments are calculated, separately. The scheme 367 

with the largest TSsum is considered as the best scheme. 368 

 The LTCs with the two different track types are simulated with the different best-369 

performing schemes. Results show that the selected best scheme for the westbound TCs 370 

is the same as that for the 10 TCs. That is, the parameters of P1-P7 take values of 1, 20, 371 

1, 6, 3, 2, 5, and 3 (Table 3), respectively, with the 90th percentile ensemble method 372 

used. By comparison, for the northbound TCs, the parameters of P1-P7 in the best 373 

scheme take values of 2, 20, 1,5, 3, 4, 3, and 5, respectively, with the PM ensemble 374 

method applied. The precipitation forecasts for the westbound TCs are better when a 375 

station-based ensemble method is selected, whereas there is little advantage of the 376 

station-based ensemble method for the northbound TCs. Besides, the average TSsum of 377 

the field-based ensemble method is 0.014 higher than that of the station-based method. 378 

The stations with maximum precipitation associated with LTCs during 1960–2018 are 379 

given in Fig. 5. The map shows the stations with a maximum precipitation, along with 380 

the times that a station being the maximum total rainfall station. The better forecast 381 

performances of the station-based ensemble approach for the westbound TCs and the 382 

field-based ensemble method for the northbound TCs may be attributed to the large 383 
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precipitation centers of the westbound TCs that are located in Southern China (i.e., 384 

Hainan, Guangdong, Fujian provinces and Taiwan Island). These precipitation centers 385 

are usually concentrated on some stations, while the precipitation levels vary widely 386 

between stations. Thus, for one particular meteorological station, obtaining the 387 

ensemble forecast result by assembling the precipitation of the station itself is 388 

reasonable. By comparison, large-value centers of the northbound TC are less frequent 389 

and more scattered. Thus, using the TC precipitation information of a single station 390 

itself may smooth out the large values or overestimate the precipitation of this station. 391 

However, PM can combine the accurate precipitation location of the ensemble-392 

averaged forecast and the good precipitation magnitude evaluated through selected 393 

ensemble members to obtain a better forecast. 394 

  By comparing Figs. 3 and 6, it can be seen that the TSsum of each ensemble method 395 

has risen for the two track types of LTCs. The new ensemble methods increase the 396 

TSsum of the westbound TCs. The TSsum with the 90th percentile method for the 397 

westbound TCs increased 0.191 more than that of the northbound TCs. By comparing 398 

Figs. 4 and 7, the most obvious improvement of TSsum after classifying the TC track 399 

types occurs for TC1808. Compared to the five NWP models, the superiority of the 400 

DSAEF_LTP model is obvious in the case of TC1816. Besides, the forecast 401 

performance of different ensemble methods varies greatly for TC1823. Therefore, in 402 

the next subsection, the precipitation forecasts of these three representative LTCs are 403 

compared in the context of the relative advantages and disadvantages of applying the 404 

various ensemble methods. 405 
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 406 

4.4 Analysis of three representative LTC cases 407 

a. TC1808 408 

As indicated in the preceding subsection, TC1808 is a northbound TC, which is best 409 

forecasted by the 90th percentile (Fig.3) and PM ensemble method (Fig.6) before and 410 

after considering the track type, respectively. The TSsum increases from 0.53 to 1.471 411 

and the BSsum changes from +2.125 to −0.529 after considering its track type. Figure 412 

8 compare the predicted precipitation of TC1808 by these two schemes to the observed. 413 

TC1808 has a station with accumulated precipitation exceeding 250 mm, and the track 414 

type experiment reproduces it successfully. For the precipitation of more than 100 mm, 415 

there are five large-valued centers. If the selected best scheme does not consider the 416 

track type of this TC, only one large-valued center in northern Taiwan Island can be 417 

simulated, but with the precipitation in southern Taiwan Island overpredicted. After 418 

considering the track type, three of the five large-valued centers can be simulated. The 419 

simulated precipitation for Taiwan Island and Zhejiang Province is much improved, 420 

with little evidence of overprediction. Thus, better forecasts can be obtained by using 421 

different schemes for TCs of different track types. However, both experiments produce 422 

poor precipitation simulations for inland areas. After classifying the TC tracks, 423 

underprediction still exists inland. 424 

 425 

b. TC1816 426 

  TC1816 is a westbound typhoon, and best forecasted when the 90th percentile 427 
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ensemble method is used (Fig. 6). The simulated precipitation of has a TSsum of 0.701 428 

and a BSsum of −0.36. In contrast, the TSsum values of this case for the five NWP 429 

models (i.e., GFS, GRAPES, ECMWF, SMS-WARMS, and RMAPS) are 0.698, 0.424, 430 

0.487, 0.520, and 0.260, respectively, while their BSsum values are +0.643, −1.413, 431 

+0.712, −1.218, and −0.524. In addition, Fig. 9 shows that for precipitation above 250 432 

mm, the GFS forecast is better than that of the other models, but there is severe 433 

overprediction in precipitation ranging from 100 to 250 mm. The DSAEF_LTP model 434 

can simulate the precipitation over 250 mm. However, there is a bias in simulating a 435 

large-valued zone in Hainan Province. That is, the simulated heavy precipitation occurs 436 

generally over northeastern Hainan whereas the large-valued region predicted by the 437 

DSAEF LTP model appears in southwestern Hainan. Also, the DSAEF_LTP model does 438 

not perform well in terms of the large-valued precipitation region in Guangdong 439 

Province. For the predicted precipitation of greater than 100 mm, the DSAEF_LTP 440 

model exhibits clearly some advantages compared to the NWP models. The predicted 441 

precipitation distributions, especially over coastal areas, are very similar to those 442 

observed, allowing areas of high precipitation values to be forecasted without 443 

overprediction. In short, the forecast result of the DSAEF_ LTP model has the highest 444 

hit rate with minimum range deviations. 445 

 446 

c. TC1823 447 

  Figure 10 compares the forecast precipitation of TC1823 with the best scheme of 448 

each ensemble method from the track-type experiments to the observed precipitation. 449 
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It is evident that the forecast performance for TC1823 is the best with the 90th 450 

percentile ensemble method, followed by the maximum and fuse ensemble methods, 451 

whereas precipitation of more than 100 mm cannot be simulated by the other ensemble 452 

methods (cf. Figs. 10 and 7). This TC produced more than 100 mm accumulated 453 

precipitation at 12 stations, with four of them recording more than 250 mm. The 454 

DSAEF_LTP model using the 90th percentile ensemble method predicts more than 100 455 

mm precipitation at 7 stations, and more than 250 mm precipitation at 3 stations. 456 

However, this method setup underestimates the precipitation of above 250 mm and 457 

overestimates the precipitation over 100 mm (Fig. 10d). As compared to the original 458 

ensemble methods in the DSAEF_LTP model, the 90th percentile outperforms the mean 459 

(Fig. 10b) and maximum (Fig. 10c) ensemble methods. The precipitation distribution 460 

predicted by the 90th percentile is similar to that predicted by the maximum ensemble 461 

method, but the false alarm rate of the former drops significantly. The latter point can 462 

be seen from the BIAS250 and BIAS100 of the 90th percentile and maximum ensemble 463 

methods: they are 0.750 and 1.750, and 1.250 and 4.583, respectively. Besides, Fig. 10e 464 

looks similar to Fig. 10c, and Figs. 10f–10h look similar to Fig.10b, because only two 465 

analogs are selected as the ensemble members. 466 

 467 

5. Summary and data 468 

In this study, five new ensemble methods are added to the original DSAEF_LTP 469 

model proposed by Ren et al. (2020), and then 7 experiments with different ensemble 470 

methods are carried out for 10 LTCs over China June-September of 2018. The best 471 
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scheme for each experiment is selected and compared with five NWP models (i.e., 472 

ECMWF, GRAPES, GFS, SMS-WARMS, and RMAPS). To achieve better forecast 473 

performance, the track-type experiments are also carried out. Major results can be 474 

summarized as follows: 475 

• The 90th percentile ensemble method performs best in LTC precipitation 476 

forecasts of the new ensemble methods tested. With this method, the TS250 and TS100 477 

values for the best scheme of the DSAEF_LTP model are 0.184 and 0.209, respectively. 478 

The TSsum of the 90th percentile ensemble method (i.e., TS250 = 0.158, and TS100 = 479 

0.215) higher than that of the maximum ensemble method, ranking the former as the 480 

first before the new ensemble methods are added. The TSsum of the mean ensemble 481 

method, which is the intrinsic ensemble method in the DSAEF_LTP model, ranks the 482 

fifth. In general, the TSsum of the best scheme with the station-based ensemble method 483 

is higher than that of the field-based ensemble method. The difference in the TS of these 484 

two kinds of ensemble methods is mainly reflected in forecasting the precipitation of 485 

over 100 mm. 486 

• As compared with the TSsum to the five NWP models, the TSsum of the best 487 

schemes of the DSAEF_LTP model with the new ensemble methods are higher. The 488 

main advantage of the DSAEF_LTP model lies in predicting the precipitation of over 489 

250 mm. 490 

• To address the relatively poor precipitation forecast of northbound TCs by the best 491 

schemes of the DSAEF_LTP model, ten TCs are divided into two groups according to 492 

their tracks and then track-type experiments are conducted. Results show that the TSsum 493 
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of the best schemes with the seven ensemble methods exhibits significant 494 

improvements for the northbound TCs. When the 90th percentile method is adopted for 495 

the westbound TCs, and PM for the northbound TCs, the TSsum of the best schemes 496 

are the highest. This may be due to the fact that the accumulated precipitation centers 497 

over southern China are frequently concentrated at some stations, whereas those over 498 

northern China are scattered and the total precipitation at many stations varies greatly 499 

in magnitude. 500 

• The above results are further demonstrated from an analysis of three representative 501 

TC cases (i.e., TC1808, TC1816, and TC1823), confirming that the forecast 502 

performance of the DSAEF_LTP model can be improved by adopting a new ensemble 503 

method. The hit rate can be further increased, and with reduced false alarm rates after 504 

considering different track types. 505 

Since the early publication of the DSAEF_LTP model, we have made some 506 

improvements. Previous studies (i.e., Ding et al., 2020; Jia et al., 2020) focused mainly 507 

on how to select more reasonably similar TCs, and the problem of high false alarm rates 508 

has been less researched. The current study focuses on the improvement of the ensemble 509 

methods in the DSAEF_LTP model. Based on the results shown herein, we may 510 

conclude that applying different ensemble methods under different situations will help 511 

improve the forecast performance of the DSAEF_LTP model, which might then be 512 

applied to the other ensemble forecast studies. However, only 10 TCs are chosen as the 513 

objects of the experiments in this study. Thus, the applicability of the best schemes 514 

needs further tests. In the future, large-sample experiments with the DSAEF_LTP 515 
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model should be carried out to determine the most suitable scheme for LTC 516 

precipitation over China or other regions through training and independent forecast 517 

experiments, before being used for operational TC precipitation forecasting. Moreover, 518 

more variables that influence TC precipitation, especially background environment 519 

variables, such as vertical wind shear, relative humidity should be considered in the 520 

DSAEF_LTP model. When the GIV in the DSAEF_LTP model contains enough 521 

variables influencing TC precipitation, the forecast performance can be further 522 

improved. The analogs selected by the GIV similarity can even include global 523 

environment changes because different global environments mean different GIVs.  524 

 525 
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Table 1 Parameters of the DSAEF_LTP model. 781 

Parameter Description Experimented values 
P1 
Initial time 

The complete track 
of the target TC 
consists of the 
observed track before 
the initial time and 
the forecast track 
after the initial time. 

1: 1200 UTC on Day1   2: 0000 UTC on 
Day1 
3: 1200 UTC on Day0   4: 0000 UTC on 
Day0 
5: 1200 UTC on Day-1   6: 0000 UTC on 
Day-1 
(Day0: the day of TC precipitation occurring 
on land; Day1: the day after Day0; Day-1: 
the day before Day0) 

P2 
Similarity region  

A designated region 
within which the 
TSAI is calculated. It 
is a rectangle with 
diagonal points A and 
B. 

Decided by the predicted TC track, initial 
time and diameter of the TC. There are 20 
experiment values (1-20). 

P3 
Threshold of the 
segmentation ratio of 
a latitudinal extreme 
point 

A parameter of TSAI 
that represents the 
bending degree of TC 
tracks. 

1: 0.1 
2: 0.2 
3: 0.3 

P4 
Overlapping 
percentage threshold 
of two TC tracks 

A parameter of TSAI 
that represents the 
degree of longitude 
(latitude) overlaps of 
TC tracks. 

1: 0.9   2: 0.8   3: 0.7 
4: 0.6   5: 0.5   6: 0.4 

P5 
Seasonal similarity  

A parameter that 
indicates the TC 
landfall time. 

1: the whole year 
2: May–Nov     3: Jul–Sept 
4: the same landfall month as the target TC 
5: within 15 days of the target TC landfall 
time 

P6 
Intensity similarity 

A parameter that 
indicates the 
differences between 
the TC intensity of 
the target TC and 
historical TCs. There 
are four categories of 
TC intensity that can 
be chosen. The 
similarity of TC 
intensity is divided 

Four categories:  
1: average intensity on the first rainy day 
2: maximum intensity on the first rainy day 
3: average intensity on all rainy days  
4: maximum intensity on all rainy days 
Five levels:  
1: all grades 
2: the target TC intensity is the same grade 
or above the historical TC 
3: the same grade or below 
4: only the same grade 
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into five levels. 5: the same grade or one grade difference 
P7 
Number of analog TCs 
screened for the 
ensemble forecast 

M historical TCs with 
the first m most 
similar GIVs to that 
of the target TC 

1–10 for 1, 2… and 10, respectively 

P8 
Ensemble  

Ensemble forecast 
scheme 

1–7 for 7 ensemble methods listed in Table 2 

Total number of schemes: 6 × 20 × 3 × 6 × 5 × 4 × 5 × 10 × 7 = 15,120,000 

 782 

Table 2 The improved ensemble methods in the DSAEF_LTP model. 783 

Type Name Computational procedure 

Station-
based 
ensemble 
methods 

Mean 

1. The precipitation forecast of each station is calculated 
separately. 
2. For a station, the average precipitation of 𝑚𝑚 selected 
analogs at this station [𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻), 𝐻𝐻 = 1, 2, . . . ,𝑚𝑚] as the final 

forecast result of the station, 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 =  ∑ 𝑃𝑃𝑎𝑎𝑚𝑚(𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑚𝑚
. 

3. The forecast results of each station form the forecast 
precipitation field. 

Maximum Same as the mean ensemble method, but 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 =
𝑀𝑀𝑓𝑓𝑀𝑀 (𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻)) 

Optimal 
percentile (90th 
percentile in this 

study) 

1. For each station, 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻), 𝐻𝐻 = 1, 2, . . . ,𝑚𝑚 is sorted from 
small to large. pre(r) is the precipitation ranked r. 
2. 𝑑𝑑 = 1 + (𝑚𝑚− 1) × 0.9 
3. The integer part of d is r, and the decimal part is f 
4. 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 = 𝑃𝑃𝑎𝑎𝑚𝑚(𝑎𝑎) + [𝑃𝑃𝑎𝑎𝑚𝑚(𝑎𝑎+ 1)−𝑃𝑃𝑎𝑎𝑚𝑚(𝑎𝑎)] × 𝑓𝑓 

Fuse 

Calculation rules of the forecast precipitation at each 
station： 

1. If 𝑀𝑀𝑓𝑓𝑀𝑀 �𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻)� ≥  100 mm,𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 = 𝑀𝑀𝑓𝑓𝑀𝑀 (𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻)); 

2. If the 90th percentile value of 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻) ≥ 50 mm，the 
𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 equals the 90th percentile value of 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻); 
3. If the 75th percentile value of 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻) ≥ 50 mm，the 
𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 equals the 75th percentile value of 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻); 
4. If the median value of 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻) ≥ 10 mm , the Prep 
equals the median value of 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻); 
5. If none of the above conditions can be met, the 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 
equals the 10th percentile value. 

Field-
based 
ensemble 
methods 

Probability 
matching mean 

(PM) 

1. Arrange all the precipitation data for the m members of 
2027 stations in ascending order (containing 2027 ×  𝑚𝑚 
stations' rainfall data). Divide the 2027 ×  𝑚𝑚  data into 
2027 equal parts in reverse order, retaining the median of 
each part and recording them as 𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚(𝑘𝑘),𝑘𝑘 =
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1,2, … ,2027.  
2. For a station, the average precipitation of 𝑚𝑚 selected 

analogs at this station is 𝑃𝑃𝑎𝑎𝑚𝑚𝑓𝑓 =  ∑ 𝑃𝑃𝑎𝑎𝑚𝑚(𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑚𝑚
; the 𝑃𝑃𝑎𝑎𝑚𝑚𝑓𝑓 of 

2027 stations is ranked in reverse order; the ranking of each 
station’s 𝑃𝑃𝑎𝑎𝑚𝑚𝑓𝑓 is recorded as 𝑘𝑘. 
3. Corresponding to the 𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚(𝑘𝑘) of each station based 
on the 𝑘𝑘 of each station, and 𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚(𝑘𝑘) is the predicted 
precipitation for this station, 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 =  𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚(𝑘𝑘). 

Equal difference-
weighted mean 

(ED-WM) 

The weight of the precipitation for the selected similar TC 

whose similarity rank 𝐻𝐻  is 𝑊𝑊(𝐻𝐻) = (2×𝑚𝑚−𝑖𝑖)×2
(3×𝑚𝑚−1)×𝑚𝑚

(𝐻𝐻 =

1,2, … ,𝑚𝑚) , the forecasted precipitation is 𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃 =
∑ 𝑊𝑊(𝐻𝐻) × 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻)𝑚𝑚
𝑖𝑖=1   

TSAI-weighted 
mean (TSAI-

WM) 

𝐵𝐵(𝐻𝐻) =  1 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)

(𝐻𝐻 = 1,2, . . ,𝑚𝑚) ; the weight of the 

precipitation for the selected similar TC whose similarity 
rank 𝐻𝐻 is 

𝑊𝑊(𝐻𝐻) = 𝑇𝑇(𝑖𝑖)
∑ 𝑇𝑇(𝑖𝑖)𝑚𝑚
𝑖𝑖=1

, and the forecast precipitation is Prep = 

∑ W(𝐻𝐻) × 𝑃𝑃𝑎𝑎𝑚𝑚(𝐻𝐻)𝑚𝑚
𝑖𝑖=1   

 784 

Table 3 Parameter values for the best schemes with the seven ensemble methods. 785 

 Mean Maximum 90th percentile Fuse  PM ED-WM TSAI-WM 
P1 2 1 1 1 1 1 1 
P2 20 20 20 20 20 20 20 
P3 3 1 1 1 2 1 1 
P4 5 6 6 6 6 6 6 
P5 2 2 3 2 2 2 2 
P6 3/3 2/5 2/5 2/5 2/5 1/2 1/2 
P7 2 5 3 5 4 5 5 
 786 


