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Abstract 31 

 32 

Knowledge about tropical cyclone (TC) size is essential for disaster 33 

prevention and mitigation strategies, but due to the limitations of observations, 34 

TC size data from the open ocean are scarce. In this paper, several models are 35 

developed to identify TC size parameters, including the radius of maximum wind 36 

(RMW) and the radii of 34 (R34), 50 (R50), and 64 (R64) knot winds, using 37 

various machine learning algorithms based on infrared channel imagery of 38 

geostationary meteorological satellites over the Western North Pacific (WNP). 39 

Through evaluation and verification, the trained and optimized support vector 40 

machine models are proposed for RMW and R34, while the general regression 41 

neural network models are set up for R50 and R64. 42 

According to the independent-sample evaluations against aircraft 43 

observations (1981–1987) / Joint Typhoon Warning Center best track data 44 

(2017–2019), the mean absolute errors of R34, R50, R64, and RMW are 54 / 45 

58, 34 / 38, N/A / 21, and 25 / 25 km, respectively. The corresponding median 46 

errors are 39 / 46, 34 / 31, N/A / 17, and 17 / 19 km, respectively. There is an 47 

overall slight underestimation of the parameters, which needs to be analyzed 48 

and improved in future study. Despite aircraft observations of TCs in the WNP 49 

having ceased in the late 1980s, this new dataset of TC sizes enables a 50 

thorough estimation of wind structures covering a period of 40 years. 51 

 52 
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1 Introduction  57 

Tropical cyclone (TC) intensity and size are two key factors to determine 58 

its destructiveness (Guo and Tan 2017). Cocks and Gray (2002) emphasized 59 

that the wind strength and spatial coverage of the TC outer circulation, rather 60 

than its central position and intensity, determine the overall risk of disaster due 61 

to TC. Therefore, research on estimating and forecasting TC size is 62 

undoubtedly essential for disaster prevention and mitigation strategies. Due to 63 

limitations in monitoring methods, TC size information is often obtained 64 

indirectly. At present, measurements of TC structure are mostly carried out in 65 

the Atlantic Ocean due to routine aircraft observations in the western part of this 66 

ocean basin (Kossin et al. 2007). Elsewhere, in-situ observations of TCs are 67 

mainly from ships, buoys, and meteorological stations on islands in various 68 

ocean basins, thus TC size data is very scarce in the open sea. Consequently, 69 

TC data generally describe the location and intensity of the TC center, but the 70 

description of TC size is rather limited. In the Western North Pacific (WNP; 71 

including the South China Sea), only the Regional Specialized Meteorological 72 

Center in Tokyo includes the major and minor axis of TC wind ellipses, whilst 73 

the Joint Typhoon Warning Center (JTWC) of the US Navy has issued the wind 74 

circle radius since 2001, including the wind radii of 34-kt, 50-kt and 64-kt surface 75 

winds (R34, R50, and R64) in four quadrants, as well as the radius of maximum 76 

surface winds (RMW). However, the above wind radii are generally analyzed 77 

subjectively (Knaff et al. 2016) and details of the TC size estimation 78 
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methodology are unclear. 79 

Various approaches have been employed to investigate TC size, including 80 

using synoptic charts (Brand 1972; Merrill 1984), a combination of aircraft and 81 

ground observations (Shea and Gray 1973; Weatherford and Gray 1988a and 82 

1988B; Croxford and Barnes 2002; Cocks and Gray 2002), best track data (Lu 83 

et al. 2011; Xu and Wang  2015 and 2018; Guo and Tan 2017; Lin and Chou 84 

2018), model reanalysis datasets (McKenzie 2017; Schenkel et al. 2017 and 85 

2018), and satellite observations (Liu and Chan 1999; Lee et al. 2010; Chan 86 

and Chan 2012 and 2015; Knaff et al. 2014 and 2016; Wu et al. 2015; Lu et al. 87 

2017), amongst others. The results are different from each other, but they do 88 

show a certain degree of consensus in characteristics such as seasonal 89 

variations and geographical differences in TC size. However, due to the 90 

different analysis data and size definitions (McKenzie 2017), the spatiotemporal 91 

characteristics and size variation over long periods remain uncertain. 92 

Satellite data is a primary choice for TC size analysis given the higher 93 

coverage in both space and time compared with in-situ measurements from 94 

conventional observation platforms. Many studies have used spaceborne 95 

scatterometer observations directly to describe TC size and establish TC size 96 

datasets (Liu and Chan 1999; Chavas and Emanuel 2010; Chan and Chan 97 

2015). However, the retrieved wind from the scatterometer has a poor temporal 98 

resolution, and the accuracy of wind retrieval decreases when the wind speed 99 

is more than 30 m s−1 (Knaff et al., 2011). Therefore, geostationary satellite 100 
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observations with high spatiotemporal resolution have become preferable for 101 

operational applications. At the same time, geostationary meteorological 102 

satellites have the ability to capture a whole TC (Mueller et al. 2006) and can 103 

therefore provide better data for analyzing the fine structural features of TCs.  104 

Demuth et al. (2004 and 2006) applied advanced microwave sounding unit 105 

(AMSU) retrieved wind and model parameters to estimate TC size. The mean 106 

absolute errors (MAEs) of the R34, R50, and R64 were 16.9, 13.3, and 6.8 107 

nautical miles, respectively. Combining the basic TC information (center 108 

intensity and location), Mueller et al. (2006) used the infrared (IR) band of 109 

geostationary meteorological satellites and aircraft observations to establish a 110 

multiple linear regression algorithm that could estimate the RMW of a TC. The 111 

MAE was 27.3 km. Using IR observations, a regression model was established 112 

for estimating the TC intensity (Maximum Sustained Wind, MSW), R34, R50, 113 

R64, and RMW based on the mean radial profile and the principal mode of the 114 

empirical orthogonal function (EOF) of the brightness temperature (BT) outside 115 

the TC center (Kossin et al. 2007). The estimated MAEs of the R34, R50, R64 116 

and RMW were 44.8, 36.6, 26.9, and 21.1 km, respectively. It was found that 117 

including IR observation data can reduce the estimation error in multivariate 118 

linear models. Lajoie and Walsh (2008) estimated the TC eye wall structure 119 

(radius of the TC eye and RMW) using satellite cloud images, radar, and aircraft 120 

observations. Compared with aircraft observations, the MAE of the RMW was 121 

2.8 km, which is better than that of Kossin et al. (2007). The sample size in the 122 
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above studies was relatively small, and the estimation method involved utilizing 123 

multi-platform observations (Kossin et al., 2007), including satellite IR imagery, 124 

radar, and aircraft observations. Therefore, the method is not easily applicable 125 

in operational use, especially for some agencies that find it difficult to obtain 126 

multi-platform observations in real time. 127 

Knaff et al. (2011, 2014, 2016) successively developed a TC surface wind 128 

field retrieval algorithm (Multiple satellite platform Tropical Cyclone Surface 129 

Wind Analysis, MTCSWA) integrated with multi-satellite observations and an 130 

objective TC size retrieval technology using only the IR band BT from 131 

geostationary satellite observations. The retrieval accuracy was acceptable in 132 

operational applications (Knaff et al. 2010 and 2015), but the model involved 133 

complex operations such as a variational data-fitting algorithm that is difficult to 134 

be implemented in real time. Furthermore, the grid data product of the 135 

MTCSWA has not been publicly released. Lu et al. (2017) used the 1980–2009 136 

geostationary satellite observation dataset (Knapp and Kossin 2007) to 137 

establish a linear objective estimation model of TC size (defined as the R34) 138 

based on the correlation between the radial distribution features of BT, its 139 

gradient in the IR band, and TC size. However, there may be a complex 140 

nonlinear relationship between remote sensing information and these key 141 

physical elements. Hence, it is necessary to establish a more advanced or 142 

robust technique to estimate the detailed wind structure of TCs. 143 

Machine learning (ML) is an approach to establish an approximate model 144 
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of a given problem, such that it can effectively represent the nonlinear 145 

relationship between multiple factors and the target predictand(s) (Kim et al. 146 

2019). At present, ML methods include the multi-layer perceptron (MLP), radial 147 

basis function (RBFN), general regression neural network (GRNN), k-nearest 148 

neighbour (KNN), support vector machine (SVM), decision tree (DT), and 149 

several others (Specht 1991; Ghosh and Krishnamurti 2018; Fuchs et al. 2018; 150 

Zhang et al. 2019; Kim et al. 2019 and 2020; Neetu et al. 2020). Zhang et al. 151 

(2019) evaluated TC genesis forecasts in the WNP using KNN, SVM, DT, and 152 

linear methods. The results showed that the performance of the SVM was better 153 

than that of the linear method. Kumler-Bonfanti et al. (2020) used ML to identify 154 

tropical and extratropical cyclones and found that ML is more efficient and 155 

accurate than conventional methods. However, there is no optimal ML algorithm 156 

suitable for all cases, and the performance of a ML algorithm depends not only 157 

on the algorithm technique, but also on the application type and input data. ML 158 

algorithms have been shown to greatly improve the accuracy of TC intensity 159 

estimation (Ghosh et al. 2018; Chen et al. 2019; Wimmers et al. 2019), but the 160 

application of ML to TC size recognition is quite limited. Wimmers et al. (2019) 161 

noted that ML has great potential in estimating TC parameters such as gale 162 

wind radius and other structural characteristics. 163 

This paper establishes the nonlinear models between observations 164 

obtained from geostationary meteorological satellites and TC size using ML. 165 

We carry out an objective TC size estimation and construct a TC size climate 166 
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dataset with fine structural characteristics in the WNP. Section 2 introduces the 167 

data, whilst the ML methods and TC size estimation tests are discussed in 168 

Section 3. The construction and validation of the TC size dataset are illustrated 169 

in Section 4. A summary and conclusions will be given in Section 5. 170 

2 Dataset 171 

Lu et al. (2017) showed that there was no significant influence on the 172 

estimation of TC size using different series of satellite data. Thus, the IR 173 

observation dataset of HURSAT-B1 (1981–2016; Knapp and Kossin, 2007) and 174 

FY-2G (2017–2019; Lu and Gu 2016) are used as inputs for the model learning 175 

phase, testing, and estimation. The HURSAT-B1 dataset contains seven 176 

geostationary meteorological satellite observations combined, including FY-2 177 

from the China Meteorological Administration (CMA), Meteosat-2 to Meteosat-178 

9 from EUMETSAT, GMS-1 to GMS-5, MTSAT-1R to MTSAT-2R and Himawari-179 

8 from the Japan Meteorological Agency (JMA), and GOES-1 to GOES-13 from 180 

the United States National Oceanic and Atmospheric Administration (NOAA). 181 

All the observations are interpolated onto a regular latitude–longitude grid with 182 

a resolution of 0.07 degrees (~8 km) around the TC center. The temporal 183 

resolution is 3 hours. The FY-2G dataset is obtained from the National Satellite 184 

Meteorological Center of the CMA. The spatial resolution of the FY-2G infrared 185 

band is 5 km and the temporal resolution is 0.5 hours. To ensure the 186 

consistency of input in model training and estimation, FY-2G data is interpolated 187 

onto an 8 km grid. Furthermore, only those satellite observations at 0000, 0600, 188 
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1200, and 1800 UTC are selected in the calculation to match the time resolution 189 

of the best track record.  190 

In this study, the R34, R50, and R64 in the northeast, southeast, southwest, 191 

and northwest quadrants (NE, SE, SW, and NW, respectively), and RMW from 192 

the JTWC best track data are taken as the ground truth for training and 193 

evaluating the performance of the ML model. The observation times were 0000, 194 

0600, 1200, and 1800 UTC. The TC serial number, name, location (longitude, 195 

latitude) and intensity (MSW) are included in this dataset. In addition, aircraft 196 

observation reports near the surface of the TC center (1981–1987) and 197 

periphery (1985–1987) in the WNP (Bai et al. 2019) are used to validate and 198 

assess the performance of the ML model in this study. The aircraft observations 199 

of TC centers include the observation time, MSW, and RMW. The TC periphery 200 

observations include the gale wind speed, the observed location, and time.  201 

During the final TC size dataset construction, the TC tracks and intensity 202 

data from the IBTrACS (v04r00) dataset (Knapp et al. 2010) covering the time 203 

period from 1981 to 2019 were used for the position and intensity of the TC 204 

center, in order to match the TC center where the HURSAT gridded dataset 205 

was centered. It also included the TC serial number, name, center longitude, 206 

center latitude, and TC intensity at 0000, 0600, 1200, and 1800 UTC. The 207 

intensity grade includes tropical depression (TD; 10.8 ≤ MSW ≤ 17.1 m/s), 208 

tropical storm (TS; 17.2 ≤ MSW ≤ 24.4 m/s), severe tropical storm (STS; 24.5 209 

≤ MSW ≤ 32.6 m/s), typhoon (TY; 32.7 ≤ MSW ≤ 41.4 m/s), severe typhoon 210 
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(STY; 41.5 ≤ MSW ≤ 50.9 m/s), and super typhoon (SuperTY; MSW ≥ 51 m/s). 211 

Note that this study only considers TCs in the WNP region unless otherwise 212 

specified. 213 

3 Methods 214 

3.1 Machine learning algorithms 215 

In this study, five regression-based ML algorithms with various fitting 216 

functions are selected to conduct the experiments and evaluation of TC size 217 

estimation (Specht 1991; Ghosh and Krishnamurti 2018; Fuchs et al. 2018; 218 

Zhang et al. 2019; Kim et al.  2019 and 2020). They are the MLP, GRNN, 219 

RBFN, SVM, and DT.  220 

An MLP is a common artificial neural network (ANN) algorithm that consists 221 

of an input layer, an output layer with one or more hidden layers that apply 222 

weights to the inputs and direct them through an activation function to the output. 223 

An MLP is fully connected between different layers and performs well on 224 

nonlinear data that each node (neuron) is connected with all other nodes in the 225 

preceding layer. An RBFN is a kind of ANN using a radial basis function as the 226 

activation function to prescribe how the weighted sum of input is transferred to 227 

output from neurons in a layer of the network. The output in RBFN is a linear 228 

combination of the radial basis function of inputs and the neuron parameters 229 

(i.e. the coefficient in the weight to generate output). A GRNN is a modified 230 

RBFN with faster convergence (Specht 1991; Ghosh and Krishnamurti 2018). 231 

An SVM, which is a non-parametric statistical learning technique, builds a 232 
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hyperplane to separate the dataset into a discrete, predefined number of 233 

classes. It utilizes a kernel function to transform the dimension of the data into 234 

a higher one to identify an optimal hyperplane (Mountrakis et al. 2011; Lee et 235 

al. 2016). A DT is a process of data classification through a series of rules. In a 236 

DT, the data samples are partitioned into subdivisions repeatedly based on 237 

decision rules that resemble branches in a tree (Zhu et al. 2019). The 238 

advantage of the DT is to allow intuitive interpretation of and physical insights 239 

into the classification rules, as it includes conditions (“if-then-else” rules) based 240 

on the relative importance of predictors. In summary, ML can automatically and 241 

objectively represent nonlinear relations between key features of satellite 242 

observations and the target physical parameters (Kim et al. 2019 and 2020; 243 

Zhang et al. 2019). 244 

The five machine learning algorithms are given in Table 1 with empirical 245 

and experiential parameters (Specht 1991; Ghosh and Krishnamurti 2018; 246 

Fuchs et al. 2018; Zhang et al. 2019; Kim et al. 2019 and 2020; Kumler-Bonfanti 247 

et al. 2020). In the following section we determine the best model and input 248 

scheme according to an independent sample test performance. 249 

3.2 Determination of input schemes for the ML methods 250 

Previous studies have shown that TC intensity, wind structure, and TC 251 

cloud structure are closely related (Dvorak 1975; Velden et al. 1998; Demuth et 252 

al. 2006; Mueller et al. 2006; Kossin et al. 2007; Lajoie and Walsh 2008; 253 

Elizabeth et al. 2014; Knaff et. al. 2014, 2016; Lu et al. 2017). The radial profile 254 
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characteristics of infrared cloud-top BT clearly indicate TC intensity, inner and 255 

outer core size, and their variation. An analysis of the correlation between TC 256 

wind structure parameters (RMW, R64, R50, and R34) and TC intensity (MSW) 257 

using 12,529 samples during the period 2001–2017, revealed that the TC inner 258 

size (RMW) and R34 are correlated with TC intensity (the correlation 259 

coefficients are −0.53 and 0.55, respectively, which are statistically significant 260 

at the 99% confidence level). Moreover, there is also a positive correlation 261 

between TC intensity and the R64 and R50 (the correlation coefficients are 0.39 262 

and 0.49, respectively, at the 99% confidence level). Lu et al. (2017) also 263 

determined from satellite infrared observation that the BT profile distribution, 264 

intensity, and location of the TC cloud top are related to the TC size as 265 

represented by the R34. 266 

Consequently, in this study, the BT profile in the region from the TC center 267 

to a specified radius (R), the TC center position, and TC intensity are used as 268 

inputs in the ML algorithm to estimate the TC size. The TC size is expressed in 269 

terms of the RMW, R34 (mean value of the four quadrants), R50 (mean value 270 

of the four quadrants), R64 (mean value of the four quadrants), and R34-1, 271 

R34-2, R34-3, R34-4, R50-1, R50-2, R50-3, R50-4, R64-1, R64-2, R64-3, and 272 

R64-4 (where the suffix -1 indicates the NE quadrant, -2 indicates the SE 273 

quadrant, -3 the SW quadrant, and -4 the NW quadrant). Here, the BT profile is 274 

obtained by calculating the azimuthal average of each grid annulus in each 275 

quadrant in the region from the TC center to the radius R. Finally, the estimation 276 
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accuracy using different input schemes is evaluated. 277 

a. Determination of the best input scheme and ML model for the R34 and RMW 278 

We consider samples with an intensity above TS between 2001 and 2016 279 

(11,060 samples). Taking the R34 from the JTWC best track data as the ground 280 

truth, 8742 samples between 2001 and 2013 are used for model training (Zhou, 281 

2020), and 2318 samples between 2014 and 2016 are used for the independent 282 

sample test. In the experiments, R is variously set to be 10, 20, 30, 40, 50, 60, 283 

70, or 80 grid points away from the TC center (the spatial resolution of the grid 284 

is ~8 km, which is consistent with that of the satellite data). Then, the longitude 285 

(Lon) and latitude (Lat) of the TC center, TC intensity (MSW), and BT radial 286 

profile (BTP) within the radius R are used as inputs for the ML models in the 287 

eight different input scheme experiments. The test results are shown in Fig. 1. 288 

 289 

Fig. 1 shows that as the input BTP radius moves from the inner core (10 290 

grid points from TC center) to the outer edge (80 grid points from TC center), 291 

the estimation errors of different methods significantly differ from one another. 292 

The estimation errors of the MLP (blue line) and SVM (red line) decrease first 293 

and then increase with R, with the smallest estimation errors when R is between 294 

40 and 60 grid points. That is, an input radius between 320 and 480 km from 295 

the TC center results in the best estimation of the true TC size. The estimation 296 

errors of the GRNN (green line) and DT (magenta line) also decrease first, then 297 

remain constant when R is larger than 20 grid points in the case of the GRNN 298 
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and when R is larger than 40 grid points in the case of the DT. The estimation 299 

error of the RBFN (cyan line) increases monotonically with R. This performance 300 

may be related to the models themselves and their basic parameters, which 301 

were set according to experience and test errors. As this test only assesses the 302 

basic performance of five algorithms in estimating TC size, the parameters of 303 

the model itself are not thoroughly investigated. 304 

The mean estimation error (black line) of the five methods demonstrates 305 

that the average error decreases at first and then increases. The minimum error 306 

is at 40 grid points away from the TC center, which indicates that an input BTP 307 

within 320 km of the TC center results in the best estimation of the TC size. This 308 

is consistent with Lu et al. (2017), who showed that the BT distribution and its 309 

gradient in the range of 40–50 km (TC inner core region) and 256–288 km 310 

(outer region) from the TC center have the highest correlation with TC size. 311 

Hence, the BTP information 320 km from the TC center contains the most 312 

relevant characteristics of the TC core and periphery, and 40 grid points is thus 313 

determined as the input R of the R34 estimation scheme. Similarly, 40, 30, 30, 314 

20 and 40 grid points are determined as the input R for the RMW, R34-1, R34-315 

2, R34-3, and R34-4 estimation schemes, respectively. 316 

The estimation accuracy of the MLP (blue line), DT (magenta line), and 317 

SVM (red line) is <50 km using the optimal estimation scheme, which is smaller 318 

than that of the other two algorithms and is better than that of the wind radii 319 

estimates in operational forecasts (and in the best track records) (Knaff et al. 320 
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2010 and 2015). However, the normal distribution and probability density 321 

function of the estimation results from these three methods demonstrate that 322 

the SVM results have a more reasonable normal distribution and pass the 95% 323 

confidence test. The analysis plot is not shown here because of limited space. 324 

Hence, the SVM is selected as the final estimation model for the R34 and RMW. 325 

b. Determination of the best input scheme and ML model for the R50 and R64 326 

The R50 and R64 have been available in best track data from the JTWC 327 

since 2004. In total there are 4350 samples matched with the HURSAT satellite 328 

observations up to 2016. Here, 3519 samples from 2004 to 2014 are used to 329 

train the models (Zhou, 2020), and 831 samples from 2015 to 2016 are used 330 

as test samples. The test methods of different input schemes (i.e., different 331 

input R) are the same as those introduced in Section a. However, as the R50 332 

and R64 are also restricted by the value of the R34, the R34 estimation value 333 

is also regarded as an additional input to the R50 and R64 estimation models. 334 

The test results are shown in Fig. 2 and Table 2. There is little difference 335 

between the estimation errors of different methods as the input BTP radius 336 

moves from the inner core (10 grid points from the TC center) to the outer edge 337 

(80 grid points from the TC center). The estimation errors decrease and then 338 

increase with R for both the R50 (Fig. 2a) and R64 (Fig. 2b). The mean 339 

estimation error (black line) of the five methods demonstrates that the average 340 

error decreases first and then increases. The minimum error is at 20 grid points 341 

from the TC center, meaning that the BTP within 160 km of the TC center results 342 
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in the best estimation of the R50 and R64. Therefore, 20 grid points is chosen 343 

as the optimal model input. Table 2 shows that the GRNN algorithm performs 344 

best in the estimation of the R50 and R64. The MAEs of the mean and in each 345 

quadrant are all smaller than those of the other four methods, so the GRNN 346 

algorithm is selected as the final estimation model for the R50 and R64.  347 

 348 

c. Further optimization of the models 349 

Following the determination of the optimal ML models and input schemes, 350 

the ML models are retrained with the same samples to fine-tune the parameters 351 

further. Finally, the parameters that give the minimum MAE are employed to 352 

construct the TC size dataset. In the final regression SVM models, the 353 

Automatic Optimization of Hyper-parameters (Mountrakis et al. 2011; Lee et al. 354 

2016) is the most effective for the R34 and RMW estimation. 355 

The advantage of the GRNN is its convenient network parameter setting 356 

function. The performance of the GRNN network can be adjusted by setting 357 

only one parameter, denoted ‘Spread’ (also known as the bandwidth) (May et 358 

al. 2010; Ghosh and Krishnamurti 2018). In the experiments, the initial Spread 359 

is set to 0.1 and increases to 100 in intervals of 0.1. The results show that the 360 

MAE decreases with the increase of Spread, but after reaching a certain value, 361 

the MAE levels out and then begins to increase. We find that there is a minimum 362 

estimated MAE for both the R50 and R64 when the bandwidth is set to 9.8 and 363 

23.8 in the GRNN models, respectively. We note that all of the above models 364 
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are convergent. 365 

4 TC size dataset construction and estimation error analysis 366 

4.1 TC size dataset construction in the WNP  367 

Based on the trained ML models and the determined input schemes, the 368 

TC size dataset in the WNP during the period between 1981 and 2019 is 369 

constructed using the infrared band observations of HURSAT B1 (1981–2016), 370 

FY-2G (2017–2019), and the IBTrACS data. The TC size dataset includes 371 

19,995 samples and 940 TCs above TS intensity, with information about the 372 

RMW and wind radius (km) of the R34, R50, and R64 in four quadrants. It 373 

should be noted that as the sample from 2001 to 2013 are incorporated in the 374 

training phase, the interpretation of the constructed TC size dataset during that 375 

period may need further attention to avoid possible influence of data over-fitting.  376 

The TC size distribution for various size parameters (R34, R34-1, R34-2, 377 

R34-3, R34-4, R50, R50-1, R50-2, R50-3, R50-4, R64, R64-1, R64-2, R64-3, 378 

R64-4, and RMW) is shown in Fig. 3. The mean R34, R50, R64, and RMW are 379 

179, 100, 63, and 47 km, respectively, and the median values are 173, 94, 60, 380 

and 48 km, respectively. The distribution and probability density function of R34 381 

show that the estimated R34 has a normal distribution centered at about 180 382 

km. In addition, 99.9% of the estimated R34 values are below 400 km, and only 383 

about 5% are below 100 km. 384 

 385 

 386 
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 387 

4.2 Independent-samples validation and estimation error analysis 388 

Taking the best track data from the JTWC during the period between 2017 389 

and 2019 and the available aircraft reports (Bai et al. 2019) between 1981 and 390 

1987 as the ground truth, we now assess the estimated TC sizes and analyze 391 

the errors. . 392 

a. Independent-samples validation based on the JTWC best track data between 393 

2017 and 2019 394 

Taking the JTWC best track data as the ground truth, 1035 independent 395 

samples between 2017 and 2019 are used for validation. The results show that 396 

the respective MAEs of the mean estimated R34, R50, R64, and RMW are 58, 397 

38, 21, and 25 km; the corresponding median errors are 46, 31, 17, and 19 km; 398 

and the standard deviations are 47, 33, 18, and 26 km. There is a clear 399 

correlation between the estimated values and the best track data for the R34 400 

(Fig. 4), with a correlation coefficient of 0.39, which is statistically significant at 401 

the 95% confidence level (T-test was used for all tests of statistical significance). 402 

The blue ellipse in Fig. 4, which is the 95% confidence interval based on a 403 

normal distribution, contains most of the samples. There are few outliers (red 404 

crosses). The figure shows that the estimated R34 is consistent with that from 405 

the JTWC best track data. However, the centroid of the data is slightly lower 406 

than the fitting line, indicating that the overall estimated values of R34 are 407 

slightly smaller than the best track data; i.e., R34 is slightly underestimated. 408 



 

 20 / 49 

 

 409 

The estimated median error is smaller than the MAE for all estimated 410 

parameters. This indicates that there are some samples with large bias that 411 

caused the larger MAE. Hence, considering R34 as an example, all samples 412 

are divided into subgroups by latitudinal zone, size, month, and intensity 413 

category to analyze in detail the characters of the estimation errors. 414 

The error box-plot of R34 estimation in different latitudinal zones (Fig. 5) 415 

shows the best estimation accuracy for samples between 10° and 30° north 416 

(the median error was between approximately −8 and −10 km). The estimation 417 

accuracy worsened for samples between 30° and 40° north (median error, 418 

about −25 km), equatorward of 10° north (median error, about −57 km), and 419 

poleward of 40° north (median error, about −82 km). The estimation method did 420 

not perform well for TCs at lower latitudes (<10° north), as the associated cloud 421 

clusters of TCs were loosely organized during their early stage of the life cycle. 422 

As the TCs moved to higher latitudes (above 40° north), most were recurved 423 

and steered by the mid-latitude westerlies so that the superposition with the 424 

westerlies may have resulted in larger actual values of R34 than those 425 

underestimated by the proposed models. 426 

 427 

The sampled TCs are divided into five groups from small to large according 428 

to the R34 value in the JTWC best track data: ≤100 km, 100–200 km, 200–300 429 

km, 300–400 km, and ≥400 km. The estimation biases for the different size 430 
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groups (Fig. 6) clearly increase in magnitude with increasing storm size. The 431 

estimated mean bias is between −50 and 50 km when the size is smaller than 432 

300 km, but larger storms have estimated mean bias between −100 and 433 

−170km, indicating serious underestimation, i.e., the model’s performance is 434 

limited for large TCs (defined as those above the 95th percentile of storm size). 435 

The estimated MAE for sample values above the 95th percentile is 161 km, 436 

which means that the estimated errors of the model for high-value samples are 437 

2.8 times the average (58 km). This shows that the model does not adequately 438 

describe abnormal samples or outliers, which is a weakness of the regression 439 

method in general, whether linear or nonlinear. 440 

 441 

The error bars of R34 estimation for different months (Fig. 7) are variable: 442 

the bias in January and December is large, with a mean of about −70 km, while 443 

the mean bias for February–April and November is about 0 km, indicating good 444 

estimation. The mean bias gradually increases in magnitude from around 0 km 445 

in June to −40 km in October, which may be related to the TCs in the WNP 446 

being larger from September to October (Guo and Tan, 2017; Lu et al., 2017). 447 

 448 

There is no clear regularity of estimation bias of R34 in the different intensity 449 

categories. The accuracy is better for TS, TY, and SuperTY categories, whose 450 

estimation showed median errors between −4 and −10 km. The estimation of 451 

STS and STY showed median errors between −31 and −34 km. The analysis 452 

plot is not shown here because of limited space. 453 
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The spatial distribution of estimation bias of R34 (Fig. 8) indicates its 454 

underestimation near land, such as the coastal areas of the Philippines, East 455 

China, and the Korean Peninsula. When a TC is close to land, friction may lead 456 

to an inclination of the TC in the vertical direction. Then the BTP across the 457 

weak convection away from the center is obtained due to the misalignment of 458 

the center of the high-level cloud top and the surface center, which results in an 459 

underestimation of R34 in the model. On the other hand, R34 is overestimated 460 

in the region where a TC has just formed. It is plausible that dense cloud 461 

clusters associated with developing TCs may provide the model with false BTP 462 

features suggesting stronger convection, leading to overestimation. 463 

 464 

Overall, the above validation shows that the proposed models perform 465 

satisfactorily in providing accurate and reliable estimated wind radii, except for 466 

at certain latitude regions or for unusually large TCs. 467 

 468 

b. Independent-samples validation based on aircraft observations between 469 

1981 and 1987 470 

We now evaluate the estimated mean R34 using data from aircraft 471 

observation reports of the TC center and periphery, obtained during the period 472 

1981–1987 in the WNP (Bai et al. 2019). The evaluation neglects R64 as there 473 

is no matched observation sample. The TC center observations are used here 474 

for RMW evaluation, with a total of 584 matching samples. R34 and R50 are 475 
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evaluated based on the matching samples of the peripheral observation time 476 

and wind speed. Among them, there are 109 matched samples for R34 477 

evaluation, but only 19 matched samples for R50 evaluation. 478 

The validation results show that the MAEs between the mean estimated 479 

R34 (109 samples), R50 (19 samples), and RMW (584 samples) and the aircraft 480 

observations are 54, 34, and 25 km, respectively; the median errors are 39, 34, 481 

and 17 km, respectively; the standard deviations are 38, 22, and 22 km, 482 

respectively. This accuracy is slightly better than that of the validation result 483 

based on JTWC best track data between 2017 and 2019. 484 

For the matched R34 samples, the mean observation radius of the wind 485 

speed between 15 and 21 m s−1 is defined as the observed R34. The estimated 486 

MAE, median error, and standard deviation are 54, 39, and 38 km respectively. 487 

Fig. 9 shows the corresponding scatter plot between the estimated R34 and 488 

observations; the correlation coefficient is ~0.45 (significant at the 95% 489 

confidence level).  The blue ellipse is the 95% confidence interval based on a 490 

normal distribution, which contains most of the samples. The magenta ellipse 491 

is the range within one standard deviation of all samples. The figure shows that 492 

the estimated dataset is also consistent with the R34 values obtained from 493 

aircraft observation. 494 

 495 

There are 19 matched samples for R50 evaluation. The mean observation 496 

radius of the wind speeds between 21.5 and 27.5 m s−1 is defined as the 497 
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observed R50. The estimated MAE, median error, and standard deviation are 498 

34, 34, and 22 km, respectively. The correlation coefficient between the 499 

estimated R50 and the observations is ~0.505 (significant at the 95% 500 

confidence level). 501 

There are 584 matched samples for RMW evaluation. The estimated MAE, 502 

median error, and standard deviation are 25, 17, and 22 km, respectively. To 503 

analyze the error distribution, all samples are also divided into subgroups by 504 

latitude and intensity (Fig. 10). 505 

The estimation error bars of RMW in different latitudinal zones (upper panel, 506 

Fig. 10) show that the range of estimation bias varies between approximately 507 

−40 and 20 km for all samples and that the mean bias is between −30 and −10 508 

km. Most samples appear underestimated. The estimation accuracy decreases 509 

from lower to higher latitudes. The increasing underestimation with increasing 510 

latitude is broadly attributed to superposition with the westerlies, which is 511 

consistent with the analysis in Section 4.2a. 512 

The estimation error bars for RMW in different intensity categories (lower 513 

panel, Fig. 10) show that the mean bias is between −20 and 0 km. The 514 

estimation accuracy improves from TS to SuperTY. Stronger TCs favor tighter 515 

cloud clusters near their centers, which can be better represented by the model 516 

due to the more prominent BTP features. 517 

Overall, the estimated mean R34, R50, and RMW are mostly consistent 518 

with the observations. The MAEs for estimation of R34 and R50 (54 and 34 km, 519 
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respectively) from aircraft observation are smaller than those from the JTWC 520 

best track data (58 and 38 km, respectively). However, the median estimation 521 

error is smaller than the MAE for all validations, which indicates that the larger 522 

MAE was caused by high-value samples. This indicates a slightly larger bias at 523 

high values, which may have originated from the combined effect of the 524 

estimation methods and the observation samples. For example, the samples at 525 

high latitudes have increased R34 and RMW owing to superposition with the 526 

westerlies; at the same time, the estimation model does not perform well with 527 

the disordered TC cloud structure caused by the westerlies. 528 

Nevertheless, the estimation errors of this study are still smaller than those 529 

from operational wind radii estimates, which can be as large as 25%–40% of 530 

the radii themselves (Knaff et al. 2010 and 2015). 531 

 532 

c. Comparison with previous research 533 

Lu et al. (2017) put forward a linear stepwise regression method to estimate 534 

mean TC size (in terms of the R34) using the same satellite data as in this study. 535 

The estimated median error was 40 km, which is slightly larger than the value 536 

in this study (39 km, compared with aircraft observations). However, in this 537 

study, more TC size parameters are estimated and much more detailed 538 

information about the TC wind structure is provided, including the R34, R50, 539 

and R64 in four quadrants, as well as the RMW. Moreover, the ML algorithm 540 

used in this study may be able to reveal the nonlinear relationship between 541 
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satellite observations and the TC wind field structure, whereas the linear 542 

method cannot.  543 

The models and validation conclusions in this study are only suitable for 544 

the WNP region. As few studies have estimated the TC wind field structure in 545 

the WNP, we here compare the estimation accuracy of this study with 546 

comparable studies in the Atlantic. The estimation accuracy of R34, R50, R64, 547 

and RMW in this study is equivalent to that in some previous studies (Mueller 548 

et al. 2006; Knaff et al. 2011 and 2016). The MAEs for estimation of R34, R50, 549 

and R64 by Knaff et al. (2011 and 2016) are about 65, 35, and 23 km, 550 

respectively. The validation data for the Atlantic are closer to the ground truth 551 

as they are supported by aircraft observations. However, short-term aircraft 552 

observations and the best track dataset integrating multiple observations as the 553 

verification dataset can also be used to validate TC wind structure estimation in 554 

the WNP region, which is a workaround available to relevant studies in this 555 

region. 556 

 557 

5 Summary and Conclusions  558 

In this paper, identification models of size for TCs in the WNP were 559 

proposed based on the infrared channel imagery of geostationary 560 

meteorological satellites. Several different machine learning algorithms were 561 

tested for different TC size parameters, including RMW, R34, R50, and R64. It 562 

is obtained that RMW and R34 can be best estimated by the support vector 563 
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machine models, while R50 and R64 can be best estimated by the general 564 

regression neural network models. These models are used to set up a dataset 565 

of TC size for a nearly 40-yr period in the WNP region.  566 

Evaluation of the TC size datasets was conducted using independent 567 

samples based on aircraft observations (1981–1987) and JTWC best track data 568 

(2017–2019). The results show that the estimated MAEs for R34 are 54 and 58 569 

km, respectively. These MAEs are comparable to the accuracy of wind radius 570 

estimates in previous studies. The estimated accuracy for 10°N to 30°N is 571 

higher than that for other latitudes, and the errors are larger near coastal areas 572 

than open seas. The estimation accuracy of RMW increases with increasing 573 

intensity of TC. There are overall slight underestimations of the models, which 574 

will require future study. 575 

The models proposed here are constructed and validated based on JTWC 576 

best track data and past aircraft observations in the WNP. As there are few 577 

aircraft observations in WNP to verify the TC size dataset, further study would 578 

be required to implement and validate the performance of the proposed models, 579 

such as using datasets for the western Atlantic, where more aircraft 580 

reconnaissance observations are available. Moreover, this study has 581 

demonstrated a feasible way to carry out relevant research and develop a 582 

methodology to estimate TC size or representative parameters for TCs in the 583 

WNP. It is anticipated that the proposed algorithms could be improved in future 584 

using more observations to enhance the ML models and validate the testing 585 
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results. 586 

All in all, this study shows that infrared images contain important 587 

information about the low-level wind field. By transforming the two-dimensional 588 

BT field to the azimuthal mean profile and extracting the distribution features, it 589 

can be used as the main predictor in a ML algorithm to estimate the wind radii 590 

of the R34, R50, R64, and RMW. However, the performance of the ML algorithm 591 

is limited for unusually large or small TCs. This needs to be improved by using 592 

or combining multiple algorithms in the future. 593 

All of the algorithms in this study can be implemented in real-time 594 

operational applications (Fig. 11) or in post-seasonal analysis as a reference 595 

for operational TC forecasting. In addition, the estimation dataset in this study 596 

provides important parameters regarding TC evolution in the WNP and may 597 

benefit model initialization of TC structure in regions such as the WNP, where 598 

aircraft observations and reconnaissance data are relatively limited. 599 
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 810 

List of Figures 811 

 812 

Fig. 1 Difference between the R34 from JTWC best track data and that 813 

estimated by various methods using different input radii from the TC 814 

center (2318 samples between 2014 and 2016). The x-axis is the number 815 

of grid points used for the input BTP. The spatial resolution of the grid is 816 

~8 km. 817 

Fig. 2 Errors in (a) R50 and (b) R64 estimated using different algorithms and 818 

different input radii from the TC center (831 samples from 2015 to 2016). 819 

The figure illustrations are the same as in Fig. 1. 820 

Fig. 3 Box plots of R34, R50, R64, and RMW estimated for TCs in the WNP 821 

between 1981 and 2019 (19,995 samples, 940 TCs above TS intensity). 822 

Fig. 4 Scatter plot of IR-predicted R34 vs R34 from the JTWC best track data 823 

between 2017 and 2019 (1035 samples). The black line is a linear fit 824 

between the two variables. N is the number of samples, and R2 is the 825 

correlation coefficient (statistically significant at the 95% confidence level). 826 

Fig. 5 Estimation bias of R34 in different latitudinal zones compared with the 827 

JTWC best track data in the WNP between 2017 and 2019. The sample 828 

size is as in Fig. 4. Numbers in parentheses give the sample size. 829 

Fig. 6 Estimation bias of R34 for TCs grouped by size compared with the JTWC 830 

best track data in the WNP between 2017 and 2019. The sample size is 831 

as in Fig. 4. Numbers in parentheses give the sample size. 832 
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Fig. 7 Estimation bias of R34 for TCs in different months compared with the 833 

JTWC best track data in the WNP between 2017 and 2019. The sample 834 

size is as in Fig. 4. Numbers in parentheses give the sample size. 835 

Fig. 8 Spatial distribution of estimation bias of R34 compared with the JTWC 836 

best track data in the WNP between 2017 and 2019. The sample size is 837 

as in Fig. 4. The number in each grid is the sample size. 838 

Fig. 9 Scatter plot of the IR-predicted R34 vs R34 from aircraft observations 839 

between 1981 and 1987. The black line is a linear fit between the two 840 

variables. N is the number of samples, and R2 is the correlation 841 

coefficient (statistically significant at the 95% confidence level). The color 842 

represents the density of the scatter points. 843 

Fig. 10 Error bars for estimation of RMW at different latitudes (upper) and for 844 

different intensity categories (lower) compared with aircraft observations 845 

in the WNP between 1981 and 1987 (584 samples). Numbers in 846 

parentheses gives the sample size. 847 

 848 

Fig. 11 Flow chart of the algorithms implemented in real-time operational 849 

applications.  850 
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Fig. 1 Difference between the R34 from JTWC best track data and that 853 

estimated by various methods using different input radii from the TC center 854 

(2318 samples between 2014 and 2016). The x-axis is the number of grid 855 

points used for the input BTP. The spatial resolution of the grid is ~8 km. 856 
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 860 

Fig. 2 Errors in (a) R50 and (b) R64 estimated using different algorithms and 861 

different input radii from the TC center (831 samples from 2015 to 2016). 862 

The figure illustrations are the same as in Fig. 1. 863 

 864 

 865 

Fig. 3 Box plots of R34, R50, R64, and RMW estimated for TCs in the WNP 866 

between 1981 and 2019 (19,995 samples, 940 TCs above TS intensity). 867 

 868 
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 869 

Fig. 4 Scatter plot of IR-predicted R34 vs R34 from the JTWC best track data 870 

between 2017 and 2019 (1035 samples). The black line is a linear fit 871 

between the two variables. N is the number of samples, and R2 is the 872 

correlation coefficient (statistically significant at the 95% confidence level). 873 

 874 

 875 

Fig. 5 Estimation bias of R34 in different latitudinal zones compared with the 876 

JTWC best track data in the WNP between 2017 and 2019. The sample 877 
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size is as in Fig. 4. Numbers in parentheses give the sample size. 878 

 879 

 880 

Fig. 6 Estimation bias of R34 for TCs grouped by size compared with the 881 

JTWC best track data in the WNP between 2017 and 2019. The sample 882 

size is as in Fig. 4. Numbers in parentheses give the sample size. 883 

 884 

 885 

Fig. 7 Estimation bias of R34 for TCs in different months compared with the 886 

JTWC best track data in the WNP between 2017 and 2019. The sample 887 

size is as in Fig. 4. Numbers in parentheses give the sample size. 888 
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 890 

Fig. 8 Spatial distribution of estimation bias of R34 compared with the JTWC 891 

best track data in the WNP between 2017 and 2019. The sample size is 892 

as in Fig. 4. The number in each grid is the sample size. 893 

 894 

 895 

 896 

 897 
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Fig. 9 Scatter plot of the IR-predicted R34 vs R34 from aircraft observations 898 

between 1981 and 1987. The black line is a linear fit between the two 899 

variables. N is the number of samples, and R2 is the correlation coefficient 900 

(statistically significant at the 95% confidence level). The color represents 901 

the density of the scatter points. 902 

 903 

 904 

 905 

Fig. 10 Error bars for estimation of RMW at different latitudes (upper) and for 906 

different intensity categories (lower) compared with aircraft observations 907 

in the WNP between 1981 and 1987 (584 samples). Numbers in 908 

parentheses gives the sample size. 909 

910 
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 911 

Fig. 11 Flow chart of the algorithms implemented in real-time operational 912 

applications. 913 
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 924 

Table 1 Parameters for the different machine learning methods used in the 925 

experiments. 926 

Algorithm Parameter setting Input 

Multi-Layer 

Perceptron (MLP) 

Epochs = 10000;  

Learning rate = 0.005; 

Learn function = ’tansig’; 

Transform function = ’purelin’; 

Max fail = 10; Goal = 0.01; 

Perform function = ’mse’; 

Hidden layer size = log2 N (N is 

the input size). 

The longitude (Lon) 

and latitude (Lat) of 

TC center, TC 

intensity (MSW), 

and (BT) radial 

profile (BTP) within 

the radius R 

General 

Regression 

Neural Network 

(GRNN) 

Spread = 25. Ditto 

Radial Basis 

Function Network 

(RBFN) 

Maximum number of neurons = 

1000; 

Number of neurons to add 

between displays = 10; 

Spread = 25; 

Goal = 0.01. 

Ditto 

Support Vector 

Machine (SVM) 

Kernel function = ’gaussian’; 

Kernel scale = ’auto’; 

Ditto 

Decision Tree 

(DT) 

Number of trees = 50; 

Method = ’regression’. 

Ditto 

 927 

Table 2 Difference between the JTWC best track data and the mean R50 and 928 

R64 estimated using different input schemes (MAE, km) (831 samples) 929 

 MLP GRNN RBFN SVM DT 

R50 16 15 38 20 17 

R64 12 11 46 14 13 

 930 


