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Abstract 38 

 39 

This study assesses heatstroke risk in the near future (2031-2050) under RCP8.5 scenario. 40 

The developed model is based on a generalized linear model with the number of ambulance 41 

transport due to heatstroke (hereafter the patients with heatstroke) as the !"#$%&'!()variable 42 

and the daily maximum temperature or Wet-Bulb Globe Temperature (WBGT) as the 43 

explanatory variable. With the model based on the daily maximum temperature, we 44 

performed the projection of the patients with heatstroke in case of considering only climate 45 

change (Case 1), climate change and population dynamics (Case 2), and climate change, 46 

population dynamics, and long-term heat acclimatization (Case 3). In Case 2, the number 47 

of patients with heatstroke in the near future will be 2.3 times higher than that in the baseline 48 

period (1981-2000) on average nationwide. The number of future patients with heatstroke 49 

in Case 2 is about 10% larger than that in Case 1 on average nationwide despite of 50 

population decline. This is due to the increase in the number of elderly people from the 51 

baseline period to the near future. However, there were 21 prefectures where the number of 52 

patients in Case 2 is smaller compared to Case 1. Comparing the results from Cases 1 and 53 

3 reveals that the number of patients with heatstroke could be reduced by about 60% 54 

nationwide by acquiring heat tolerance and changing lifestyles. Notably, given the lifestyle 55 

changes represented by the widespread use of air conditioners, the number of patients with 56 

heatstroke in the near future was lower than that of the baseline period in some areas. In 57 

other words, lifestyle changes can be an important adaptation to the risk of heatstroke 58 

emergency. All of the above results were also confirmed in the prediction model with WBGT 59 

as the explanatory variable. (291 words, Word limit is less than 300) 60 

Keywords:  Number of patients with heatstroke, Near future projection, Heat 61 

acclimatization, Climate change adaptation, Generalized linear model (less than 5) 62 
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 63 

1. Introduction 64 

In recent years, the incidence of heatstroke in Japan has increased due to climate change, 65 

and this is becoming a major social issue (e.g., Ando et al., 2004; Fujibe 2013). For example, 66 

from May to September 2018, which was abnormal hot summer across the country, the 67 

number of emergency patients with heatstroke was 95,137 nationwide, of which 32,496 were 68 

hospitalized and 160 died (Fire and Disaster Management Agency, 2019, 69 

https://www.fdma.go.jp/disaster/heatstroke/item/heatstroke003_houdou01.pdf). The 70 

number of deaths due to heatstroke in 2018 was 1,581. This number of deaths is far greater 71 

than the number of deaths caused by other weather-related disasters, such as floods and 72 

landslides (the number of deaths from the 2018 Japan floods, which were one of the most 73 

torrential in decades, was 225). Residents are concerned that heatstroke will become 74 

increasingly serious as climate change progresses. It is therefore important to assess all of 75 

the risks associated with heatstroke in a future climate. 76 

   Extensive studies on the increase in heat-related excess mortality or deaths associated 77 

with future climate change have been conducted mainly in Europe, the United States, Japan, 78 

and China (e.g., Hayhoe et al., 2004; Knowlton et al., 2007; Doyon et al., 2008; Gosling et 79 

al., 2009; Jackson et al. 2010; Li et al., 2013, Honda et al., 2014). Li et al. (2013) predicted 80 

that future heat-related excess deaths in New York, USA, under the Special Report on 81 

Emissions Scenarios (SRES) A2 scenario would increase by +22.2% (2020s), +49.4% 82 

(2050s), and +91.0% (2080s), compared to levels in the 1980s. Doyon et al. (2008) predicted 83 

a 10% increase in summer heat-related mortality in Montreal, Canada, in 2080 compared to 84 

that in 1981-1999 under the SRES A2 scenario. Similar studies have continued to be 85 

conducted after the release of the future climate projection datasets for the Representative 86 

Concentration Pathway (RCP) scenarios (Chen et al., 2017; Huber et al., 2020). In recent 87 

years, projections have also been conducted in developing countries, including those in 88 
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Southeast Asia. For example, Gasparrini et al. (2017) projected heat-related excess 89 

mortality rates of more than 5% in Southeast Asia, central and southern Europe, and Latin 90 

America in the 2090s under the RCP8.5 scenario. Guo et al. (2018) predicted that heat-91 

related deaths would increase by more than 700% in some countries of Southeast Asia and 92 

South America during the period of 2031-2080 under the RCP8.5 scenario compared to the 93 

1971-2020 period. Thus, future projections of heatstroke risk have been dominated by 94 

studies that use heat-related excess mortality or deaths as indicators. In these studies, it is 95 

necessary to consider not only climate change but also social change. Social changes 96 

include demographic changes and long-term heat acclimatization over a span of several 97 

decades due to lifestyle changes.  Among the previous studies, those that consider 98 

demographic changes are Gosling et al. (2009); Jackson et al. (2010); Honda et al. (2014); 99 

Chen et al. (2017); Guo et al. (2018). Studies considering long-term heat acclimation are 100 

Hayhoe et al. (2004); Knowlton et al. (2007); Gosling et al. (2009); Li et al. (2013); Guo et 101 

al. (2018). 102 

   Therefore, the main purpose of this study is to develop a statistical model and predict 103 

heatstroke risk (the number of ambulance transport due to heatstroke) in the near future 104 

(2031-2050) under RCP2.6 and RCP8.5 scenarios all over Japan by prefecture. This 105 

statistical model is based on the generalized linear model which uses maximum temperature 106 

or WBGT as explanatory variable and daily number of ambulance transport due to 107 

heatstroke as a predictor variable. When predicting the number of ambulance transport due 108 

to heatstroke by statistical model, it is known that there is a problem of underestimation in 109 

early summer and overestimation in late summer (Fuse et al., 2014; Sato et al., 2020; Ikeda 110 

and Kusaka, 2021). This error is due to short-term heat acclimatization (Ono, 2013; Fujibe 111 

et al., 2018b). Therefore, our model takes this effect into account. The near future heatstroke 112 

risk is determined by three types of experiments. (i) Future projection considering only 113 

climate change. (ii) Future projection considering climate change and population.  (iii) Future 114 
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projection considering climate change, population and long-term acclimatization. The detail 115 

information of experiments is described in section 3. 116 

  117 
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2. Data 118 

2.1 Number of heatstroke emergency patients 119 

   In this study, we used a dataset on the number of ambulance transport due to heatstroke 120 

for 2010 - 2018 published by the Fire and Disaster Management Agency of the Ministry of 121 

Internal Affairs and Communications, Japan.  122 

The definition of heat stroke is "a general term for any disorder that results from an 123 

imbalance of water and salt (e.g. sodium) in the body due to a breakdown in the body's 124 

ability to regulate the temperature in a high-temperature environment" and includes 125 

sunstroke, heat cramps, heat exhaustion and heat stroke (Fire and Disaster Management 126 

Agency 2021)”. Based on the above definition, the medical doctor determines whether the 127 

patient brought to the emergency room has a heatstroke. The data on the number of 128 

emergency patients with heatstroke by that medical doctor's initial diagnosis is used in this 129 

study. There are three types of age-related data in this dataset: the number of heatstroke 130 

emergency patients per day by prefecture in all age groups, aged 65 years and older, and 131 

under 64 years old (newborn babies, infants, juveniles, and adults combined). The number 132 

of ambulance transport due to heatstroke is simply called “the number of patients with 133 

heatstroke” and used as an indicator of heatstroke risk in this study.  134 

 135 

2.2. Current climate data  136 

   The temperature data were taken from hourly observations made by the Automated 137 

Meteorological Data Acquisition System (AMeDAS) operated by the Japan Meteorological 138 

Agency. AMeDAS stations are located at a density of approximately 20 km. We used the 139 

spatial average of all stations' values within a prefecture to improve the spatial 140 

representativeness of the temperature value used for each prefecture. However, because 141 

the climate of Tokyo differs markedly between the mainland and the islands, spatial averages 142 

of Tokyo are calculated by excluding data from observation stations on the islands (these 143 
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islands have 0.2% of the total population of Tokyo). The daily maximum temperatures were 144 

determined from the hourly temperature values obtained from these averages. 145 

  WBGT was calculated using the formula of Yaglou and Minard (1957). The black globe 146 

temperatures there are not measured by JMA were estimated by the method of Okada and 147 

Kusaka, 2013. The daily maximum WBGT was calculated from the hourly values of WBGT. 148 

Detailed methods for estimating the WBGT are described in the Supplement 1.  149 

 150 

2.3 Climate scenario data 151 

As the climate scenario data, we used the 1-km mesh statistical downscaling (DS) dataset 152 

provided by Institute for Agro-Environmental Sciences, National Agriculture and Food 153 

Research Organization (NARO) (Nishimori et al., 2019). This DS dataset were created from 154 

four GCMs outputs, MIROC5, MRI-CGCM3, GFDL-CM3, and HadGEM2-ES. These GCMs 155 

were carefully selected by SI-CAT, project for climate change adaptation in Japan. For the 156 

period of climate scenarios used in this study, the baseline period is set to 1981-2000 and 157 

the near future is set to 2031-2050.  158 

Unfortunately, the NARO dataset stores only data for daily (mean, maximum, minimum) 159 

and monthly mean values, not store hourly values. Due to this limitation, it is impossible to 160 

calculate the daily maximum WBGT with only this dataset. In addition, it should be noted 161 

that the reliability of each meteorological variable differs. To be honest, it is reported that 162 

the reliability of air temperature and solar radiation is relatively high, while that of humidity 163 

and wind speed is relatively low (Nishimori et al., 2019).  164 

A similar idea as the pseudo-global warming approach (Kimura and Kitoh 2007, Sato et al 165 

2007) was applied to estimate the future WBGT to overcome these problems in this study. 166 

First, a time series of daily maximum temperature from June 1 to September 30 is 167 

generated using the baseline period data from NARO’s dataset. Second, this time series is 168 

averaged over 15 days and then averaged over 10 years. Third, similar time series data is 169 
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generated using the future climate scenario data of NARO’s dataset. From the difference 170 

between these two-time series, we obtain the climate change component data (ΔT). This 171 

ΔT is daily data of the amount of temperature increase from the present to the future, which 172 

contains a gentle seasonal change. The pseudo future dry-bulb temperature is estimated 173 

from the actual temperature of the present climate T plus future temperature increase ΔT. 174 

The pseudo future WBGT is estimated using pseudo future dry-bulb temperature (T+ΔT), 175 

wet-bulb temperature (Tw) and globe temperature (Tg). Here, the future Tw should be 176 

calculated from the future relative humidity and the pseudo future temperature (T+ΔT). 177 

However, in this study, pseudo future Tw is calculated from the current relative humidity 178 

and the pseudo future temperature, considering the result of the previous study that the 179 

relative humidity does not change significantly in Japan in the near future (Byrne and 180 

O’Gorman 2016). Similarly, the pseudo future Tg is calculated from the current solar 181 

radiation, wind speed and the pseudo future temperature. 182 

 183 

2.4 Population data 184 

 As the current (baseline) population data by prefecture, we used the data from the 1990 185 

Population Census. As the future population data by prefecture, we used the "Future 186 

Population Estimates by Region for Japan" provided by the National Institute of Population 187 

and Social Security Research (National Institute of Population and Social Security Research 188 

2018). This dataset is a statistical future projection of the population by prefecture and 189 

municipality. This data is suitable for the purpose of this study because it is estimated by 190 

age group (0-14 years, 15-64 years, 65 years and older, and 75 years and older). 191 

   The population data here is the nighttime population for both base and near-future values. 192 

If the population of a prefecture is expressed using nighttime population, there will be an 193 

error in the risk of heatstroke if a person suffers from heatstroke during the daytime in a 194 

prefecture other than his or her home. However, this error is expected to have only a little 195 
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effect on the predictions of this study for the following two reasons. The first reason is that 196 

the difference between the daytime and nighttime populations is small except in a few 197 

prefectures. According to the 2005 census, the difference between the daytime and 198 

nighttime population is about 20% even in Tokyo, where the daytime population is much 199 

larger than the nighttime population, and about 12% even in Saitama, where the daytime 200 

population is much smaller than the nighttime population. In other prefectures, the difference 201 

between the daytime and nighttime populations was less than 10%. Another reason is that 202 

most of the people suffering from heatstroke are young children and the elderly. Since the 203 

difference between the daytime and nighttime populations occurs mainly in the age group 204 

that commutes to work or school, these are different age groups from the young children 205 

and elderly. 206 

  207 
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3. Method 208 

3.1 Model overview  209 

   In this study, the six models shown in Table 1 were created and compared for accuracy. 210 

The characteristics of the proposed models for the number of patients with heatstroke 211 

prediction are as follows: 212 

(i) The model is based on generalized linear models (GLM, Nelder and Wedderburn, 1972). 213 

(ii) The predictor variable is the number of heatstroke emergency patients. 214 

(iii) The default explanatory variable is the daily maximum temperature. (but, we can also 215 

use WBGT instead). 216 

(iv) Differences in regional, seasonal (short-term heat acclimatization), and age of 217 

heatstroke risk were considered when identifying the model parameters. 218 

 219 

   Regarding (i), GLM equation is expressed as follows. 220 

 221 

𝑙𝑜𝑔	(𝑦) 		= 𝛼 + 𝛽𝑥    (1) 222 

 223 

 224 

   Here, x is the explanatory variable, y is the objective variable, and α and β are partial 225 

regression coefficients (parameters). Each parameter was identified by the maximum 226 

likelihood method, which assumes a Poisson distribution. First, as a default model, we 227 

created a model with the estimated parameters using data from Tokyo and adapted the 228 

model to the entire country. 229 

Regarding (ii), the results of this model will provide useful information for examining the 230 

requirements of the emergency medical system in consideration of the increase in the 231 

number of patients with heatstroke due to future climate change.  232 

Regarding (iii), it is expected that the use of the daily maximum temperature leads to a 233 

high practicality in making future predictions. This is because the humidity, wind speed and 234 

solar radiation used in the WBGT estimation have tendency with lower availability and 235 
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robustness of future climate scenario data, compared with temperature. On the other hand, 236 

WBGT is possibly more suitable for explanatory variables under current climate than 237 

temperature. These pros/cons are trade-off relationship for future projection; thus, we 238 

compare the accuracies between the two models; the one uses the temperature as the 239 

explanatory variable and the other uses the WBGT. And then, we individually predict future 240 

heatstroke risk using the two models. The comparison of such models might be important 241 

attempt to understand the uncertainty among prediction models. 242 

Regarding (iv), it is expected that the proposed model will improve the accuracy of the future 243 

projection of the number of emergency transport due to heatstroke by considering the factors 244 

not limited to the meteorological field. We will describe these factors in the subsection 3.2 – 245 

3.4 in detail.  246 

 247 

3.2. Consideration of regional dependency in the model 248 

   The degree of heat tolerance of people is known to vary among regions (Keatinge et al., 249 

2000; Curriero, 2002; Gosling et al., 2007; Fujibe et al., 2018a). For example, when exposed 250 

to the same temperature, people in the cooler regions of northern Japan have a higher risk 251 

of heatstroke that people in warmer regions (Fujibe et al., 2018a). To account for these 252 

regional differences in heat tolerance, we performed parameter estimation for each 253 

prefecture individually. 254 

 255 

3.3 Consideration of short-term heat acclimatization in the model 256 

   The predictions calculated from equation (1) are problematic in that they underestimate 257 

the predictions in the early summer and overestimate the predictions in the late summer. 258 

This is because the effect of short-term acclimatization is not included when using a single 259 

equation as described before. Like Ikeda and Kusaka (2021), using an actual number of 260 

patients with heatstroke one day before and the cumulative days from the start of summer 261 
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season as explanatory variables is an example of ways to consider the short-term 262 

acclimatization effect. However, the actual number of patients with heatstroke is not able to 263 

use under the future climate projection. Cumulative days might be useful idea in the future 264 

projection because it indicates the number of hot days experienced in one summer. However, 265 

it cannot be applied to the model in this study because the timing of mid-summer may 266 

change in the long term, and in that case, simple cumulative days may not be able to 267 

represent this change. 268 

 In this study, we propose the method to divide the predicted period from June to 269 

September into three sub-periods: early summer, mid-summer, and late summer, based on 270 

the time series of daily maximum temperature (Fig. 1). The equations are respectively 271 

constructed for early summer and late summer using data in these sub-periods (equation 2 272 

and 3) to consider the effect of short-term acclimatization. These equations are respectively 273 

used in early summer and late summer instead of equation (1). 274 

 275 

𝑙𝑜𝑔	-𝑦!". 	= 𝛼!" + 𝛽!"𝑥   (2) 276 

𝑙𝑜𝑔	-𝑦!#. 	= 𝛼!# + 𝛽!#𝑥	   (3) 277 

 278 

As mentioned above, if equation (1) is used for the entire summer, it will underestimate 279 

the number of emergency cases in early-summer and overestimate the number of 280 

emergency cases in late-summer. In this study, in order to mitigate these errors, we divided 281 

the period into three parts, focusing on the temperature increase from early-summer to mid-282 

summer and the temperature decrease from mid-summer to late-summer. The period 283 

division was carried out using the values of [posterior five-day mean minus previous five-284 

day mean] (hereafter referred to as the “five-day mean difference”). This five-day mean 285 

difference represents the trend of temperature change in about 10 days. When temperature 286 
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rises over a span of about 10days, five-day mean difference shows positive value. The 287 

method of period division is as follows. The example of this method is shown in Figure 1. 288 

 289 

● Start date of the early-summer period: June 1 290 

● End date of the early-summer period: 7 days after the last day when the value of the 291 

five-day mean difference exceeded the threshold. This end date is picked from the 292 

period from June 1 to August 9. The thresholds are 50th to 95th percentile of the five-293 

day mean difference and set by prefectures. For example, at Fukuoka in 2018, the end 294 

date of the early-summer period is set to August 9 (the end of the period shown in orange 295 

in Fig.1). If the date selected is on or after August 10, the end date of the early-summer 296 

period is uniformly set to August 9. This is because the tendency to underestimate the 297 

prediction values generally finishes by early August in any year.  298 

● Start date of the late-summer period: The date when the value of five-day mean 299 

difference falls below the threshold for the first time during the period August 10 – 300 

September 30. The thresholds are fifth to 50th percentile of the five-day mean difference 301 

and set by prefectures. For example, at Fukuoka in 2018, the start date of the late-302 

summer period is set to August 14th (the start of the period shown in blue in Fig. 1).  303 

● End date of the late-summer period: September 30 304 

● Mid-summer period: From the day after the end of the early summer period to the day 305 

before the start of the late summer period (the period shown in green in Fig. 1). In mid-306 

summer period, the error in the predictions based on the non-division model is enough 307 

small and there is no need to revise them.  308 

 309 

3.4. Consideration of differences in patient’s age in the model 310 

   It is well known that the risk of heatstroke is higher in the elderly than in the young (Nakai 311 

et al., 1999; Smoyer et al., 2000; McGeehin and Mirabelli, 2001; Basu and Samet, 2002; 312 
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Flynn et al., 2005; Hajat et al., 2007; Anderson and Bell, 2009). Therefore, to account for 313 

these differences in heatstroke risk by age, we separately predicted the number of patients 314 

with heatstroke 65 and older and under 64 years of age (Figure 2). 315 

 316 

3.5. Factors not considered in the model 317 

   The following factors related to the heatstroke risk are not used in the prediction model. 318 

(i)sex (Semenza et al., 1996; Whitman et al., 1997; Havenith, 2005; Vaidyanathan et al., 319 

2020), (ii) use of air conditioners or air conditioner penetration rate (Semenza et al., 1996; 320 

Basu and Samet, 2002; Anderson and Bell, 2009), and (iii) socioeconomic status (Anderson 321 

and Bell, 2009; Hondula et al., 2015; Fujibe et al., 2020), (iv) whether they are living in a 322 

nursing home or not (Kovats and Hajat 2008), (v) clinical or pathophysiological factors, (vi) 323 

urban heat islands (Kovats and Hajat 2008), and (vii) air pollution levels (Piver et al. 1999). 324 

 (i) Sex could not be considered in this study because the dataset on the number of 325 

heatstroke emergency patients used in this study did not distinguish between men and 326 

women. 327 

 (ii) The penetration rate of air conditioners is around 90% in most prefectures, except in a 328 

few areas. The presence or absence of air conditioner use may have something to do with 329 

the presence or absence of heatstroke occurrence, but it is difficult to obtain such data at 330 

the national level. For this reason, this factor is not used in the prediction model. 331 

As for (iii) and (iv), in Japan there is almost no gap between the rich and the poor, and 332 

social security and medical insurance are almost well provided for all citizens. This leads 333 

that air conditioners are considered to be sufficiently widespread for nursing care facilities. 334 

Regarding (v), predicting what will happen to the number of people with diseases related to 335 

heat stroke risk in the future (whether it will increase or decrease) is highly uncertain and 336 

unrealistic. Regarding (vi), Japan's cities are already mature, and it is unlikely that further 337 
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urbanization will enhance the heat island effect (Adachi et al. 2012, Kusaka et al. 2016). 338 

Regarding (iiv), the effect of air pollutants on heatstroke is smaller than the effect of 339 

temperature (e.g., Shumway et al., 1988, Smoyer et al., 2000, Rainham and Smoyer-Tomic 340 

2003). The impact of air pollutants on heatstroke in Toronto 1980-1996 was small (Rainham 341 

and Smoyer-Tomic 2003). During that period, the NO2 concentration in Toronto was 0.0238 342 

ppm, while the NO2 concentration in Tokyo in 2018 was 0.015 ppm, which is lower than that 343 

in Toronto. In addition, air pollutants in Tokyo have been decreasing in recent years and are 344 

expected to continue to do so in the future (Morikawa et al., 2021). Therefore, air pollutants 345 

are not considered in this study. 346 

In addition, this study did not consider the geospatial population density pattern within a 347 

prefecture. However, if it is considered, the risk of heatstroke can be assessed in more 348 

spatial detail. This will be useful information for the optimal allocation of medical facilities. 349 

 350 

3.6. Changing explanatory variables in the model 351 

   The thermal indices, WBGT (Yaglou and Minard, 1957), and Universal Thermal Climate 352 

Index (UTCI; Fiala et al., 2012), are widely used to measure heatstroke risk in the world. In 353 

Japan, WBGT are the most widely used and also recognized as an effective guideline for 354 

work and exercise environments. Moreover, WBGT has been standardized internationally 355 

by the International Organization for Standardization. The UTCI is often used worldwide, but 356 

its application to Japanese people is considered questionable as it is based on the 357 

physiological responses of Caucasian human models. In this study, we used the daily 358 

maximum WBGT as explanatory variable as well as daily maximum temperature, and 359 

investigated the effect of different explanatory variables on the prediction accuracy.  360 

 361 

3.7. Verification of model accuracy 362 
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   Cross-validation was performed with any one year of data from 2010-2018 as test data 363 

and the remaining eight years as training data. The predictive accuracy of the models was 364 

assessed by mean absolute error (MAE) and root mean squared error (RMSE), and models 365 

with small values of each of these parameters was considered to have higher predictive 366 

accuracy. 367 

 368 

3.8.  Design of Baseline and near-future projection 369 

First, we will estimate the number of patients with heatstroke in Baseline period (1981-370 

2000) using statistical models developed in chapter 3 by prefecture. Second, we will perform 371 

the future projection of heatstroke risk in Japan by prefecture. The heatstroke risk in this 372 

study means the number of patients with heatstroke, as described in Section 1. We use 373 

Model 6 in table 1 for future projection of the number of patients with heatstroke. We perform 374 

two sensitivity experiments (Cases 2 and 3) in addition to control experiment (Case 1) to 375 

discuss the uncertainty of future projection results. The future projection experiments are 376 

summarized in Table 2. 377 

 378 

● Case 1: Future projection considering neither near future demographics nor long-term 379 

acclimatization into account. 380 

● Case 2: Future prediction considering only the near future demography. 381 

● Case 3: Future prediction considering both near future demography and long-term 382 

acclimatization. 383 

 384 

    Case 1 is an experiment to evaluate the increase in the risk of heatstroke due solely to 385 

the increase in temperature caused by climate change. In this experiment, the number of 386 

patients with heatstroke in the entire region is used as the risk indicator, but it is assumed 387 

that the demographics will not change between now and the future. In other words, the 388 
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increase in risk in this experiment is the same as the increase in the risk of heat stroke for 389 

each individual resident. 390 

   Case 2 is an experiment to evaluate the variation in the risk of heatstroke by considering 391 

the temperature increase due to climate change and demographic change from the baseline 392 

period to the near future. In this experiment, we can obtain the projected number of patients 393 

with heatstroke for the entire region at each time point in the baseline period and near future. 394 

Thus, this future projection is able to assess the risks related to the burden on the emergency 395 

medical system associated with an increase in the number of patients with heatstroke. The 396 

burden on the emergency medical system refers specifically to the shortage of emergency 397 

transport systems and inpatient beds, as indicated in Chapter 1. Therefore, it is expected 398 

that the results of this future projection will be very useful information for the government to 399 

formulate adaptation measures to climate change. 400 

      It is known that heat acclimatization can occur over a long period of time, apart from 401 

short-term acclimatization throughout the single summer. Petkova et al. (2014) noted that 402 

the excess mortality observed between 1973 and 2006 was much lower than that observed 403 

between 1900 and 1948, indicating that people have become acclimatized to the heat during 404 

this period.  They concluded that this acclimatization is due to the improvement of the living 405 

environment and the widespread use of air conditioners.  Therefore, in this study, the 406 

following experiments (a) and (b) are conducted to evaluate long-term heat acclimatization 407 

from the baseline to the near future.  In both Case 3a and Case 3b were considered 408 

population dynamics. 409 

 410 

(a) An experiment in which individuals are assumed to have heat tolerance equivalent to late 411 

summer throughout one summer season (Case 3a). 412 

(b) An experiment using a climate analogue to account for lifestyle changes in a cold region 413 

with particularly low air conditioning penetration (Case 3b). 414 
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 415 

In the prediction experiment of Case 3a, we particularly examine the effect of long-term 416 

acclimatization due to the acquisition of heat tolerance. Equation (3) for late summer, 417 

described in 3.3, is used to predict the number of patients with heatstroke in near future over 418 

the entire summer period, including early and mid-summer. This is based on the assumption 419 

that the government and individuals will have heat tolerance equivalent to that of late 420 

summer throughout the entire summer period by taking all kinds of heat countermeasures. 421 

    In the prediction experiment of Case 3b, we examined the effects of long-term 422 

acclimatization due to the acquisition of heat tolerance and lifestyle changes. In this 423 

experiment, targeting the areas are Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata, 424 

Fukushima, Nagano, and Yamanashi. These areas have low percentages of households 425 

with air conditioning during the baseline period. We first looked for the three prefectures of 426 

that the current daily maximum temperature is the close to the near future daily maximum 427 

temperature of a target prefecture. And then, using the prediction models of the selected 428 

three prefectures, the near-future projections were made for the target prefecture. This 429 

procedure was finally conducted for nine target prefectures with low air conditioner 430 

penetration rate today.  This method is a kind of the climate analog approach (e.g., Ishizaki 431 

et al. 2012). This near-future prediction is based on the assumption that the inhabitants of 432 

the regions with low air-conditioner penetration rates in the baseline period will acquire the 433 

same heat tolerance or change their lifestyles as those of other regions with similar climates 434 

in the near future.  435 

The targeting nine prefectures (Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata, 436 

Fukushima, Nagano, and Yamanashi) had particularly low air conditioner penetration rates 437 

in 1999 (specifically, 9.3% in Hokkaido, 30.2% in Aomori, 35.6% in Iwate, 59.1% in Miyagi, 438 

56.7% in Akita, 67.8% in Yamagata, 58.4% in Fukushima, 44.8% in Nagano, and 72.0% in 439 

Yamanashi). The air conditioner penetration rates in the other prefectures are all above 80% 440 
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(based on the 1999 National Survey of Actual Consumption, https://www.e-441 

stat.go.jp/dbview?sid=0000111013).  442 

The future projections are carried out using daily maximum WBGT instead of daily 443 

maximum temperature as an explanatory variable. The method of calculating the daily 444 

maximum WBGT in baseline and near-future is described in Section 2.3 and Supplement 1. 445 

  446 
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4. Accuracy of the proposed statistical models under the current climate  447 

4.1 Improvement in model accuracy by considering regional and short-term heat 448 

acclimatization and age 449 

First, we developed a model to predict the number of heatstroke emergency patients using 450 

the daily maximum temperature data for Tokyo and conducted prediction experiments and 451 

accuracy verification (cross-validation) for each prefecture (Model 1). The prediction errors 452 

of the Model 1 were 5.5 (MAE) and 10.6 (RMSE), on average, across the country. 453 

   Second, we performed prediction with Model 3 and compared the results between Models 454 

1 and 3. As a result, it was confirmed that the MAE could be reduced by about -19% (-46% 455 

to -3% in each prefecture) and the RMSE by about -25% (-48% to -0% in each prefecture) 456 

on average, across the country by taking into account regional characteristics (Figure 3).  457 

As the third experiment, we performed prediction with Model 5 and compared the results 458 

between Models 3 and 5. We found that, from the results, considering the short-term heat 459 

acclimatization (i.e., effect of Model 5) reduced the MAE by about 12% (-22% to -3% in each 460 

prefecture) and the RMSE by about 12% (-20% to -4% in each prefecture) on average, 461 

across the country.   462 

Last, we compared errors between the odd-numbered model group (Models 1, 3, 5) with 463 

the even-numbered model group (Models 2, 4, 6), indicating that the prediction accuracy on 464 

average, across the country remained almost unchanged when differences in risk by age 465 

were considered. 466 

We explicitly show the effect of improving the accuracy due to considering the period 467 

division (i.e., Model 5 effect) using data for 2018 Fukuoka Prefecture (one of the major 468 

prefectures in Japan) as an example from the cross-validation results. In 2018, a severe 469 

heat wave was experienced across Japan. Thus, predicting the number of patients with 470 

heatstroke in 2018 using climate data from 2010-2017 is a good example for a prediction 471 
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experiment for a warmer future using standard summer data. The results showed that the 472 

early summer period is characterized by having a relatively high number of patients with 473 

heatstroke and the late summer period is characterized as having relatively fewer patients 474 

(Figure 4). Note that it was also confirmed in many prefectures other than Fukuoka.  Figure 475 

4 shows the time series of daytime predictions obtained from the model with and without 476 

period division and benchmark model (i.e., Models 1, 3, vs 5). It can be seen that the model 477 

without period division (Model 3) significantly underestimates the peak in the number of 478 

patients from early July to early August. It also tends to overestimate the peak in mid to late 479 

August. On the other hand, these tendencies of underestimation and overestimation are 480 

greatly improved in the model with period division (Model 5) (32% reduction in MAE and 481 

29% reduction in RMSE). 482 

 483 

4.2 Effect of different explanatory variables on prediction accuracy 484 

The explanatory variables with the highest prediction accuracy for each region were 485 

investigated for the predictions obtained using Model 6. From the perspective of MAE 486 

(Figure 5), the daily maximum WBGT would be selected as the best explanatory variable in 487 

27 of the 46 regions. From the perspective of RMSE (Figure 6), the daily maximum WBGT 488 

would be selected as the best explanatory variable in 31 of the 46 regions. These results 489 

suggest that WBGT is better explanatory variable than daily maximum temperature for 490 

predicting the number of patients with heatstroke. This is consistent with studies that have 491 

shown that humidity is an important explanatory variable for heatstroke risk (Zhang et al, 492 

2014; Sherwood, 2018). However, in the majority of prefectures, the difference in the error 493 

between the temperature models and WBGT models was less than 10%, with a maximum 494 

of 20% (MAE) and 25% (RMSE). 495 

  496 
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5. Future projection of the number of patients with heatstroke 497 

5.1 Baseline 498 

      The estimated total number of patients with heatstroke per summer (averaged for 20 499 

years x 4 GCMs) for the Baseline period is shown in Figure 7. This figure shows that the 500 

average total number of patients with heatstroke in all prefectures is 3.8/10,000 per summer, 501 

with a spread from a maximum of 6.3/10,000 (Kagoshima) to a minimum of 1.6/10,000 502 

(Hokkaido) by prefecture. This spread reflects the regionality of both the temperature spread 503 

and tolerance to the heat.  504 

 505 

5.2 Result of near future projection only effect of climate change: Case 1 506 

      Figure 8(a) shows a map of future changes in the risk of heatstroke (for Case 1). This 507 

figure indicates that the average total number of patients with heatstroke in all prefectures 508 

is 8.9/10,000 per summer, with a large spread from the maximum value of 18.6/10,000 509 

(Kagoshima) to the minimum value of 5.2/10,000 (Tokyo) by prefecture. 510 

Figure 9 shows the rate of increase in the number of patients with heatstroke from the 511 

baseline period (1981-2000) to the near future (for Case 1) on the averaged nationwide. 512 

This figure indicates that the number of patients with heatstroke in the near future will be 513 

1.2-2.9 times (2.1 times in the ensemble average of 4 GCMs) in the case of RCP2.6 scenario 514 

and 1.4-3.3 times (2.2 times in the ensemble average of 4 GCMs) in the case of RCP8.5 515 

compared to the baseline period. This range of values is due to the uncertainty of the GCMs; 516 

since there is no significant difference in the prediction results between the RCP2.6 and 517 

RCP8.5 scenarios because of near future projection, we will only discuss the prediction 518 

results for RCP8.5 from now on. The regions with the highest increase in the heat stroke 519 

risk from the baseline period to the near future are found to be Hokkaido, northern Tohoku, 520 

southern Kanto, Tokai, and Kyushu (Fig. 10a) (see Fig.A1 in Supplement 2 for the names of 521 

Japanese prefectures and regional categories). The prefecture with the highest rate of 522 
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increase was Hokkaido, with 313.6%. One of the reasons for this may be that Hokkaido has 523 

experienced a larger increase in temperature due to climate change (about 2.2°C increase) 524 

than other regions (see Fig.A2(a) in Supplement 3). 525 

 526 

5.3 Result of future projection with population dynamics: Case 2 527 

      The risk map of patients with heatstroke in the near future (2031-2050) obtained from 528 

the future prediction experiment of Case 2 is shown in Figure 8(b). This figure indicates that 529 

the total number of patients with heatstroke nationwide is 9.6/10,000 per summer, with a 530 

large spread from a maximum of 20.4/10,000 (Kagoshima) to a minimum of 5.7/10,000 531 

(Tokyo) by prefecture. 532 

      A map of the increase rate in the number of patients with heatstroke from baseline to the 533 

near future (under RCP8.5 scenario) for each prefecture of Case 2 is shown in Fig. 10 (b). 534 

The increase rate on the average nationwide in the number of patients with heatstroke from 535 

baseline period to the near future on the average nationwide obtained from Case 2 is 234.4% 536 

in the ensemble mean of four GCMs. This increase rate on the average nationwide is about 537 

10% larger than that in Case 1. The reason must come from the differences between Cases 538 

1 and 2, that is (i) the increase in total population from the baseline to the near future, (ii) 539 

the increase in the elderly population, or (iii) both. Let us now consider which of these three 540 

factors was dominant. The population of Japan in the baseline (1990) is about 120 million, 541 

while the population in the near future (2040) will be about 110 million. Therefore, if the 542 

experiment only considers the increase or decrease in population, the number of patients 543 

with heatstroke in Case 2 should be smaller than in Case 1. This means that the reason for 544 

the increase the number of patients with heatstroke is the increase in the elderly population. 545 

In fact, the proportion of elderly people in the total population has almost tripled from 12.0% 546 

to 35.3% from baseline to near future. In all prefectures, the increase rate was higher than 547 

100%. We can see that the increase rate is high in the prefectures with large population that 548 
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include the Tokyo metropolitan area and other major urban areas. Among these prefectures, 549 

the difference in the prediction between Case 1 and Case 2 is the largest in Tokyo. In Tokyo, 550 

the rate of future increase is 360.0% in Case 2, but 239.3% in Case 1. The population of 551 

Tokyo as a whole increase by 16.6% from baseline to the near future, and the aging rate 552 

also increases by 18.6% from baseline to the near future. In other words, in Tokyo, the risk 553 

of heatstroke in Case 2 was particularly high compared to Case 1 due to two effects; total 554 

population increase and increase in the aging rate from the baseline period to the near future, 555 

in addition to climate change.  556 

The demographic changes from the baseline to the near future can be classified into the 557 

following four patterns for each prefecture. 558 

 559 

(1) The population of the prefecture increases, and the proportion of elderly people in the 560 

total population also increases. (Tokyo type) 561 

(2) The population of the prefecture increases, but the proportion of elderly people in the 562 

total population decreases. 563 

(3) The population of the prefecture decreases, but the proportion of elderly people in the 564 

total population increases. 565 

(4) The population of the prefecture decreases, and the proportion of elderly people in the 566 

total population decreases. 567 

 568 

In type (1), the number of patients with heatstroke is definitely higher in Case 2 than Case 569 

1 where only the temperature increase due to climate change is considered. However, in the 570 

case of type (3), the results of future projections will depend on whether the decline in 571 

population or the increase in the aging rate is dominant. There were no prefectures that 572 

corresponded to type (2) and (4) (i.e., prefectures where the population aging rate decreases 573 

from baseline to the near future). 574 
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      As a result of comparing Case 2 and Case 1, we found that there were 26 prefectures 575 

out of 46 prefectures where the number of patients with heatstroke was higher in Case 2. 576 

Of the 26 prefectures, 6 prefectures including Tokyo were classified as type 1 (Tokyo-type). 577 

In these prefectures, the number of patients with heatstroke will increase due to the following 578 

three factors: (1) climate change, (2) population growth, and (3) increase in the aging 579 

population. The remaining 20 prefectures were classified as type 3. In these prefectures, the 580 

number of patients with heatstroke will increase due to climate change and an increase in 581 

the aging population. Among these 20 prefectures, Fukuoka will have the highest increase 582 

rate. In Fukuoka Prefecture, the increase in the number of patients with heatstroke from 583 

baseline to the near future in Case 2 was estimated 289.8% (compared to 236.5% in Case 584 

1). 585 

      In contrast to the prefectures belonging to the type 1 or type3 (e.g., Tokyo and Fukuoka), 586 

21 of the 46 prefectures had a lower number of patients with heatstroke in Case 2 than in 587 

Case 1. The largest difference in the prediction between Cases 1 and 2 was observed in 588 

Akita Prefecture, where the increase in Case 2 was only 174.8%, but 235.9% in Case 1. In 589 

other words, the risk in Case 2 is 61.1% lower than in Case 1. Focus on demographic 590 

changes in Akita, the total population will decrease by 45.2% from the baseline period to the 591 

near future, while the population aging rate will increase by 31.9%. This situation has both 592 

a restraining effect on the number of patients with heatstroke (population decline) and an 593 

increasing effect on the number of patients with heatstroke (aging of the population). In the 594 

case of Akita, this restraining effect was dominant, which may have resulted in a lower 595 

number of patients with heatstroke in Case 2 than in Case 1. Thus, demographic changes 596 

have the effect of increasing or decreasing the number of patients with heatstroke, which is 597 

an important consideration for future projections (Table 3). 598 

 599 

5.4 Result of near future projection with consideration of long-term acclimatization: Case 3 600 
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      The map of the near-future projection for Case 3a is shown in Figure 8(c). This figure 601 

shows that the average total number of patients with heatstroke for all prefectures is 7.3 per 602 

summer, with a wide range from a maximum of 14.7 per 10,000 people (Kagoshima) to a 603 

minimum of 3.9 per 10,000 people (Tokyo) by prefecture.  604 

Figure 10(c) shows a map of the average increase rate in the number of patients with 605 

heatstroke in each prefecture in Case 3a. The average increase rate on average nationwide 606 

is 164.5 %. This is about 60% smaller than Case 1, where only the effect of temperature 607 

increase due to climate change is considered. In Hokkaido, where the increase in the 608 

number of patients with heatstroke from baseline to the near future was the highest in Case 609 

1, the value in Case 3a was reduced by about 100% compared to Case 1. 610 

     The map of the near-future projection for Case 3b is shown in Figure 8(d). This figure 611 

shows that the average total number of patients with heatstroke in the nine prefectures is 612 

5.3 people per summer, with a spread from a maximum of 10.1 people/10,000 people 613 

(Yamanashi) to a minimum of 1.4 people/10,000 people (Hokkaido) by prefecture. Figure 614 

10(d) shows a map of the increase rate in the number of patients with heatstroke from the 615 

baseline period to the near future for Case 3b. The average value for the nine prefectures is 616 

119.7%. In four of the nine prefectures, the number of emergency heatstroke cases 617 

decreased compared to the current climate (Hokkaido: 66.0%, Miyagi: 85.3%, Yamagata: 618 

77.0%, and Fukushima: 92.6%, assuming the value of baseline to be 100%). 619 

 620 

5.5 Near future projections with explanatory variables changed to daily maximum WBGT 621 

(with population dynamics) 622 

      Fig. 11 shows the map of number of patients with heatstroke when the same 623 

assumptions as in Case 1, Case 2, Case 3a, and Case 3b are made and the explanatory 624 

variable is changed to the daily maximum WBGT to predict the number of patients with 625 

heatstroke in near future. Taking Case 2 (experiment considering demographics) as an 626 
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example, the total number of patients with heatstroke is 10.4/10,000 per summer nationwide, 627 

with a large spread from the maximum value of 18.2/10,000 (Saga) to the minimum value of 628 

5.1/10,000 (Hokkaido). The difference in the prediction between the model with daily 629 

maximum WBGT and the model with daily maximum temperature is only about 9%. This 630 

result suggests that there is no significant difference in the prediction results of the two 631 

models when we focus on the number of patients with heatstroke nationwide. However, 632 

looking at each prefecture, there are some prefectures where the results of near-future 633 

prediction between the daily maximum temperature model and the daily maximum WBGT 634 

model is largely different (Tables A1(a), A1(b) in Supplement 4).  635 

  636 
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6. Conclusions 637 

   The main aim of this study was to estimate the number of ambulance transport due to heat 638 

stroke under the current and near future climates with a newly developed statistical model. 639 

The model proposed in this study has the following three characteristics: 640 

 641 

1) The dependent variable (predictor) was set as the number of heatstroke emergency 642 

patients. Directly predicting the number of emergency patients allows us to assess, not only 643 

the risk of heatstroke incidence among people, but also the burden on the emergency 644 

medical system. 645 

2) The daily maximum temperature, which is readily available from future climate prediction 646 

datasets, was selected as an explanatory variable. 647 

3) The seasonality of heatstroke risk (short-term heat acclimatization) was considered by 648 

dividing the summer period into three sub-periods: early summer, mid-summer, and late 649 

summer, with parameter identification appropriate for each period. 650 

 651 

   The proposed model considers not only temperature but also three main factors ––region, 652 

short-term heat acclimatization, and age–– that are considered to affect the prediction 653 

accuracy. The results of cross-validation showed that the prediction error was reduced by 654 

about 22% and 12% respectively due to considering regional characteristics and short-term 655 

heat acclimatization. On the other hand, it was found that the age did not much contribute 656 

to the model accuracy.  657 

   In order to confirm the practicality and validity of the proposed model, we compared its 658 

accuracy with models in which the explanatory variables were changed from the maximum 659 

temperature to WBGT. The model with WBGT was the most accurate in the majority of 660 

prefectures. However, the difference in the prediction error between the model with 661 

temperature and the model with WBGT was less than 10% in the majority of prefectures. 662 
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We therefore conclude that models using maximum temperatures instead of the WBGT as 663 

the explanatory variable can be used in practical situations by considering regional 664 

differences and short-term heat acclimatization. 665 

With the statistical model developed, three near-future projections of the heatstroke risk 666 

were made: one considering only temperature increase due to climate change (Case 1), one 667 

considering temperature increase due to climate change and demographic change (Case 668 

2), and one considering temperature increase due to climate change, demographic change, 669 

lifestyle change, and long-term heat acclimatization (Case 3a, b). In Case 1, the risk of 670 

heatstroke from the perspective of residents increases by about 2.2 times from baseline to 671 

the near future on the average nationwide (the ensemble means of 4 GCMs under the 672 

RCP8.5 scenario). The increase in risk was particularly pronounced in Hokkaido, where the 673 

risk of heatstroke increase was greater than three times. The risk of heatstroke from the 674 

perspective of the government in Case 2 increased by a factor of 2.3 from baseline to the 675 

near future on the average nationwide. This result suggests that the burden of heatstroke 676 

emergency cases on the emergency medical system in the near future cannot be ignored. 677 

The heatstroke risk in the near future in Case 2 is greater than that in Case 1 on the average 678 

nationwide. However, there were some prefectures such as in Akita that the effect of 679 

population decline on risk reduction is more dominant than the climate change on risk 680 

increase. Whether demographic change increases or decreases risk is not uniquely 681 

determined. From the prediction of Case 3a, it is found that the risk of emergency heatstroke 682 

can be reduced by about 30% on average nationwide by acquiring heat tolerance and 683 

changing lifestyles.  684 

Lifestyle changes mean various changes for the adaptation to the worse thermal 685 

environment, as represented by the widespread use of air conditioners. See Section 3.8 for 686 

details. Case 3b shows that the risk of emergency heatstroke in the near future is lower 687 
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than that in the baseline in some regions, such as Hokkaido. In other words, the results 688 

suggest that there is much room for risk control in cold regions by promoting the acquisition 689 

of heat tolerance and lifestyle changes. 690 

Finally, in order to confirm the uncertainty of the explanatory variables, a comparison 691 

experiment was conducted using the daily maximum WBGT as an explanatory variable. As 692 

a result, the difference between the prediction result of the number of patients with 693 

heatstroke by the daily maximum temperature model and that by the daily maximum 694 

temperature WBGT model was about 9% on average nationwide.  695 

 696 

  697 
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Data Availability Statement 698 

l The number of ambulance transport datasets analyzed in this study are available at 699 

[https://www.fdma.go.jp/disaster/heatstroke/post3.html]. 700 

l The current climate data (AMeDAS) analyzed in this study are available at 701 

[https://www.data.jma.go.jp/gmd/risk/obsdl]. 702 

l The statistical downscaling datasets (Nishimori et al., 2019) analyzed in this study are 703 

available at [doi:10.20783/DIAS.568]. 704 

l The population datasets analyzed in this study are available at [Baseline (1990); 705 

https://www.e-stat.go.jp/dbview?sid=0000031399] and [Near future (2040); 706 

https://www.ipss.go.jp/pp-shicyoson/j/shicyoson18/t-page.asp]. 707 

l The datasets generated and analyzed in this study (TableA1) are available at 708 

[https://doi.org/10.2151/jmsj.2022-030.]. 709 

 710 

  711 
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Supplement 712 

Supplement 1: How to calculate the maximum daily WBGT 713 

In this study, the following equation was used to calculate WBGT (Yaglou and Minard, 1957). 714 

Day and night were discriminated based on the value of horizontal-plane insolation; a 715 

positive horizontal-plane insolation value was judged to be daytime and zero was judged to 716 

be nighttime. 717 

 718 

𝑊𝐵𝐺𝑇 = 0.7𝑇$ + 0.2𝑇% + 0.1𝑇&   (daytime) 719 

𝑊𝐵𝐺𝑇 = 0.7𝑇$ + 0.3𝑇&   (nighttime) 720 

 721 

The dry-bulb and wet-bulb temperatures were based on the aforementioned values. The 722 

black-bulb temperature (Tg) was estimated using the equation by Okada and Kusaka (2013). 723 

When using this equation, the values of wind speed and solar radiation are also required. 724 

The wind speed was the spatial average of AMeDAS observations, as well as the 725 

temperature. Solar radiation was measured by the meteorological observatory. However, 726 

some meteorological observatories do not observe insolation. In such cases, the values 727 

were estimated from the time series of sunshine duration using the equation by Kondo 728 

(1994) and Kondo and Xu (1997). The daily maximum WBGT was obtained from the hourly 729 

values of WBGT obtained using this method. 730 

 731 

  732 
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Supplement 2: Regional Classification of Japan 733 

 734 

 735 

 736 

Fig. A1: Regional classifications and names of major prefectures in Japan. Based on the 737 

forecast categories used in the JMA's regional seasonal forecasts. Note that this 738 

classification is slightly different from the standard classification by the government. 739 

  740 
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Supplement 3: Increase in daily maximum temperature and daily maximum WBGT from 741 

the baseline period to the near future period 742 

 743 

 744 
（a） 745 

 746 
（b） 747 

Fig. A2: Increase in (a) daily minimum temperature and (b) daily maximum WBGT (°C) from 748 

the baseline period to the near future period for each prefecture. Daily maximum 749 

temperature and daily maximum WBGT were ensemble averages from four GCMs, 750 

GFDL-CM3, HadGEM2-ES, MIROC5, and MRI-CGCM3 (RCP8.5). 751 

  752 
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Supplement 4: The number of people transported to emergency rooms for heat stroke in 753 

each experiment (Beseline, Case1, Case2, Case3a and Case3b) and the days with high 754 

risk of heat stroke. 755 

 756 

Table A1: The number of heatstroke emergency patients in summer and days with high 757 

risk of heat stroke in each prefecture predicted in this study. (a) explanatory variable is 758 

daily maximum temperature, (b) daily maximum temperature is daily maximum WBGT. 759 

The days with high risk of heat stroke are (a) extremely hot days (daily maximum 760 

temperature ≧ 35℃) and (b) dangerous days (daily maximum WBGT ≧ 31℃). 761 

 762 

(a) 763 

 764 

Pref. Number of 
extremely hot 
days  
 
Beseline 

Number of 
extremely hot 
days 
 
Near future 

Number of 
patients with 
heatstroke 
 
Baseline 

Number of 
patients with 
heatstroke 
 
Near future 
(Case 1) 

Number of 
patients with 
heatstroke 
 
Near future 
(Case 2) 

Number of 
patients with 
heatstroke 
 
Near future 
(Case 3a) 

Number of 
patients with 
heatstroke 
 
Near future 
(Case 3b) 

Hokkaido 0.0 0.6 914.9 3018.1 3385.5 914.9 603.5 

Aomori 0.1 1.7 381.3 888.1 1108.3 381.3 493.3 

Iwate 0.3 2.6 433.9 907.4 1099.2 433.9 595.9 

Miyagi 0.3 2.1 590.6 1483.2 1603.9 590.6 504.1 

Akita 0.5 5.1 432.8 756.5 1026.5 432.8 607.7 

Yamagata 0.6 5.8 373.1 715.9 873.5 373.1 287.3 

Fukushima 0.2 3.9 832.4 1654.7 1924.8 832.4 770.9 

Ibaraki 1.2 10.5 922.6 2117.5 2368.9 922.6 − 

Tochigi 0.1 3.4 566.9 1389.8 1523.9 566.9 − 

Gunma 1.0 9.6 833.6 1901.2 2095.3 833.6 − 

Saitama 11.0 33.9 1865.9 5624.3 5515.4 1865.9 − 
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Chiba 0.7 10.1 1620.3 5109.1 5225.9 1620.3 − 

Tokyo 2.8 17.0 2161.1 7778.3 7058.8 2161.1 − 

Kanagawa 0.5 9.8 1587.4 5777.3 5652.2 1587.4 − 

Niigata 0.6 8.4 954.2 1892.4 2222.5 954.2 − 

Toyama 1.2 14.2 272.2 567.0 646.5 272.2 − 

Ishikawa 0.6 9.7 399.6 951.5 1025.2 399.6 − 

Fukui 1.7 18.0 257.2 539.4 605.5 257.2 − 

Yamanashi 1.8 14.5 281.1 597.1 689.8 281.1 653.9 

Nagano 0.0 1.9 594.3 1328.1 1482.3 594.3 690.4 

Gifu 0.9 12.6 729.0 1559.9 1773.2 729.0 − 

Shizuoka 0.5 7.1 2039.9 5479.4 6064.3 2039.9 − 

Aichi 2.8 23.3 2326.4 7074.3 6831.0 2326.4 − 

Mie 1.9 16.8 731.1 1748.5 1950.8 731.1 − 

Shiga 0.8 12.0 361.2 1081.2 1070.5 361.2 − 

Kyoto 4.8 29.4 1096.2 2686.3 2836.2 1096.2 − 

Osaka 3.2 27.1 2899.6 7405.1 7854.7 2899.6 − 

Hyogo 1.2 16.3 2194.9 5853.7 6099.3 2194.9 − 

Nara 2.1 15.4 571.6 1126.4 1317.7 571.6 − 

Wakayama 0.2 4.7 600.4 1052.8 1294.9 600.4 − 

Tottori 1.2 11.1 290.7 547.6 620.4 290.7 − 

Shimane 0.6 7.4 339.1 607.1 716.3 339.1 − 

Okayama 1.9 15.9 1024.9 2244.6 2403.7 1024.9 − 
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Hiroshima 0.7 8.1 1079.9 2508.1 2630.9 1079.9 − 

Yamaguchi 0.8 10.1 594.8 1161.8 1423.0 594.8 − 

Tokushima 0.4 7.4 330.6 623.8 748.6 330.6 − 

Kagawa 3.6 27.5 504.0 1123.1 1247.9 504.0 − 

Ehime 0.4 8.6 706.1 1398.7 1641.3 706.1 − 

Kochi 0.1 3.2 426.1 802.7 1013.2 426.1 − 

Fukuoka 2.1 21.4 1555.5 4508.4 4535.8 1555.5 − 

Saga 4.0 26.6 456.4 941.9 1062.3 456.4 − 

Nagasaki 0.0 2.7 705.7 1485.0 1763.3 705.7 − 

Kumamoto 1.1 17.9 955.9 2115.4 2333.3 955.9 − 

Oita 0.6 9.5 511.1 1068.7 1210.6 511.1 − 

Miyazaki 0.8 10.9 620.5 1316.0 1533.3 620.5 − 

Kagoshima 0.1 3.2 1126.5 2622.2 3066.6 1126.5 − 
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 767 

(b) 768 

 769 

Pref. Number of 
dangerous 
days 
 
 
Beseline 

Number of 
dangerous 
days 
 
 
Near future 

Number of 
patients 
with 
heatstroke 
 
Baseline 

Number of 
patients 
with 
heatstroke 
 
Near future 
(Case 1) 

Number of 
patients 
with 
heatstroke 
 
Near future 
(Case 2) 

Number of 
patients 
with 
heatstroke 
 
Near future 
(Case 3a) 

Number of 
patients 
with 
heatstroke 
 
Near future 
(Case 3b) 

Hokkaido 0.0 0.1 753.0 2047.3 2169.6 1463.9 532.9 

Aomori 0.2 2.2 300.5 763.2 679.0 499.6 760.4 

Iwate 0.0 2.1 350.3 888.3 818.5 567.7 964.5 

Miyagi 0.2 5.5 579.9 1507.2 1746.5 1208.7 1317.7 

Akita 0.3 5.3 353.7 891.8 669.6 603.8 983.2 

Yamagata 0.0 4.1 362.1 910.9 802.5 583.6 773.4 

Fukushima 0.0 1.4 692.2 1692.2 1619.2 1156.0 1035.1 

Ibaraki 3.1 18.7 1052.6 2708.6 2885.0 2324.7 − 

Tochigi 0.0 4.2 521.7 1340.6 1482.1 1214.6 − 

Gunma 0.2 5.3 792.6 1999.4 2126.4 1625.8 − 

Saitama 4.4 23.9 2149.4 5376.9 7803.5 5795.4 − 

Chiba 1.5 18.5 1770.2 4624.7 6051.3 5148.1 − 

Tokyo 0.0 6.2 2382.9 7860.8 12166.3 7247.1 − 

Kanagawa 0.5 13.0 1557.1 4639.6 6581.0 4792.1 − 

Niigata 1.0 12.7 852.0 2112.8 1970.5 1623.1 − 

Toyama 0.6 15.0 243.8 611.5 622.3 474.0 − 

Ishikawa 0.4 10.2 418.1 1108.9 1216.8 1044.5 − 

Fukui 0.0 10.2 211.0 571.3 580.1 452.5 − 

Yamanashi 0.0 5.7 305.4 750.3 767.7 557.1 912.5 
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Nagano 0.0 0.7 430.6 992.1 1,030 800.1 894.0 

Gifu 0.1 7.3 866.8 2103.3 2135.1 1587.0 − 

Shizuoka 0.1 6.3 1031.0 2538.5 2771.2 2356.6 − 

Aichi 0.4 13.7 2342.4 6075.4 8717.1 6534.6 − 

Mie 3.2 21.2 785.8 2009.3 2094.4 1526.7 − 

Shiga 2.8 19.6 349.0 814.9 1106.3 828.2 − 

Kyoto 0.1 12.6 1006.6 2341.9 2783.6 2077.8 − 

Osaka 0.3 10.7 2329.8 6048.6 7166.3 5834.3 − 

Hyogo 1.2 16.5 1787.2 4162.9 5088.0 4088.8 − 

Nara 0.4 14.9 587.9 1341.2 1331.5 1076.8 − 

Wakayama 0.2 8.6 511.4 1119.4 950.2 676.4 − 

Tottori 0.0 5.8 263.9 697.2 661.8 541.5 − 

Shimane 0.1 11.2 312.5 755.8 668.9 527.1 − 

Okayama 0.4 9.1 925.7 2168.4 2400.3 1919.7 − 

Hiroshima 0.6 14.2 1353.9 3061.8 3456.4 2112.2 − 

Yamaguchi 4.1 25.4 514.4 1321.1 1096.8 822.5 − 

Tokushima 2.4 20.3 347.5 784.5 719.3 578.7 − 

Kagawa 2.2 25.7 492.2 1200.9 1241.2 875.8 − 

Ehime 0.4 14.1 678.6 1604.7 1480.7 1192.3 − 

Kochi 0.9 12.3 317.4 762.0 634.0 468.5 − 

Fukuoka 4.3 28.3 1352.9 3613.8 4513.7 3612.8 − 

Saga 4.5 30.6 533.8 1364.0 1264.9 909.5 − 
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Nagasaki 0.3 13.8 599.1 1537.8 1366.3 1179.6 − 

Kumamoto 0.6 20.4 844.3 2263.9 2293.8 1882.5 − 

Oita 2.0 23.6 531.6 1297.2 1317.9 957.3 − 

Miyazaki 3.2 26.6 479.7 1161.5 1104.8 904.3 − 

Kagoshima 0.6 19.8 842.6 2089.3 1911.8 1530.9 − 
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 956 

List of Figures 957 

 958 

Fig. 1 An example of period division used in this study. 959 

 960 

Fig. 2 Scatterplot showing the relationship between the daily maximum temperature and 961 

the number of patients in Fukuoka Prefecture in 2018. Red, green, and blue plots 962 

indicate early summer, mid-summer, and late summer periods, respectively. The lines 963 

are prediction equations fitted from the data indicated by the plots. The scatterplot (a) 964 

shows the number of patients who are under 65 years of age. The scatterplot (b) 965 

shows the number of patients who are 65 years of age or older. The scatterplot (c) 966 

shows the number of patients who are all ages. 967 

 968 

Fig. 3 (a) MAE and (b) RMSE of the number of patients in 2018 predicted using each 969 

model. Box whiskers represent the range in values obtained for 46 regions. To remove 970 

the effect of population size, MAE and RMSE were plotted as normalized values per 971 

10,000 people. 972 

 973 

Fig. 4  Time series of the daily maximum temperature and actual and predicted number of 974 

patients in Fukuoka Prefecture in 2018. The black line is the daily maximum 975 
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temperature, the gray bar is the observed number of patients, the blue line is the 976 

number of patients predicted by the benchmark model (Model 1) the green line is the 977 

number of patients predicted by the model that fitted with data for each prefecture 978 

(Model 3), and the orange line is the number of patients predicted by the model that 979 

does consider short-term heat acclimatization (Model 5). 980 

 981 

Fig. 5   Better explanatory variables (daily maximum temperature or daily maximum 982 

WBGT) for prediction. MAE is used as an evaluation criterion for prediction accuracy. 983 

Model 6 was used. Green: Prefectures where the daily maximum temperature model 984 

produces higher prediction accuracy. Blue: Prefectures where the daily maximum 985 

WBGT model produces higher prediction accuracy. White: Prefectures where the 986 

difference in the prediction between the daily maximum temperature model and the 987 

daily maximum WBGT model is 4% or less. The color shading represents (1-(MAE of 988 

the model with high accuracy) / (MAE of the model with low accuracy)*100 (%). 989 

 990 

Fig. 6 Better explanatory variables (daily maximum temperature or daily maximum WBGT) 991 

for prediction. RMSE is used as an evaluation criterion for prediction accuracy. Model 992 

6 was used. Green: Prefectures where the daily maximum temperature model 993 

produces higher prediction accuracy. Blue: Prefectures where the daily maximum 994 

WBGT model produces higher prediction accuracy. White: Prefectures where the 995 

difference in the prediction between the daily maximum temperature model and the 996 

daily maximum WBGT model is 4% or less. The color shading represents (1-(RMSE of 997 

the model with high accuracy) / (RMSE of the model with low accuracy)*100 (%). 998 

 999 

Fig. 7 The number of patients with heatstroke per 10,000 people (average per summer) 1000 

during the baseline period (1981-2000) estimated by the prediction model. 1001 
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 1002 

Fig. 8 Predicted number of patients with heatstroke (per 10,000 population) under the near-1003 

future climate under the RCP8.5 scenario, using daily maximum temperature as the 1004 

explanatory variable. (a) prediction without population dynamics (Case 1), (b) prediction 1005 

with population dynamics (Case 2), (c) prediction using the late summer equation (Case 1006 

3a), and (d) prediction using the climate analog (Case 3b). The areas shaded by gray 1007 

color are outside of analysis target. 1008 

 1009 

 1010 

Fig.9 The rate of increase in the number of patients with heatstroke in Japan from baseline 1011 

to the near future.  Relative value when the number of patients with heatstroke during 1012 

the Baseline period is set to 1. 1013 

 1014 

Fig. 10 The rate of increase in the patients with heatstroke from baseline period to the near 1015 

future (RCP8.5 scenario) using daily maximum temperature as the explanatory variable. 1016 

(a) prediction without population dynamics (Case 1), (b) prediction with population 1017 

dynamics (Case 2), (c) prediction using the late summer equation (Case 3a), and (d) 1018 

prediction using the climate analog (Case 3b). The areas shaded by gray color are 1019 

outside of analysis target. 1020 

 1021 

Fig.11 Predicted number of patients with heatstroke (per 10,000 population) under the 1022 

RCP8.5 scenario near-future climate with daily maximum WBGT as explanatory variable. 1023 

(a) prediction without population dynamics (Case 1), (b) prediction with population 1024 

dynamics (Case 2), (c) prediction using the late summer equation (Case 3a), and (d) 1025 

prediction using the climate analog (Case 3b). The areas shaded by gray color are 1026 

outside of analysis target. 1027 
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 1030 

Fig. 1 An example of period division used in this study. 1031 

  1032 



51 

 

      1033 

(a)           (b) 1034 

 1035 

 1036 

(c) 1037 

 1038 

Fig. 2 Scatterplot showing the relationship between the daily maximum temperature and 1039 

the number of patients in Fukuoka Prefecture in 2018. Red, green, and blue plots 1040 

indicate early summer, mid-summer, and late summer periods, respectively. The lines 1041 

are prediction equations fitted from the data indicated by the plots. The scatterplot (a) 1042 

shows the number of patients who are under 65 years of age. The scatterplot (b) 1043 

shows the number of patients who are 65 years of age or older. The scatterplot (c) 1044 

shows the number of patients who are all ages. 1045 
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 1047 

 1048 

(a) 1049 

 1050 

 1051 

(b) 1052 

 1053 

Fig. 3 (a) MAE and (b) RMSE of the number of patients in 2018 predicted using each 1054 

model. Box whiskers represent the range in values obtained for 46 regions. To remove 1055 

the effect of population size, MAE and RMSE were plotted as normalized values per 1056 

10,000 people. 1057 
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 1058 

 1059 

 1060 

 1061 

Fig. 4  Time series of the daily maximum temperature and actual and predicted number of 1062 

patients in Fukuoka Prefecture in 2018. The black line is the daily maximum 1063 

temperature, the gray bar is the observed number of patients, the blue line is the 1064 

number of patients predicted by the benchmark model (Model 1), the green line is the 1065 

number of patients predicted by the model that fitted with data for each prefecture 1066 

(Model 3), and the orange line is the number of patients predicted by the model that 1067 

does consider short-term heat acclimatization (Model 5). 1068 

 1069 

  1070 
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 1071 

 1072 

 1073 

Fig. 5   Better explanatory variables (daily maximum temperature or daily maximum 1074 

WBGT) for prediction. MAE is used as an evaluation criterion for prediction accuracy. 1075 

Model 6 was used. Green: Prefectures where the daily maximum temperature model 1076 

produces higher prediction accuracy. Blue: Prefectures where the daily maximum 1077 

WBGT model produces higher prediction accuracy. White: Prefectures where the 1078 

difference in the prediction between the daily maximum temperature model and the 1079 

daily maximum WBGT model is 4% or less. The color shading represents (1-(MAE of 1080 

the model with high accuracy) / (MAE of the model with low accuracy)*100 (%). 1081 
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 1084 

 1085 

 1086 

Fig. 6 Better explanatory variables (daily maximum temperature or daily maximum WBGT) 1087 

for prediction. RMSE is used as an evaluation criterion for prediction accuracy. Model 1088 

6 was used. Green: Prefectures where the daily maximum temperature model 1089 

produces higher prediction accuracy. Blue: Prefectures where the daily maximum 1090 

WBGT model produces higher prediction accuracy. White: Prefectures where the 1091 

difference in the prediction between the daily maximum temperature model and the 1092 

daily maximum WBGT model is 4% or less. The color shading represents (1-(RMSE of 1093 

the model with high accuracy) / (RMSE of the model with low accuracy)*100 (%). 1094 
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 1097 

 1098 

 1099 

Fig. 7 The number of patients with heatstroke per 10,000 people (average per summer) 1100 

during the baseline period (1981-2000) estimated by the prediction model. 1101 

 1102 

  1103 



57 

 

 1104 

 1105 
(a)       (b) 1106 

 1107 
 1108 

 1109 

 1110 

(c)       (d) 1111 

 1112 

 1113 

Fig. 8 Predicted number of patients with heatstroke (per 10,000 population) under the near-1114 

future climate under the RCP8.5 scenario, using daily maximum temperature as the 1115 

explanatory variable. (a) prediction without population dynamics (Case 1), (b) prediction 1116 

with population dynamics (Case 2), (c) prediction using the late summer equation (Case 1117 

3a), and (d) prediction using the climate analog (Case 3b). The areas shaded by gray 1118 

color are outside of analysis target. 1119 
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 1123 

 1124 

 1125 

Fig.9 The rate of increase in the number of patients with heatstroke in Japan from baseline 1126 

to the near future.  Relative value when the number of patients with heatstroke during 1127 

the Baseline period is set to 1. 1128 
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 1131 

 1132 

(a)       (b) 1133 

 1134 

 1135 

(c)       (d) 1136 

 1137 

Fig. 10 The rate of increase in the patients with heatstroke from baseline period to the near 1138 

future (RCP8.5 scenario) using daily maximum temperature as the explanatory variable. 1139 

(a) prediction without population dynamics (Case 1), (b) prediction with population 1140 

dynamics (Case 2), (c) prediction using the late summer equation (Case 3a), and (d) 1141 

prediction using the climate analog (Case 3b). The areas shaded by gray color are 1142 

outside of analysis target. 1143 
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 1147 

 1148 
(a)       (b) 1149 

 1150 
 1151 

 1152 

 1153 

(c)       (d) 1154 

 1155 

Fig.11 Predicted number of patients with heatstroke (per 10,000 population) under the 1156 

RCP8.5 scenario near-future climate with daily maximum WBGT as explanatory variable. 1157 

(a) prediction without population dynamics (Case 1), (b) prediction with population 1158 

dynamics (Case 2), (c) prediction using the late summer equation (Case 3a), and (d) 1159 

prediction using the climate analog (Case 3b). The areas shaded by gray color are 1160 

outside of analysis target. 1161 
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 1176 

Table 1 List of models that were compared for accuracy.  1177 

 1178 

 1179 

  
Fitted Data   

Tokyo Each Prefecture Period Division Age Group 

Model 1 ○    

Model 2 ○   ○ 

Model 3  ○   

Model 4  ○  ○ 

Model 5  ○ ○  

Model 6   ○ ○ ○ 
 1180 
 1181 

 1182 
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 1184 

Table 2 List of future projection experiments and featured factor. 1185 

 1186 

 1187 
 1188 

  Climate Change Scenarios Population  Long-term Acclimatization 

Case 1  RCP 8.5 1990 ― 

Case 2  RCP 8.5 2040 ― 

Case 3a RCP 8.5 2040 Late summer equation 

Case 3b RCP 8.5 2040 Climate analog 
 1189 
 1190 

 1191 
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 1193 

 1194 

Table 3 Patterns of change in population and increase/decrease in risk of heatstroke 1195 

emergencies from baseline period to near future. 1196 

 1197 

 1198 

  
The proportion of elderly people in the total population 

Increase Decrease 

Population 
  

Increase Prefectures at increased risk：6 ― 

Decrease 
Prefectures at increased risk：20 

― 
Prefectures at decreased risk：20 
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