

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2022-045 J-STAGE Advance published date: July 22nd, 2022 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

1	Heavy Snowfall at Iwamizawa Influenced
2	by the Tsushima Warm Current
3	
4	Kazutoshi SATO ¹ , Takao KAMEDA, and Tatsuo
5	SHIRAKAWA
6	
7	Kitami Institute of Technology, Kitami 090-8507, Japan
8	
9	Submitted to Journal of the Meteorological Society of Japan
10	September 3, 2021
11	Revised to Journal of the Meteorological Society of Japan
12	July 1, 2022
13	
14	
15	1) Corresponding author: Kazutoshi Sato, Kitami Institute of Technology, 165 Koen-
16	cho, Kitami 090-8507, Hokkaido, Japan
17	Email: satokazu@mail.kitami-it.ac.jp
18	Tel: +81-1-5726-9429

19 Abstract

20 Iwamizawa on the Sea of Japan side of Hokkaido is one of the cities in Japan that 21 experience frequent heavy snowfall events. Warm surface-layer ocean anomalies over 22 the Sea of Japan can induce heavy snowfall over the Sea of Japan side of Japan; 23 however, the relationship between ocean temperature over the northern Sea of Japan 24 and snowfall events at Iwamizawa remains uncertain. This study used reanalysis data to 25 investigate atmospheric and oceanic circulation anomalies associated with each 26 anomalous heavy snowfall winter month at Iwamizawa. During all anomalous snowfall 27 winter months at Iwamizawa, a cold air anomaly with northwesterly winds existed over 28 the Far East that was associated with a dipole pattern with anticyclone anomalies over 29 the north coast of the Eurasian Continent and cyclonic anomalies extending zonally 30 over the Far East and northern Pacific Ocean. The surface cold air temperature and 31 strong wind speed anomalies are major factor for anomalous upward turbulent heat flux 32 over the northern Sea of Japan during all anomalous snowfall winter months at 33 Iwamizawa. Additionally, during anomalous snowfall January, warm surface-layer 34 ocean anomaly over the northern Sea of Japan, which preceded the heavy snowfall 35 events at Iwamizawa by two months, has an important role in upward turbulent heat 36 flux anomaly. This preceding warm ocean temperature anomaly was associated with a 37 strong Tsushima Warm Current anomaly. Results showed that warm surface-layer 38 ocean anomaly over the northern Sea of Japan that precedes anomalous cold advection 39 from the Eurasian Continent has also large impact on producing heavy snowfall events 40 over western Hokkaido coastal regions near Iwamizawa in January.

41

42 Keywords: Tsushima Warm Current; Sea of Japan; heavy snowfall; Iwamizawa

 $\mathbf{2}$

43 1. Introduction

44 During the winter monsoon season, the Siberian High over Eurasia and a 45 developed cyclone over the North Pacific create a strong surface pressure gradient over 46 East Asia. The northwesterly winter monsoon associated with this strong pressure 47 gradient leads to outbreaks of cold air from the Eurasian Continent toward Japan. The 48 relatively warm ocean provides a rich supply of water vapor and heat to the cold and 49 dry air moving over the Sea of Japan, resulting in development of convective clouds 50 that can cause extreme weather with heavy snowfall (e.g., Ninomiya 1968; Yoshizaki et 51 al. 2004; Inoue et al. 2005; Sato et al. 2017). 52 Takano et al. (2008) reported that air mass modification over the Sea of Japan 53 is strongly related to a large-scale atmospheric north-south dipole pattern (similar to the 54 western Pacific (WP) pattern). When the phase of the WP pattern is negative (positive), 55 the winter monsoon is enhanced (reduced) over East Asia, causing anomalous cold 56 (warm) winters over the Far East (Takaya and Nakamura 2013). Additionally, cold air 57 over the Eurasian Continent moves eastward with the movement of a trough in the 58 middle troposphere (Hori et al. 2011). Several mechanisms regarding anomalous cold 59 temperature over the Eurasian Continent have been reported in previous studies (Honda 60 et al. 2009; Inoue et al. 2012; Sato et al., 2014, Nakanowatari et al. 2014, Mori et al. 61 2014, Nakamura et al. 2015). The decline of sea ice over the Barents and Kara seas 62 strengthens the Siberian High through enhanced release of oceanic heat (Honda et al. 63 2009; Nakanowatari et al. 2014, Mori et al. 2014), and a poleward shift of cyclone 64 tracks (Inoue et al. 2012) leads to anomalous cold temperatures over the Eurasian

65	Continent. The atmospheric response to changes in the Atlantic warm ocean current
66	(i.e., the Gulf Stream) has direct and indirect effects on cold temperature anomalies over
67	Eurasia (Sato et al. 2014).
68	Anomalous warm sea surface temperature (SST) around Japan has direct
69	impact on the weather over Japan (Manda et al. 2014, Ando et al. 2015). Therefore, the
70	relationships between SST over the Sea of Japan and precipitation over the Sea of Japan
71	side of Japan have been investigated in previous studies (Sato and Sugimoto 2013,
72	Takahashi et al. 2013, Takahashi and Idenaga 2013, Yasunaga and Tomochika 2017).
73	During autumn and winter, positive SST trends are observed over the northern Sea of
74	Japan from the 1980s to the 2000s or 2010s (Sato and Sugimoto 2013, Yasunaga and
75	Tomochika 2017). Numerical experiments have revealed that anomalous upward latent
76	heat flux associated with the warm SST anomaly over the Sea of Japan enhances
77	snowfall over Sea of Japan side regions of Japan (Takahashi et al. 2013). During winter,
78	the amount of precipitation over Sea of Japan side regions can increase on the timescale
79	of a few days following an increase in SST over the Sea of Japan (Takahashi and
80	Idenaga 2013). In contrast, in the same winter month, there is no relationship between
81	monthly mean precipitation over the Sea of Japan side and SST over the Sea of Japan
82	(Yasunaga and Tomochika 2017). This is because there are month-to-month variances
83	of SST over the Sea of Japan in winter months during a strong winter monsoon (Takano
84	et al. 2008). Therefore, the amounts of monthly precipitation over Sea of Japan side
85	regions in December are correlated significantly with the 1-month prior SST over the
86	Sea of Japan (Takano et al. 2008, Yasunaga and Tomochika 2017). Warm ocean

87	currents have important roles in changing local and large-scale precipitation systems
88	(Hirose and Fukudome 2006; Kunoki et al. 2015, Sato et al. 2014, 2015, 2021; Minobe
89	et al. 2008, 2010; Minobe and Takebayashi 2015). Specifically, in the Sea of Japan, the
90	stronger transport of the Tsushima Warm Current (TWC) during autumn causes a warm
91	SST anomaly over the southern Sea of Japan, enhancing winter snowfall over the Sea of
92	Japan side of Japan (Hirose and Fukudome 2006; Hirose et al. 2009; Sugimoto and
93	Hirose 2014).
94	Numerous studies have investigated snowfall amounts over Hokkaido, which
95	is one of the regions of Japan that experience heavy snowfall during the winter
96	monsoon season (Campbell et al. 2018; Shirakawa and Kameda 2019; Inatsu et al.
97	2020; Kawazoe et al. 2020; Takahashi 2021). When the northwesterly winter monsoon
98	is intensified over the Sea of Japan, the cloud band associated with heavy snowfall
99	events can be observed to extend from the northern Sea of Japan to western Hokkaido
100	(Muramatsu 1979; Fujiyoshi et al. 1992, 1998; Katsumata et al. 1998, 2000; Yoshimoto
101	et al. 2000). A part of cloud band initially forms on the lee side of Russia's Sikhote-Alin
102	mountain range on the east coast of the Eurasian Continent owing to topographic effects
103	of the mountains (Muramatsu 1979; Ohtake et al. 2008). Additionally, convective
104	clouds associated with mesoscale systems (i.e., polar lows) bring heavy snowfall over
105	western parts of Hokkaido (Ninomiya 1994). When the Sea of Okhotsk is covered with
106	sea ice, cold advection from the sea ice area influences on formations and
107	intensifications of these mesocale systems (Tsuboki et al. 1989).

 $\mathbf{5}$

108	The continual cloud band is formed over the Sea of Japan during the winter
109	months, leading to relatively large climatological total amounts of snowfall in western
110	parts of Hokkaido compared with eastern parts of Hokkaido (Fig. 1). Specifically,
111	anomalous heavy snowfall at Iwamizawa in western Hokkaido is often greater in
112	comparison with that at other stations in Hokkaido. During the 2020/2021 winter
113	season, Iwamizawa experienced four extreme heavy snowfall events (Fig. 2a). Although
114	a strong snowfall band associated with a mesoscale system was observed during the
115	snowfall event near the end of February 2021 (Fig. 2e), snow cloud bands formed over
116	western coastal regions of Hokkaido during the other three snowfall events that
117	occurred in December 2020 and early February 2021 (Fig. 2b-d). There has been no
118	study previously on the relationship between the surface-layer ocean temperature
119	anomaly over the northern Sea of Japan and anomalous snowfall at Iwamizawa. This
120	study investigated the atmospheric and oceanic circulation anomalies associated with
121	anomalous winter snowfall at Iwamizawa.

123 2. Data and Method

To investigate the atmospheric and oceanic fields, monthly mean Climate
Forecast System Reanalysis data from January 1979 to March 2011 and Climate
Forecast System Version 2 data after April 2011 were used in this study. The National
Centers for Environmental Prediction produces both these datasets on 0.5° × 0.5° grids
(Saha et al. 2010, 2014). The data include meteorological (e.g., temperature, wind,
specific humidity, geopotential height, turbulent heat flux and radiative heat flux) and

130	oceanographic (e.g., potential ocean temperature and ocean current) parameters at
131	various levels. The atmospheric fields during winter 2020/2021 were based on Japan
132	Meteorological Agency (JMA) Meso Scale Model data (MSM), which are provided
133	after July 2002 (Fig. 2b-d). We supplemented in situ data with gridded analyses of
134	precipitation derived from radar data after June 2003 provided by the JMA.
135	Additionally, we used monthly total snowfall (MTS) data from 116 stations of the
136	Automated Meteorological Data Acquisition System (AMeDAS) in Hokkaido (Fig. 1).
137	To understand interannual snowfall variations at Iwamizawa, we focused on
138	time series of MTS anomalies during each winter month (i.e., December, January, and
139	February) at Iwamizawa (Fig. 3). Referring to this time series, we selected typical heavy
140	and light snowfall years for which snowfall values exceed 0.7 standard deviations for
141	each winter month. To compare the broad atmospheric and oceanic circulations, we
142	compiled difference maps of atmospheric and oceanic fields by subtracting composites
143	for heavy versus light snowfall winter months. Moreover, we calculated correlation
144	coefficients for MTS at Iwamizawa with atmospheric and oceanic parameters for all
145	winter months.
146	To assess the contributions from SST anomaly (SSTA), surface air
147	temperature anomaly (SATA) and surface wind speed anomaly (SWSA) to sensible and
148	latent heat flux anomalies, we used the equations reported by Tanimoto et al. (2003).
149	The sensible and latent heat fluxes are given as the sum of climatological mean and
150	anomaly. Therefore, the anomalous sensible and latent heat fluxes are expressed below:
151	

 $\overline{7}$

152
$$Q'_E = Q_E - \overline{Q_E} = \rho_a L C_E \{ \overline{U} q'_s - \overline{U} q'_a + U'(\overline{q_s} - \overline{q_a}) + [U'(q'_s - q'_a) - \overline{U'(q'_s - q'_a)}] \}$$
(1)

153
$$Q'_{H} = Q_{H} - \overline{Q_{H}} = \rho_{a}c_{p}C_{H}\{\overline{U}T'_{s} - \overline{U}T'_{a} + U'(\overline{T}_{s} - \overline{T}_{a}) + [U'(T'_{s} - T'_{a}) - \overline{U'(T'_{s} - T'_{a})}]\}$$
(2)

 Q_E and Q_H are the latent and sensible heat fluxes, respectively. Here, ρ_a is the air 155 156 density with the value of 1.293 kg m⁻³, L the latent heat of vaporization for water with the value of 2.50×10^6 J kg⁻¹, c_p the specific heat of air at constant pressure with the 157 158 value of 1004 J kg⁻¹ K⁻¹, U is the wind speed, and C_E and C_H are transfer coefficients for 159 Q_E and Q_H , respectively. Subscripts s and a indicate values at the sea surface and 2 m 160 height, respectively. Overbars and primes indicate the climatological mean and the 161 deviation from it. The first three terms of equations (1) and (2) are considered to 162 represent the respective contributions from SSTA, SATA and SWSA to sensible and 163 latent heat fluxes (Tanimoto et al. 2003). 164 In addition, we estimated the contributions from horizontal ocean temperature advection $(-OV \cdot \nabla OT - OU \cdot \nabla OT)$ to heat balance in the surface-layer ocean. Here, 165 166 OT denotes the surface-layer ocean temperature, OV and OU denote the surface-layer 167 meridional and zonal ocean current, respectively. 168 169 3. Results 170 3.1 Atmospheric circulations causing heavy snowfall winters in northern Japan 171 Figure 4a-c shows difference maps of temperature at 950 hPa (T950) with sea 172 level pressure between heavy and light snowfall years at Iwamizawa for each winter 173 month. In heavy snowfall years of all winter months, the T950s have significant cold

174 temperature anomalies over the Far East. Dipole patterns with an anticyclonic anomaly 175 over the Eurasian Continent and a cyclonic anomaly over the northern Pacific Ocean 176 can be seen during all heavy snowfall winter months. These patterns cause a pressure 177 gradient over the Far East that induces northwesterly cold advection anomalies over 178 northern Japan. The frequency of formation of cloud bands with heavy snowfall, 179 extending from the eastern Eurasian Continent to western Hokkaido, would be 180 increased by northwesterly cold advection anomalies. In the upper troposphere, the 181 differences in geopotential height at 300 hPa (Z300) has a dipole pattern with 182 anticyclone anomalies over the north coast of the Eurasian Continent and cyclonic 183 anomalies extending zonally over the Far East and northern Pacific Ocean (Fig. 4d-f). In heavy snowfall winters, the WP pattern, which enhances northerly cold advection 184 185 associated with the winter monsoon, increases the amount of snowfall over Hokkaido 186 (Inatsu et al. 2021). However, there is no correlation coefficient between the MTS and 187 WP index (available from https://psl.noaa.gov/data/climateindices/list) for all months 188 during 1979 and 2020/2021 (December, January: |r|=0.0; February: |r|=0.2), indicating 189 that this dipole pattern is different from the WP pattern. 190 The propagation of wave-activity flux, which represents propagation of quasi-191 stationary Rossby waves, indicates that a wave train appears from the northern Eurasian

- 192 Continent to the Far East (Fig. 4d–f). Although anomalous sea ice decline over the
- 193 Barents-Kara seas is known to induce an anticyclonic anomaly over the Barents-Kara
- 194 sector (Honda et al. 2009, Inoue et al. 2012, Mori et al. 2014, Sato et al. 2014),
- 195 statistically significant decline in sea ice in the Barents–Kara seas is not evident during

196	heavy snowfall years for all winter months (Fig. 4d-f). The covered sea ice reduces heat
197	releasing from ocean and causes no significant differences in upward turbulent heat
198	fluxes over the Barents-Kara sector in all heavy snowfall months (not shown).
199	Additionally, during all winter months in heavy snowfall years, there are also no
200	differences in other factors that might influence this atmospheric circulation anomaly
201	(e.g., a weakened polar vortex in the stratosphere, as reported by Nakamura et al. (2015)
202	and poleward movement of the Gulf Stream, as reported by Sato et al. (2014)).
203	Teleconnections between the tropical regions and the Arctic are not seen in all heavy
204	snowfall months, suggesting that change in another factor over the high latitudes could
205	influence these atmospheric circulation anomalies. In contrast, during heavy snowfall
206	February months, there is statistically significant positive anomaly in sea ice
207	concentration over the Sea of Okhotsk (Fig. 4f). The relatively cold air mass associated
208	with heavy sea ice cover would influence on formation of convergent cloud with heavy
209	snowfall reported by previous study (Tsuboki et al. 1989). In fact, during 23 and 24
210	February 2021, the heavy snowfall event was induced by mesoscale systems (Fig. 2a,e).
211	To further investigate the relationship between MTS and atmospheric
212	circulation for each winter month, we calculated the correlations between MTS at
213	Iwamizawa and atmospheric parameters (T950 and Z300) for the three winter months
214	(Fig. 5). Air temperature in the lower troposphere (T950) over the Far East has
215	significant negative correlation with MTS at Iwamizawa in all winter months, with
216	particularly strong negative correlation (r >0.6) over northern Japan (Fig. 5a-c). In the
217	upper troposphere, there are statistical relationships between MTS at Iwamizawa and

218	the dipole pattern, with negative correlation ($ r $ >0.5) over the northern Pacific Ocean
219	and positive correlation ($ r >0.3$) over the northern Eurasian Continent in all winter
220	months (Fig. 5d-f). The high correlations between MTS at Iwamizawa and atmospheric
221	variations, which indicate that anomalous cold advection associated with the meridinal
222	dipole pattern has an important role in Iwamizawa snowfall, are in agreement with the
223	findings of previous studies (Hirose and Fukudome 2006, Takano et al. 2008, Takahashi
224	and Idenaga 2013).

3.2 Tsushima Warm Current causing a warm surface-layer ocean anomaly over the
northern Sea of Japan

To investigate surface-layer ocean temperature anomalies in heavy snowfall 228 229 years, we examined difference maps of ocean temperature in the surface layer (5-m 230 depth) between heavy and light snowfall years at Iwamizawa for all winter months (Fig. 231 6). In heavy snowfall December months, although there are positive differences in 232 surface-layer ocean temperature over the northern Sea of Japan, the amplitude of this 233 warm anomaly is small (Fig. 6a). In contrast, difference maps of surface-layer ocean 234 temperature during the months prior (October and November) to heavy snowfall 235 December months (Fig. 6b and c) reveal a statistically significant warm anomaly around 236 Ishikari Bay. The correlation coefficient between MTS at Iwamizawa during December 237 and surface-layer ocean temperature during prior months (November and October) 238 shows that although the correlations have relatively small magnitude over the northern 239 Sea of Japan, there are significant positive correlations over Ishikari Bay (Fig. 7b, c).

240 The difference in ocean current velocity in the surface-layer shows eastward and 241 northeastward ocean current anomalies from the Sea of Japan to Ishikari Bay (Fig. 6b 242 and c), suggesting that a strong TWC anomaly would have an impact on the warm 243 surface-layer ocean anomaly over Ishikari Bay. To estimate the impact of ocean current 244 anomaly associated with the strong TWC anomaly on the surface-layer ocean 245 temperature anomaly, we made difference maps of contribution from horizontal ocean 246 temperature advection to change in surface-layer ocean temperature between heavy and 247 light snowfall years at Iwamizawa for all winter months (Fig.8). Although the increase 248 in horizontal advection associated with the strong TWC anomaly during October would 249 contribute to the warm surface-layer ocean anomaly over Ishikari Bay during November 250 (Figs. 6b and 8c), there is the small magnitude of horizontal ocean temperature 251 advection anomaly with no statistically significant during October (Fig. 8c). To assess 252 the impacts of atmospheric variations on the warm surface-layer ocean anomaly, we 253 calculated surface heat flux, which consists of turbulent and radiative heat fluxes. 254 Figure 9 shows difference maps of surface heat flux between heavy and light snowfall 255 years at Iwamizawa for all winter months. During the months prior to heavy snowfall 256 December months, there are no positive differences in surface heat flux over the 257 northern Sea of Japan (Fig. 9b and c). These analyses suggest that other oceanic 258 parameters (e.g. diffusion and the entrainment through the bottom boundary of the mixed layer) would be a major factor for the warm surface-layer ocean anomaly during 259 260 the months prior to heavy snowfall December months. However, the data assimilation 261 would influence the surface-layer temperature anomaly.

262	In heavy snowfall January months, the ocean temperature in the surface layer
263	has a warm anomaly in coastal regions of the Siberian continent (Fig. 6d). During the
264	prior months (December and November) of heavy snowfall January months, the
265	magnitude and distribution of statistically significant warm surface-layer ocean
266	anomalies are larger than those in the prior months (November and October) of heavy
267	snowfall December months (Fig. 6b, c, e, and f), suggesting that the warm ocean
268	temperature anomalies remain even during heavy snowfall January months (Fig. 6d).
269	The positive correlations between surface-layer ocean temperatures during prior months
270	and MTS during January months are seen over the Siberia coastal regions (Fig. 7e and
271	f). These positive correlation patterns are similar to those of warm surface-layer ocean
272	anomalies in the prior months of heavy snowfall January months (Figs. 6e, and f and 7e,
273	and f). The preceding warm surface-layer ocean temperature anomaly over the Sea of
274	Japan would influence MTS at Iwamizawa in January. During two prior months of
275	heavy snowfall January months, over the Siberia coastal regions, northward ocean
276	current anomalies, which are associated with a strong northward TWC, are seen over
277	these preceding warm surface-layer ocean anomalies (Fig. 6e and f). There are positive
278	differences in horizontal ocean temperature advection over the Siberia coastal regions
279	(Fig. 8e and f), indicating that the warm horizontal advection anomaly associated with
280	the strong TWC anomaly is large enough to cause the warm surface-layer ocean
281	anomaly during two prior months of heavy snowfall January months. In contrast, the
282	significant positive differences in surface heat flux are not observed over significant
283	warm surface-layer ocean anomaly areas (Fig. 9e and f). Therefore, atmospheric

parameters have small impact on these warm surface-layer ocean anomalies during two
prior months. These results reveal that the strong TWC anomalies during two prior
months have an important role in the warm surface-layer temperature anomaly over the
Siberia coastal regions.

288 For heavy snowfall February months, there are no significant differences in 289 surface-layer ocean temperature in regions upstream of Iwamizawa (i.e., the northern 290 Sea of Japan), even during prior months (December and January) (Fig. 6g-i). The no 291 significant differences in warm surface-layer ocean anomalies indicate that the 292 atmospheric circulation anomalies have important role in producing heavy snowfall 293 over coastal regions of western Hokkaido during heavy snowfall February months. In 294 addition, MTS has no significant correlation with surface-layer ocean temperature, even 295 in the prior months (Fig. 7g–i). The surface-layer ocean temperature would have small 296 impact on MTS during heavy snowfall February months. 297 The negative differences in turbulent heat flux between heavy and light 298 snowfall years at Iwamizawa are seen over the northern Sea of Japan in all heavy 299 snowfall months (Fig. 10), indicating that the anomalous upward latent heat flux over 300 the northern Sea of Japan enhances snowfall over Sea of Japan side regions of Japan. To 301 assess the impact of atmospheric and oceanic anomalies on turbulent heat flux anomaly,

302 we further diagnosed the differences in contributions from SSTA, SATA and SWSA to

303 turbulent heat flux anomaly (THFA) between heavy and light snowfall months for three

304 winter months (Fig.11). In all heavy snowfall months, the contributions from SATA

305 have almost the largest negative differences ($<-40 \text{ W/m}^{-2}$) in with statistically

306	significant over the entire northern Sea of Japan, meaning that SATA has the most
307	important role in upward THFA (Fig. 11b,e and h). In the contributions from SWSA,
308	negative differences ($<-10 \text{ W/m}^{-2}$) are seen over the entire northern Sea of Japan in all
309	heavy snowfall months (Fig. 11c,f and i). Although the magnitudes of negative
310	differences in the contribution from SWSA are weaker than those from SATA, there are
311	the relatively large negative differences ($<-30 \text{ W/m}^{-2}$) over western Hokkaido coastal
312	regions in heavy snowfall months December and February months (Fig. 11c and i). The
313	SWSA over the entire northern Sea of Japan also contributes to upward THFA in all
314	heavy snowfall months. In contrast, there are the differences in magnitude and
315	distribution of SSTA contribution in each winter month (Fig, 11a,d and g). In heavy
316	snowfall December months, the negative difference in SSTA over Ishikari Bay indicates
317	that warm SST anomaly contributes to upward THFA over these regions (Fig, 11a).
318	However, the amplitude of contribution from SSTA ($\geq -10 \text{ W/m}^{-2}$) over Ishikari Bay are
319	smaller than that from SATA and SWSA (Fig. 11a-c), meaning that the warm SST
320	anomaly during heavy snowfall December months has minor impact on total snowfall at
321	Iwamizawa compared with atmospheric contributions anomalies (temperature and wind
322	speed). In heavy snowfall January months, the contribution from SSTA has relatively
323	large negative value ($<-30 \text{ W/m}^{-2}$) with the largest differences ($<-50 \text{ W/m}^{-2}$) over the
324	Siberia continent coastal regions (Fig. 11d). The relatively large contributions from
325	SATA and SWSA are seen over the entire northern Sea of Japan (Fig. 11e and f).
326	However, MTS at Iwamizawa has relatively strong positive correlations with turbulent
327	heat flux over the Siberia continent coastal regions in January (not shown), meaning

328 that upward turbulent heat flux over the Siberia continent coastal regions has the most 329 important role in MTS at Iwamizawa in January. From these results, in heavy snowfall 330 January months, the SSTA over the Siberia continent coastal region has an important 331 role in heavy snowfall at Iwamizawa, as well as atmospheric contributions (i.e. SATA 332 and SWSA). The maximum upward turbulent heat flux anomalies appear over regions 333 downstream of the specific mountain lee side marking the initial point of formation of 334 the thick cloud band (Muramatsu 1979; Ohtake et al. 2008). Over Siberia continent 335 coastal regions, the warm surface-layer ocean anomaly would provide anomalous heat 336 and moisture to atmosphere at initial formation of the cloud band.

337

338 *3.3 Relationship between total snowfall at Iwamizawa and other Hokkaido regions*

339 To investigate the distribution of MTS anomalies over Hokkaido when 340 Iwamizawa experienced heavy snowfall events, we examined difference maps of MTS 341 between heavy and light snowfall years for all winter months, produced using data from AMeDAS stations in Hokkaido (Fig. 12a-c). During all heavy snowfall winter months, 342 343 the magnitudes of positive MTS in western Hokkaido are larger than those in eastern 344 Hokkaido owing to the northwesterly winter monsoon over the Eurasian Continent. In 345 heavy snowfall December months, the AMeDAS stations including Iwamizawa in 346 coastal regions downstream of Ishikari Bay have relatively large positive MTS differences (i.e., >100 cm). Furthermore, the significant positive correlation of MTS 347 348 amounts at AMeDAS stations in coastal regions of western Hokkaido near Ishikari Bay with MTS at Iwamizawa indicate that heavy snowfall at these stations coincide with 349

350	heavy snowfall at Iwamizawa (Figs. 12d and 13a). In heavy snowfall January months,
351	relatively large positive MTS differences are evident at AMeDAS stations near
352	Iwamizawa (Fig. 12b). Moreover, the MTS at stations near Iwazamiwa has relatively
353	high positive correlation with the MTS at Iwamizawa (Figs. 12e and 13b). The
354	transports of airs over the Siberia continent coastal regions with the warm surface-layer
355	ocean anomalies are seen near Iwamizawa (Figs. 6d, 10d), meaning that these surface-
356	layer ocean anomalies influence snowfall at the AMeDAS stations near Iwazamiwa
357	(Fig. 12b). In contrast, in heavy snowfall February months, AMeDAS stations with
358	relatively large anomalies and high correlations are not limited to those near Iwamizawa
359	(Figs. 12c,f and 13c). This is because heavy snowfall at Iwamizawa occurs even without
360	the warm surface-layer ocean anomaly over the northern Sea of Japan when a cold
361	outbreak associated with the northwesterly winter monsoon is strong.
362	
363	4. Conclusions and discussion
364	Iwamizawa is in a region of western Hokkaido that experiences frequent
365	heavy snowfall. This study used reanalysis data to investigate the atmospheric and
366	oceanic circulation anomalies associated with heavy snowfall winter months at

367 Iwamizawa. When heavy snowfall occurs at Iwamizawa, the anomalous northwesterly

368 cold flow associated with a dipole pattern with an anticyclonic anomaly over the

369 Eurasian Continent and a cyclonic anomaly over the northern Pacific Ocean causes cold

370 temperatures over northern Japan during all winter months. In heavy snowfall

371 December and January months, a preceding warm surface-layer ocean anomaly is

372	evident in regions upstream of Iwamizawa during the one and two prior months. The
373	MTS has statistically significant correlation with both the atmospheric circulations over
374	East Asia and the surface-layer ocean temperatures in upstream regions in December
375	and January. During these winter months, relatively large positive MTS anomalies are
376	seen at several AMeDAS stations in coastal regions of western Hokkaido, particularly
377	those near Iwamizawa. The analysis for evaluating the respective contribution from
378	atmospheric (i.e. cold air temperature, strong wind speed anomalies) and oceanic (i.e.
379	sea surface temperature anomaly) anomalies to turbulent heat flux anomaly indicate that
380	the atmospheric contribution has the most important role in heavy snowfall in all heavy
381	snowfall months. However, in heavy snowfall January months, the warm surface-layer
382	ocean anomaly over the northern Sea of Japan associated with strong TWC anomaly
383	also contributes to the increase in amount of snowfall at these stations.
384	The relationship between TWC volume transport at the Tsushima/Korea Strait
385	during summer and autumn and precipitation on the Sea of Japan side of Japan in winter
386	has been reported in previous studies (Hirose and Fukudome 2006, Hirose et al. 2009,
387	Sugimoto and Hirose 2014). Hirose et al. (2009) found that the seasonal mean strength
388	of the TWC at the Tsushima/Korea Strait during autumn (September-November) has
389	positive correlation with both seasonal mean SST over the Sea of Japan and
390	precipitation over Sea of Japan side regions during winter (December-February).
391	Additionally, over the central Sea of Japan, the warm SST anomaly related to increase
392	in TWC volume transport at the Tsushima/Korea Strait during the hot seasons (June-
393	October) enhances the latent heat flux from the ocean, contributing to increased

394 precipitation over northern Japan (Sugimoto and Hirose 2014). This investigation 395 revealed that the strong TWC anomaly increases the surface-layer ocean temperature 396 over the northern Sea of Japan, leading to an increase in the amount of snowfall at 397 certain stations in coastal regions of western Hokkaido during January. 398 Linear positive trends of SST over the Sea of Japan from the late 1980s to the 399 late 2010s are found during all winter months (Yasunaga and Tomochika 2017). 400 Sensitivity experiments with different boundary conditions for SST over the Sea of 401 Japan revealed that the latent heat flux increase associated with warm SST anomaly 402 enhances the amount of precipitation over the Sea of Japan side of Japan (Takahashi et 403 al. 2013). Thus, warm SST anomaly over the Sea of Japan would increase the amount of 404 snowfall over western Hokkaido. Further investigation is required to better understand 405 the potential future changes in precipitation over Hokkaido.

406	Acknowledgments
407	All JMA station datasets are available from the Japan Meteorological Agency (JMA)
408	(https://www.jma.go.jp/jma/index.html). In this study, we used the Climate Forecast
409	System Reanalysis data from January 1979 to March 2011 and Climate Forecast System
410	Version 2 data after April 2011 (available from https://rda.ucar.edu/). The JMA radar
411	and MSM data are available from the website of the Research Institute for Sustainable
412	Humanosphere, Kyoto University (<u>http://database.rish.kyoto-u.ac.jp/index-e.html</u>). This
413	work was supported by a Grant-in-Aid for Scientific Research (KAKENHI
414	JP22K14103, JP19K14802, JP19K04647). We thank James Buxton MSc of Edanz
415	(https://jp.edanz.com/ac) for correcting a draft of this manuscript. We would like to
416	thank the editor, and the anonymous reviewers for their valuable comments regarding
417	improvement of the manuscript.

418	References
419	Ando, Y., M. Ogi and Y. Tachibana, 2015: Abnormal Winter Weather in Japan during
420	2012 Controlled by Large-Scale Atmospheric and Small-Scale Oceanic
421	Phenomena, Mon. Wea. Rev., 143, 54-63, https://doi.org/10.1175/MWR-D-
422	14-00032.1
423	Campbell, S. L., J. W. Steenburgh, Y. Yamada, M, Kawashima and Y. Fujiyoshi, 2018:
424	Influences of orography and coastal geometry on a transverse-mode sea-
425	effect snowstorm over Hokkaido Island, Japan. Mon. Wea. Rev., 146(7),
426	2201-2220. https://doi.org/10.1175/MWR-D-17-0286.1
427	Fujiyoshi, Y., K. Tsuboki, S. Satoh, and G. Wakahama, 1992: Three dimensional radar
428	echo structure of a snow band formed on the lee side of a mountain. J.
429	<i>Meteor. Soc. Japan</i> , 70, 11–24.
430	Fujiyoshi, Y., N. Yoshimoto, and T. Takeda, 1998: A dual-Doppler radar study of
431	longitudinal-mode snowbands. Part I: A three-dimensional kinematic
432	structure of meso-g-scale convective cloud systems within a longitudinal-
433	mode snowband. Mon. Wea. Rev., 126, 72-91.
434	Hirose, N. and K. Fukudome, 2006: Monitoring the Tsushima warm current improves
435	seasonal prediction of the regional snowfall. SOLA, 2, 61-63.
436	Hirose, N., K. Nishimura, and M. Yamamoto, 2009: Observational evidence of a warm
437	ocean current preceding a winter teleconnection pattern in the northwestern
438	Pacific, Geophys. Res. Lett., 36, L09705, doi:10.1029/2009GL037448.
439	Honda M, J. Inoue, and S. Yamane, 2009: Influenec of low Arctic seaice minima on
440	anomalously cold Eurasian winters, Geophys. Res. Lett., 36, L08707.
441	Hori, E. M., J. Inoue, T. Kikuchi, M. Honda, and Y. Tachibana, 2011: Recurrence of
442	Intraseasonal Cold Air Outbreak during the 2009/2010 Winter in Japan and
443	its Ties to the Atmospheric Condition over the Barents-Kara Sea. SOLA, 2,
444	61–63.
445	Inatsu, M., S. Tanji, and Y. Sato, 2020: Toward predicting expressway closures due to
446	blowing snow events. Cold Region Science and Technology, 177, 103-123.
447	Inatsu, M., S. Kawazoe, and M. Mori, 2021: Trends and projection of heavy snowfall in
448	Hokkaido, Japan as an application of self-organizing map. Journal of Applied
449	Meteorology and Climatology, doi:10.1175/JAMC-D-21-0085.1

450 Inoue, J., M. Kawashima, Y. Fujiyoshi, and M. Yoshizaki, 2005: Aircraft observations 451 of air-mass modification upstream of the Sea of Japan during cold-air 452 outbreaks. J. Meteorol. Soc. Japan, 83, 189-200. 453 Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the 454 wintertime cyclone track and emergence of a warm-Arctic cold-Siberian 455 anomaly. J. Clim., 25, 2561-8. 456 Katsumata, M., H. Uyeda, and K. Kikuchi, 1998: Characteristics of a cloud band off. the west coast of Hokkaido Island as determined from AVHRR/NOAA, 457 458 SSM/I and radar data. J. Meteor. Soc. Japan, 76, 169–189. 459 Katsumata, M., H. Uyeda, K. Iwanami, and G. Liu, 2000: The response of 36- and 89-460 GHz microwave channels to convective snow clouds over ocean: Observation 461 and modeling. J. Appl. Meteor., 39, 2322-2335. 462 Kawazoe, S., M. Inatsu, T. J. Yamada, and T. Hoshino, 2020: Climate change impacts 463 on heavy snowfall in Sapporo using 5-km mesh large ensemble simulations. 464 SOLA, 16, 233-239, doi:10.2151/sola.2020-039. 465 Kunoki, S., and Coauthors, 2015: Oceanic influence on the Baiu frontal zone in the East 466 China Sea. J. Geophys. Res. Atmos., 120, 449–463, 467 doi:10.1002/2014JD022234. 468 Manda, A. et al., (2014): Impacts of a warming marginal sea on torrential rainfall 469 organized under the Asian summer monsoon. Sci. Rep., 4, 5741, 470 doi:10.1038/srep05741. 471 Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, R. J. Small, 2008: Influence of 472 the Gulf Stream on the troposphere. Nature, 452(7184). U206–U251. 473 doi:10.1038/nature06690 474 Minobe, S., M., Miyashita, A. Kuwano-Yoshida, H. Tokinaga, S.-P. Xie, 2010: 475 Atmospheric response to the Gulf Stream: seasonal variations. J. Clim., 476 23(13), 3699-3719. doi:10.1175/2010jcli3359.1 477 Minobe S. and S. Takebayashi, 2015: Diurnal precipitation and high cloud frequency 478 variability over the Gulf Stream and over the Kuroshio, Clim. Dyn., 44, 479 2079–2095, DOI 10.1007/s00382-014-2245-y

- 480 Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic
 481 sea-ice influence on the frequent Eurasian cold winters in past decades. *Nat.*482 *Geosci.*, 7, 869–73.
- 483 Muramatsu, T., 1979: The cloud line enhanced by upwind orographic features in winter
 484 monsoon situations. *Geophys. Mag.*, 38, 1–15.
- 485 Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J.
- 486 Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent
 487 Arctic sea-ice reduction in late autumn, *J. Geophys. Res. Atmos.*, 120, 3209–
 488 3227, doi:10.1002/2014JD022848.
- 489 Nakanowatari, T., K. Sato, and J. Inoue, 2014: Predictability of the Barents Sea ice in
 490 early winter: remote effects of oceanic and atmospheric thermal conditions
 491 from the North Atlantic. J. Clim., 27, 8884–901.
- 492 Ninomiya, K., 1968: Heat and water budget over the Japan Sea and the Japan Islands in
 493 winter season. J. Meteorol. Soc. Japan, 46 (5), 343-372.
- 494 Ninomiya, K., 1994: Meso-scale low family formed over the northeastern Japan Sea in
 495 the northwestern part of a parent polar low. *J. Meteor. Soc. Japan*, 72, 589–
 496 603, https://doi.org/10.2151/jmsj1965.72.4 589.
- 497 Ohtake, H., M. Kawasaki, and Y. Fujiyoshi, 2008: The Formation Mechanism of a
 498 Thick Cloud Band over the Northern Part of the Sea of Japan during Cold Air
 499 Outbreaks. J. Meteorol. Soc. Japan, 87, 289-306.
- Saha, S. *et al.* 2010: The NCEP climate forecast system reanalysis. *Bull. Am. Meteorol. Soc.*, **91(8).** 1015–1057. doi:10.1175/2010BAMS3001.1
- 502 Saha, S. *et al.* 2014: The NCEP climate forecast system version 2. *J. Clim*, 27, 2185–
 503 208.
- Sato, T. and S. Sugimoto, 2013: A numerical experiment on the influence of the
 interannual variation of sea surface temperature on terrestriall precipitateon in
 northern Japan during the cold season. *Water Resources Research*, 49, 77637777.
- Sato, K, J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents
 Sea ice retreat and Eurasian coldness during early winter. *Environ. Res. Lett.*,
 9, 084009.

511	Sato, K. et al., 2015: Influence of the Kuroshio on mesoscale convective systems in the
512	baiu frontal zone over the East China Sea, Mon. Wea. Rev., 144(3), 1017-
513	1033.
514	Sato, K., J. Inoue, A. Yamazaki, JH. Kim, M. Maturilli, K. Dethloff, S. R. Hudson,
515	and M. A. Granskog, 2017: Improved forecasts of winter weather extremes
516	over midlatitudes with extra Arctic observations, J. Geophys. Res. Oceans,
517	121, doi:10.1002/2016JC012197.
518	Sato K, J. Inoue, I. Simmonds, and I. Rudeva, 2021: Antarctic Peninsula warm winters
519	influenced by Tasman Sea temperatures. Nature Comms., 12, 1497, doi:
520	10.1038/s41467-021-21773-5.
521	Shirakawa, T. and T. Kameda, 2019: Snow surveys of central and eastern Hokkaido
522	from 2014 to 2018, and meteorological elements affecting snow grain type,
523	Seppyo, 81(4), 163-182 (in Japanese).
524	Sugimoto, S. and N. Hirose, 2014: Variations in latent heat flux over the eastern Japan
525	Sea in December. SOLA, 10, 1–4, doi:10.2151/sola.2014-001.
526	Takahashi, H. G. and T. Idenaga, 2013: Impact of SST on precipitation and snowfall on
527	the sea of Japan side in the winter monsoon season: timescale dependency. J.
528	Meteor. Soc. Japan, 91(5), 639–653.
529	Takahashi, H. G., N. N. Ishizaki, H. Kawase, M. Hara, T. Yoshikane, X. Ma and F.
530	Kimura, 2013: Potential impact of sea surface temperature on winter
531	precipitation over the Japan Sea side of Japan: a regional climate modeling
532	study. J. Meteor. Soc. Japan, 91(4), 471-488.
533	Takahashi, H. G. 2021: Longterm trends in snowfall characteristics and extremes in
534	Japan from 1961 to 2012. Int. J. Climatol., 41, 2316-2329.
535	https://doi.org/10.1002/joc.6960.
536	Takano, Y., Y. Tachibana, and K. Iwamoto, 2008: Influences of Large-scale
537	Atmospheric Circulation and Local Sea Surface Temperature on Convective
538	Activity over the Sea of Japan in December. SOLA, 4, 113–116.
539	Takaya, K. and H. Nakamura, 2013: Interannual variability of the East Asian winter
540	monsoon and related modulations of the Planetary wave. J. Clim., 26, 9445-
541	9461.

542 Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of 543 extratropical sea surface temperature anomalies in determining anomalous 544 turbulent heat flux, J. Geophys. Res., 108(C10), 3304, 545 doi:10.1029/2002JC001750. 546 Tsuboki, K., Y. Fujiyoshi, and G. Wakahama, 1989: Doppler radar observation of 547 convergence band cloud formed on the west coast of Hokkaido island. II: 548 Cold frontal type. J. Meteor. Soc. Japan, 67, 985-999. 549 Yasunaga, K. and M. Tomochika, 2017: An increasing trend in the early winter 550 precipitation during recent decades along the coastal areas of the sea of Japan. 551 Journal of Hydrometeorology, 18(11), 2893–2906. 552 Yoshimoto, N., Y. Fujiyoshi, and T. Takeda, 2000: A dual-Doppler radar study of longitudinal-mode snowbands. Part II: Influence of the kinematics of a 553 554 longitudinal-mode snowband on the development of an adjacent snowband. J. 555 Meteor. Soc. Japan, 78, 381-403. 556 Yoshizaki, M., T. Kato, H. Eito, S. Hayashi, and W. Tao, 2004: An overview of the 557 field experiment "Winter mesoscale convective systems (MCSs) over the Japan sea in 2001", and comparisons of the cold-air outbreak case (14 558 559 January) between analysis and a non-hydrostatic cloud-resolving model. J. 560 Meteor. Soc. Japan, 82, 1365-1387. 561

562 List of Figures:

Figure 1. Chinatological total showian (W13) at 110 Automated Meteorological Data
Acquisition System (AMeDAS) stations in Hokkaido during three winter
months (December-February) from 1979/1980 to 2020/2021. Red square
shows location of Iwamizawa station.
Figure 2. (a) Time series of snow depth (red line: cm) and daily snowfall (black bars:
cm) at Iwamizawa station. Precipitation intensity measured by Japan
Meteorological Agency (JMA) radars (shading: mm/hr) and geopotential
height (contours: m) with wind velocity (vector: m/s) at 850-hPa level based
on JMA Meso Scale Model data (MSM) at (b) 09:00 UTC December 1, 2020,
(c) 15:00 UTC December 13, 2020, (d) 00:00 UTC February 9, 2021, and (e)
00:00 UTC February 24, 2021. Colored dots show accumulated snowfall at
AMeDAS stations during each snowfall event (SE 1: 01-02 December 2020,
SE2: 13-14 December 2020, SE 3: 08-09 February 2021, SE 4: 23-24
February 2021).
Figure 3. Time series of monthly total snowfall (MTS) anomalies (deviation from
climatology for 1979–2021) at Iwamizawa station during 1979 and 2021
(2020 for December): (a) December, (b) January, and (c) February. Red
(blue) dots indicate years with heavy (light) snowfall considered in the study.
Dashed lines show the 0.7 standard deviation.
Figure 4. Difference maps of air temperature at 950 hPa (T950) (°C: shading) with sea
level pressure (hPa: contours) between heavy and light monthly total snowfall
at Iwamizawa: (a) December, (b) January, and (c) February. Dot areas denote
significant differences exceeding the 90% confidence level. (d)-(f) Same as
(a)-(c) but for sea ice concentration (%: shading) with geopotential height
(m: contours) and wave activity fluxes at 300 hPa (WAF300) (m/s ² : vectors).
Figure 5. Correlation coefficients of monthly total snowfall (MTS) at Iwamizawa with
air temperature at 950 hPa (T950): (a) December, (b) January, and (c)
February. Cross-hatched areas denote significant differences exceeding the
90% confidence level. (d)–(f) Same as (a)–(c) but for MTS with geopotential
height at 300 hPa (Z300).

593	Figure 6. Difference maps of ocean temperature (°C: shading) with ocean currents (m/s:
594	vectors) at 5-m depth between heavy and light snowfall Decembers at
595	Iwamizawa for (a) 0 month (December), (b) -1 month (November), and (c) -2
596	month (October) lag times. Gray shading represents data that were not
597	significant at the 90% confidence level. Black dot shows location of
598	Iwamizawa station. (d)–(f) and (g)–(i) Same as (a)–(c) but for January and
599	February, respectively.
600	Figure 7. Correlation coefficients of monthly total snowfall (MTS) at Iwamizawa during
601	December with ocean temperature in the surface layer (5-m depth) for (a) 0
602	month (December), (b) -1 month (November), and (c) -2 month (October) lag
603	times. Gray shading represents data that were not significant at the 90%
604	confidence level. (d)–(f) and (g)–(i) Same as (a)–(c) but for January and
605	February, respectively.
606	Figure 8. Same as Fig. 6 but for contribution from horizontal temperature advection to
607	heat balance in the surface-layer ocean.
608	Figure 9. Same as Fig. 6 but for surface heat flux (W/ m^2 : shading). Negative value
609	shows upward direction from ocean to atmosphere.
610	Figure 10. Difference maps of surface heat flux (W/m ² : shading) and wind velocity at
611	10m (m/s: vector) between heavy and light snowfall at Iwamizawa for (a)
612	Decembers, (b) Januarys and (c) Februarys, respectively. Gray shading
613	represents data that were not significant at the 90% confidence level. Black
614	dot shows location of Iwamizawa station. Negative value shows upward
615	direction from ocean to atmosphere.
616	Figure 11. Difference maps of contributions from (a) sea surface temperature anomaly
617	(SSTA: W/ m ²), (b) surface air temperature anomaly (SATA: W/ m ²) and (c)
618	surface wind speed anomaly (SWSA: W/m^2) between heavy and light
619	snowfall Decembers at Iwamizawa. Negative value shows upward direction
620	from ocean to atmosphere. Cross-hatched areas denote significant differences
621	exceeding the 90% confidence level. (d)–(f) and (g)–(i) Same as (a)–(c) but
622	for January and February, respectively.
623	Figure 12. (a) Difference maps of monthly total snowfall (MTS) at AMeDAS stations in
624	Hokkaido between heavy and light snowfall months at Iwamizawa: (a)

625	December, (b) January, and (c) February. Red square shows location of
626	Iwamizawa station. (d)–(f) Same as (a)–(c) but for correlation coefficients of
627	monthly total snowfall (MTS) between Iwamizawa and each AMeDAS
628	station.
629	Figure 13. Scatter plots of correlation coefficients of monthly total snowfall (MTS) and
630	distances between Iwamizawa and each AMeDAS station for (a) December,
631	(b) January and (c) February.

633 Figure 1. Climatological total snowfall (MTS) at 116 Automated Meteorological Data Acquisition

634 System (AMeDAS) stations in Hokkaido during three winter months (December-February) from

635 1979/1980 to 2020/2021. Red square shows location of Iwamizawa station.

Figure 2. (a) Time series of snow depth (red line: cm) and daily snowfall (black bars: cm) at Iwamizawa
station. Precipitation intensity measured by Japan Meteorological Agency (JMA) radars (shading: mm/hr)
and geopotential height (contours: m) with wind velocity (vector: m/s) at 850-hPa level based on JMA
Meso Scale Model data (MSM) at (b) 09:00 UTC December 1, 2020, (c) 15:00 UTC December 13, 2020,
(d) 00:00 UTC February 9, 2021, and (e) 00:00 UTC February 24, 2021. Colored dots show accumulated
snowfall at AMeDAS stations during each snowfall event (SE 1: 01-02 December 2020, SE2: 13-14
December 2020, SE 3: 08-09 February 2021, SE 4: 23-24 February 2021).

Figure 3. Time series of monthly total snowfall (MTS) anomalies (deviation from climatology for 1979–2021) at Iwamizawa station during 1979 and 2021 (2020 for December): (a) December, (b) January, and
(c) February. Red (blue) dots indicate years with heavy (light) snowfall considered in the study. Dashed

649

Figure 4. Difference maps of air temperature at 950 hPa (T950) (°C: shading) with sea level pressure
(hPa: contours) between heavy and light monthly total snowfall at Iwamizawa: (a) December, (b)
January, and (c) February. Cross-hatched areas denote significant differences exceeding the 90%

January, and (c) February. Cross-hatched areas denote significant differences exceeding the 90%
confidence level. (d)–(f) Same as (a)–(c) but for sea ice concentration (%: shading) with geopotential

654 height (m: contours) and wave activity fluxes at 300 hPa (WAF300) (m/s²: vectors).

655 656 657 658 Figure 5. Correlation coefficients of monthly total snowfall (MTS) at Iwamizawa with air temperature at 950 hPa (T950): (a) December, (b) January, and (c) February. Dot areas denote significant differences exceeding the 90% confidence level. (d)-(f) Same as (a)-(c) but for MTS with geopotential height at 300

hPa (Z300).

Figure 6. Difference maps of ocean temperature (°C: shading) with ocean currents (m/s: vectors) at 5-m
depth between heavy and light snowfall Decembers at Iwamizawa for (a) 0 month (December), (b) -1
month (November), and (c) -2 month (October) lag times. Gray shading represents data that were not
significant at the 90% confidence level. Black dot shows location of Iwamizawa station. (d)–(f) and (g)–
(i) Same as (a)–(c) but for January and February, respectively.

Figure 7. Correlation coefficients of monthly total snowfall (MTS) at Iwamizawa during December withocean temperature in the surface layer (5-m depth) for (a) 0 month (December), (b) -1 month

<sup>ocean temperature in the surface layer (5-m depth) for (a) 0 month (December), (b) -1 month
(November), and (c) -2 month (October) lag times. Gray shading represents data that were not significant</sup>

at the 90% confidence level. (d)–(f) and (g)–(i) Same as (a)–(c) but for January and February,

⁶⁷⁰ respectively.

Figure 8. Same as Fig. 6 but for contribution from horizontal temperature advection to heat balance in thesurface-layer ocean.

Figure 9. Same as Fig. 6 but for surface heat flux (W/m²: shading). Negative value shows upward direction from ocean to atmosphere.

Figure 10. Difference maps of surface heat flux (W/m²: shading) and wind velocity at 10m (m/s: vector)

between heavy and light snowfall at Iwamizawa for (a) Decembers, (b) Januarys and (c) Februarys,
respectively. Gray shading represents data that were not significant at the 90% confidence level. Black

678 dot shows location of Iwamizawa station. Negative value shows upward direction from ocean to

atmosphere.

Figure 11. Difference maps of contributions from (a) sea surface temperature anomaly (SSTA: W/m²),
(b) surface air temperature anomaly (SATA: W/m²) and (c) surface wind speed anomaly (SWSA: W/m²)
between heavy and light snowfall Decembers at Iwamizawa. Negative value shows upward direction
from ocean to atmosphere. Cross-hatched areas denote significant differences exceeding the 90%
confidence level. (d)–(f) and (g)–(i) Same as (a)–(c) but for January and February, respectively.

Figure 13. Scatter plots of correlation coefficients of monthly total snowfall (MTS) and distances betweenIwamizawa and each AMeDAS station for (a) December, (b) January and (c) February.