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Abstract 37 

 38 

The observation operator (OO) is essential in data assimilation (DA) to derive the 39 

model equivalent of observations from the model variables. In the satellite DA, the OO for 40 

satellite microwave brightness temperature (BT) is usually based on the radiative transfer 41 

model (RTM) with a bias correction procedure. To explore the possibility to obtain OO 42 

without using physically based RTM, this study applied machine learning (ML) as OO 43 

(ML-OO) to assimilate BT from Advanced Microwave Sounding Unit-A (AMSU-A) 44 

channels 6 and 7 over oceans and channel 8 over both land and oceans under clear-sky 45 

conditions. We used a reference system, consisting of the nonhydrostatic icosahedral 46 

atmospheric model (NICAM) and the local ensemble transform Kalman filter (LETKF). 47 

The radiative transfer for TOVS (RTTOV) was implemented in the system as OO, 48 

combined with a separate bias correction procedure (RTTOV-OO). The DA experiment 49 

was performed for one month to assimilate conventional observations and BT using the 50 

reference system. Model forecasts from the experiment were paired with observations for 51 

training the ML models to obtain ML-OO. In addition, three DA experiments were 52 

conducted, which revealed that DA of the conventional observations and BT using ML-53 

OO was slightly inferior, compared to that of RTTOV-OO, but it was better than the 54 

assimilation based on only conventional observations. Moreover, ML-OO treated bias 55 

internally, thereby simplifying the overall system framework. The proposed ML-OO has 56 
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limitations due to (1) the inability to treat bias realistically when a significant change is 57 

present in the satellite characteristics, (2) inapplicability for many channels, (3) 58 

deteriorated performance, compared with that of RTTOV-OO in terms of accuracy and 59 

computational speed, and (4) physically based RTM is still used to train the ML-OO. 60 

Future studies can alleviate these drawbacks, thereby improving the proposed ML-OO. 61 

 62 

Keywords: satellite radiance data assimilation; machine learning; neural network; 63 

observation operator; forward operator 64 

 65 

66 
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1. Introduction 67 

 Data assimilation (DA) is a combination of model simulations and observations. DA 68 

provides an optimal estimate of the initial condition, thereby improving the forecast. Because 69 

satellite observations provide dominant observational information for global numerical 70 

weather predictions (NWP) (Eyre et al. 2020), assimilating them is important. In this context, 71 

the Advanced Microwave Sounding Unit-A (AMSU-A) is a multichannel microwave 72 

radiometer, which is sensitive to the temperature profile of the atmosphere. It has been 73 

already used for improving NWP performance (e.g. Miyoshi et al. 2010; Terasaki and Miyoshi 74 

2017 (hereafter simply "TM17”)). For atmospheric data assimilation, the model space and 75 

the observation space are generally different because the locations of the observations do 76 

not ideally coincide with the model grid points, and the observed variables may not be the 77 

same as the model variables. Due to this, to compare the model state and observations, an 78 

observation operator (OO) (e.g., a forward model) is required. When satellite radiances are 79 

used as observations, the OO has two primary purposes. First, it performs a horizontal 80 

interpolation of the model variables at the model grids to the observation locations. Second, 81 

at each observation location, the simulated (synthetic) radiance is calculated using a vertical 82 

profile of the model variables (Kalnay 2002, p. 161). In this study, we elucidated only the 83 

second aspect, which requires knowledge about the relationships between the model 84 

variables and satellite radiances. To fulfill this, there are two approaches: physically based 85 

RTMs (RTM-OO) and machine learning (ML) models (ML-OO).  86 
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From the RTM-OO perspective, the line-by-line (LBL) RTM is an accurate and 87 

flexible RTM, applicable over a full spectral range. Such ability lays the foundation for 88 

numerous radiative transfer applications (Alvarado et al. 2013). As the calculation of the 89 

RTM needs to be fast for data assimilation, it is generally not recommended to use LBL RTM 90 

for RTM-OO. Therefore, faster RTMs have been developed. For instance, in the radiative 91 

transfer for TOVS (RTTOV) (Saunders et al. 2018), the layer optical depth for specific gas 92 

and channel is parameterized in terms of layer mean atmospheric variables (Saunders et al. 93 

2018; Hocking 2019). To obtain the regression coefficients of these predictors, layer-to-94 

space transmittances at high spectral resolutions computed from LBL RTMs using a variety 95 

of atmospheric profiles, have been used. Notably, fast RTMs such as RTTOV are the most 96 

widely used observation operators for satellite radiance data assimilation. The biases 97 

between the model equivalent of observations from the RTM and the actual satellite 98 

observations can emerge due to various effects including the calibration problem of the 99 

instrument, temporal change of instrument characteristics, preprocessing of the data, the 100 

RTM inaccuracies, and the bias in the model field (Derber 1998; Dee 2004; Harris and Kelly 101 

2001). A bias correction procedure is required for two common types of biases: scan bias 102 

and airmass bias (Dee 2004; Harris and Kelly 2001). The former is related to the satellite 103 

scan position and latitude, and the latter is related to the state of the atmosphere (Harris and 104 

Kelly 2001). Note that some NWP centers use only the scan positions for scan bias 105 

correction. Scan bias can be estimated offline (Harris and Kelly 2001) or online (TM17). The 106 
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airmass bias can be estimated offline (Harris and Kelly 2001). It can also be estimated online 107 

adaptively in the variational data assimilation using the variational bias correction method 108 

(VarBC) (Derber 1998; Dee 2004). Furthermore, an equivalent method in ensemble data 109 

assimilation has been previously proposed (Miyoshi et al., 2010; TM17).  110 

From the ML-OO perspective, MLs are efficient for identifying complex statistical 111 

relationships within the data. The application of artificial intelligence and ML in Earth and 112 

atmospheric studies has become increasingly popular in research, whereas a review of such 113 

applications can be found in Boukabara et al. (2021). ML can be used to reduce the high 114 

computational cost in applications that involve complicated physical processes. For instance, 115 

ML can be used to emulate and accelerate parametrization schemes in the NWP (Chantry 116 

et al. 2021; Pal et al. 2019; Krasnopolsky et al. 2008). Likewise, the ML method can be 117 

applied to build an ML-OO. In general, there are primary two ways to train an ML-OO. 118 

 Firstly, one can use the input and output data from the RTM. The development of 119 

ML-OO using the RTM requires various input variables, covering the full physical parameter 120 

space with sufficient resolution. Such inputs are provided to the RTM to generate the 121 

corresponding synthetic radiances. The input variables and output radiances are paired to 122 

train an ML model to obtain the ML-OO. If the original RTM is computationally expensive, 123 

ML-OO can generally reduce the computational cost, while retaining sufficient accuracy. For 124 

instance, a look-up table (LUT) can be generated by the ML emulator to be further used for 125 

retrieval purposes (Rivera et al. 2015). In Scheck (2021), slow RTM for visible satellite 126 
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images was emulated using a neural network (NN). 127 

 Secondly, it is possible to develop the ML-OO without the use of RTM. Compared 128 

to the method using RTM, such an approach relies on satellite-observed radiance data 129 

instead of synthetic radiance data from the RTM. Being combined with the model state, 130 

satellite radiance can be used to train the ML model. To represent the actual relationship 131 

between the model state and the satellite radiance, the model state used for training the ML-132 

OO must be good enough. To this end, we suggest that analyses or short-term forecasts 133 

after analyses from data assimilation and reanalysis data can be used. Kwon et al. (2019) 134 

have previously used atmospheric reanalysis data to provide forcing for a land surface 135 

model to generate synthetic snow depth. Then synthetic snow depth and observed radiance 136 

were utilized to train a support vector machine model. They showed that ML-OO is 137 

computationally more efficient than RTM. To the best of our knowledge, the analyses or 138 

short-term forecasts from data assimilation were never utilized to combine with the satellite-139 

observed radiance to train an ML model.  140 

 Our goal is to build an ML-OO without using the RTM. However, this study is only 141 

the first step since we still used RTM to assimilate the satellite radiance to generate better 142 

short-term forecasts. As mentioned earlier, the bias between synthetic radiance and satellite-143 

observed radiance should be addressed. Zhou and Grassotti (2020) used ML to address the 144 

radiometric bias to improve the satellite retrievals. Rodríguez-Fernández et al. (2019) have 145 

previously trained the ML model using the Soil Moisture and Ocean Salinity (SMOS) 146 
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brightness temperature (BT) from observations as the input and soil moisture (SM) from the 147 

model as the output. They found no global bias between the retrieved SM predicted from 148 

the ML and modeled SM. Similarly, if ML-OO for satellite radiance is built using the model 149 

state and the observed radiance, the bias between the simulated radiance from ML-OO and 150 

the observed radiance would be assumingly low. As one of the objectives of the study, we 151 

evaluate this surmise by our analysis. Moreover, we compare ML-OO with the RTM-OO. 152 

Lastly, we discuss how our preliminary study can be extended to broader applications.  153 

 The remainder of this paper is organized as follows. The materials and methods are 154 

described in Section 2. Sections 3 and 4 present the experimental setup and results. Finally, 155 

a discussion and summary are presented in Sections 5 and 6, respectively.  156 

 157 

2. Materials and Methods  158 

2.1 Data assimilation system 159 

 In this study, we used the nonhydrostatic icosahedral atmospheric model (NICAM) 160 

(Satoh et al. 2014) and the local ensemble transform Kalman filter (LETKF) (Hunt et al. 161 

2007) to conduct data assimilation experiments. The configuration of the system (NICAM-162 

LETKF) mostly followed that of the TM17. In this study, only a few important aspects of the 163 

system related to this study are presented. The horizontal resolution of the NICAM model 164 

was 112 km. There were 78 vertical levels (38 levels in TM17) up to the height of ~50 km. 165 

The NICAM-LETKF has an observation operator for assimilating the satellite radiance. The 166 
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observation operator horizontally interpolates model variables in the first guess from the 167 

model grids to the observation locations. These variables include pressure, temperature, 168 

specific humidity, surface pressure, 2-m temperature, surface (skin) temperature, 2-meter 169 

specific humidity, and 10-m zonal/meridional winds. After the interpolation, at each 170 

observation location, the interpolated model variables combined with other variables were 171 

utilized in RTTOV (version 12.2) to calculate the model equivalent of the brightness 172 

temperature. A complete list of the variables required by the RTTOV can be found in Hocking 173 

(2019). The NICAM-LETKF system uses an online bias correction method to correct scan 174 

bias and airmass bias (TM17). The biases were estimated adaptively during the data 175 

assimilation and subtracted from the observed BT before the analysis. The input variables 176 

(predictors) for the airmass bias included the integrated weighted lapse rate (IWLR) at two 177 

layers: 1000 – 200 hPa and 200 – 50 hPa, surface temperature, and the inverse of cosine of 178 

satellite zenith angle. For brevity, we use the RTTOV-OO to indicate the observation 179 

operator based on RTTOV combined with an online bias correction method.  180 

 The NICAM-LETKF system contained 64 ensemble members. The relaxation to 181 

prior spread (RTPS) method was applied for covariance inflation (Whitaker and Hamill 2012; 182 

Kotsuki et al. 2017). Covariance localization based on the Gaussian function was applied 183 

with a standard deviation σ = 250 km in the horizontal and 0.4 in the vertical natural-log-184 

pressure coordinate, but the localization function was replaced by zero beyond 2�10 ∕ 3𝜎𝜎. 185 

Note that vertical localization was not used for AMSU-A BT. Its impact on performance will 186 
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be investigated in future studies.  187 

 188 

2.2 Observation data 189 

 Observations were assimilated every 6-h (Fig. 1a). At each analysis time point, the 190 

observations within the ±3 ℎ  time window were assimilated. Overall, there were seven 191 

observation files (time slots) in an analysis time window. One file in each time slot contained 192 

observations ±30 minutes. After finishing an analysis, we forecasted 9 hours so that there 193 

were observations within the ±3 ℎ time window at the next analysis time. This process was 194 

continued until the end of the experimental period.  195 

 The observations included the NCEP ADP Global Upper Air and Surface Weather 196 

Observations dataset (NCEP PREPBUFR). This dataset includes records from radiosondes, 197 

wind profilers, aircraft, land surface observations, marine observations, atmospheric motion 198 

vectors (AMVs), and sea surface winds from satellite scatterometers. The satellite radiance 199 

data were represented by BT obtained from the AMSU-A instruments onboard the NOAA-200 

15, NOAA-18, NOAA-19, METOP-A, and METOP-B satellites. Note that in this study, the 201 

term ‘conventional observations’ indicates the observations from the NCEP PREPBUFR 202 

dataset. As our model was vertically constrained by the 50 km height in this study, we 203 

assimilated only the channel numbers 6, 7, and 8. The channels 9 and beyond, which are 204 

sensitive to the stratosphere and mesosphere, were not assimilated due to this reason. 205 

Moreover, the lower channels were not assimilated due to their sensitivity to the lower 206 



 10 

troposphere and the Earth’s surface, where the quality control in this study was rather 207 

simplistic to handle the data (TM17). Not all three channels were assimilated for some 208 

satellites (Table 1). The standard deviation of the observation error used for data assimilation 209 

was set at 0.3 K for all the used channels. 210 

Before the data assimilation, the observations were preprocessed, where data 211 

thinning, quality control, and gross error checks were applied to the observations. The 212 

observation errors in data assimilation include measurement and representation errors 213 

(Janjić et al. 2018). The observation errors are correlated in terms of space and time. 214 

Particularly, for satellite radiances, correlated errors may be present between channels. 215 

However, it is challenging to identify and implement a full observation error-covariance 216 

matrix for such data. Therefore, spatial thinning was implemented in this study to reduce 217 

potential spatial correlations. For thinning of the AMSU-A observations, we selected the 218 

nearest observations from every grid point of the uniform virtual horizontal grids with the 219 

250-km resolution by following the JMA’s setting from Okamoto et al. (2005). Note that a 220 

thorough examination of the thinning distance effects is beyond the scope of this study. 221 

Furthermore, the quality control for assimilating AMSU-A was applied after thinning. The 222 

observations from channels 6 and 7 over the land were completely filtered out. Over the 223 

oceans, observations from these two channels were filtered out at the liquid water path 224 

(LWP) >0.12 kg kg-1 and 0.15 kg kg-1, respectively. The LWP was calculated using channels 225 

1 and 2 from AMSU-A (Grody et al. 2001). LWP was utilized to remove cloud- and rain-226 
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contaminated observations by following the method of Bormann et al. (2012). Channel 8 227 

was assimilated without any quality control because the peak height of the weighting 228 

function is higher, which implies that this channel is less affected by clouds and rain. Finally, 229 

we performed a gross error check to remove the data with a large observation-minus-first-230 

guess departure. Specifically, when the departure was greater than three times the standard 231 

deviation of the observation error, the data were filtered out. To train the ML model, the same 232 

quality control was applied to the AMSU-A observations. However, data thinning of AMSU-233 

A observations was not applied because more data were required to train the ML model. As 234 

shown in Fig. 1b, after the quality control, all the data over land from channels 6 and 7 were 235 

excluded, while there were data over land and oceans from channel 8. 236 

 237 

2.3  Machine learning method 238 

 As discussed in the introduction, the observation operator interpolates and converts 239 

the model variables into the model equivalent of the observation. To build a good observation 240 

operator, we should ideally use the values of the model variables and observed variables 241 

that are close to the true state of the atmosphere. In this context, data assimilation is 242 

necessary to obtain such model variable values. On this basis, we opted to use the model 243 

forecasts after assimilating conventional observations and AMSU-A (using RTTOV-OO) as 244 

the input data for building the ML model. At every analysis time slot (00 UTC, 06 UTC, 12 245 

UTC, 18 UTC), a 9-h forecast was performed, thereby yielding the hourly forecast data from 246 
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3 to 9 h after the analysis. Instead of using the forecasts at all 7 h as the input to train the 247 

ML model, we used only the forecasts from 3 to 6 h after each time slot of the analysis. 248 

Fundamentally, they were closer to the analysis, while the satellites also had global coverage 249 

in this time window. Note that the experiments that produced model forecasts from the 250 

NICAM-LETKF will be explained below in Section 3.  251 

 For each atmospheric column, we would like to use ML-OO to predict BT according 252 

to the related model variables in the same column. On this basis, the development of the 253 

ML model implied that the input data (model variables) and output data (BT) in the same row 254 

of the dataset should originate from the same atmospheric column. As observation locations 255 

differed from the model grids, we interpolated the model variables at the model grids to the 256 

observation locations. Note that most input variables of the ML model were the same as 257 

RTTOV-OO (Table 2). For the three-dimensional variables, such as pressure, temperature, 258 

and specific humidity, each layer was considered as a feature in the ML model. However, 259 

the specific humidity above the NICAM model level 40 (~200 hPa height) was constant and 260 

almost 0. They were excluded as features because constant inputs do not contribute to the 261 

input-output relationship (Krasnopolsky et al. 2008).  262 

 Moreover, we added two predictors for the biases to the input variables because our 263 

initial idea was to ensure that the ML model can capture biases. The sections below briefly 264 

describe how biases had been treated by previous studies and explain how the ML treats 265 

biases in this study. In the offline bias correction method (Harris and Kelly 2001; Dee 2004), 266 
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the bias corrections were precomputed using historical data using the following steps: (1) 267 

the scan bias coefficient 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃,  ∅)  is obtained. It is a function of scan angle 𝜃𝜃 , and 268 

latitude ∅. Then, (2) the scan bias is removed from the departures: 𝑦𝑦 − ℎ(𝑥𝑥𝑏𝑏) − 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃,  ∅), 269 

where y is the observation, 𝑥𝑥𝑏𝑏  is the model background (usually in the vicinity of the 270 

radiosonde to ensure accuracy), and ℎ() is the RTM. 𝑦𝑦 − ℎ(𝑥𝑥𝑏𝑏) − 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃,  ∅) is then fit by 271 

a linear regression model. The linear regression model is the airmass bias correction term 272 

in this case. 273 

𝑦𝑦 − ℎ(𝑥𝑥𝑏𝑏) − 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃,  ∅) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖 (𝑥𝑥𝑏𝑏)𝑁𝑁
𝑖𝑖=1 + 𝑒𝑒  � ,  < 𝑒𝑒 � >  = 0    (1) 274 

where 𝑁𝑁 is the number of predictors, 𝑝𝑝𝑖𝑖 (i = 0, … 𝑁𝑁) are the predictors (state-dependent), 275 

𝛽𝛽𝑖𝑖 (i = 0,…N) are the coefficients of the predictors, and  𝑒𝑒  � is the residual error. As linear 276 

regression always passes the center of the data, the expectation of the residual errors is 277 

zero. The coefficients of scan bias and airmass bias are stored in the file and were used in 278 

the data assimilation. Eq. (1) can be changed to: 279 

𝑦𝑦′ =  𝑦𝑦 − 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃,  ∅) − 𝛽𝛽0 − ∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖 (𝑥𝑥𝑏𝑏) =  ℎ(𝑥𝑥𝑏𝑏)𝑁𝑁
𝑖𝑖=1 + 𝑒𝑒  � ,  < 𝑒𝑒 � >  = 0  (2) 280 

Therefore, before assimilating an observation 𝑦𝑦, the scan bias and the airmass bias 281 

are removed from the observations to obtain a ‘bias-corrected’ observations 𝑦𝑦′, which are 282 

subsequently assimilated. In the end, because < 𝑒𝑒 � >  = 0, there is no bias between the 283 

simulated radiance ℎ(𝑥𝑥𝑏𝑏) and the ‘bias-corrected’ radiance 𝑦𝑦′. 284 

Furthermore, the constant coefficients of the predictors for the airmass bias 285 

correction can be updated adaptively during data assimilation. In VarBC, the coefficients of 286 
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the predictors are added to the model state to form an augmented vector. The original 287 

observation operator is modified using the airmass bias term. The minimization of the cost 288 

function updates the augmented vector and the coefficients of the predictors, as shown by 289 

equations 10 to 14 of Dee (2004). The ensemble-based VarBC in the ensemble data 290 

assimilation also updates the coefficients adaptively based on the formulas from VarBC. 291 

Note that for VarBC and ensemble-based VarBC, the cost function contains two terms: 292 

distance to the background and distance to the observations. Thus, its minimization cannot 293 

ensure the minimization of the bias. However, some previous studies, mentioned in the 294 

introduction, have demonstrated the efficiency of these methods.  295 

Being inspired by the methods above, we argue that ML-OO can also handle the 296 

bias. Eq. 1 can be rewritten as: 297 

 𝑦𝑦 = ℎ′(𝑥𝑥𝑏𝑏, 𝜃𝜃,∅,𝑝𝑝) + 𝑒𝑒  � ,  < 𝑒𝑒 � >  = 0      (3) 298 

where ℎ′(𝑥𝑥𝑏𝑏, 𝜃𝜃,∅,𝑝𝑝) =  ℎ(𝑥𝑥𝑏𝑏) + 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃,  ∅) + 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖 (𝑥𝑥𝑏𝑏)𝑁𝑁
𝑖𝑖=1     299 

  If the observation 𝑦𝑦 on the left-hand side of Eq. 3 and 𝑥𝑥𝑏𝑏 ,𝜃𝜃,∅,𝑝𝑝 on the right-hand 300 

side are given, ML can be used to find a function to fit the observations.  301 

𝑦𝑦 = ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏, 𝜃𝜃,∅,𝑝𝑝) + 𝑒𝑒𝑚𝑚𝑚𝑚 ,        (4) 302 

where ℎ𝑚𝑚𝑚𝑚 is ML-OO, and 𝑒𝑒𝑚𝑚𝑚𝑚  is the residual error of the ML model. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =< 𝑒𝑒𝑚𝑚𝑚𝑚 >. 303 

The ML algorithm minimizes the mean squared error (MSE). The MSE can be 304 

decomposed into the variance of the error and the square of the bias (see Appendix A for 305 

the derivation).  306 
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𝐸𝐸([𝑦𝑦 − ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏, 𝜃𝜃,∅,𝑝𝑝)]2) = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦 − ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏,𝜃𝜃,∅,𝑝𝑝)] + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2   (5) 307 

  Because the variance of the error is positive, the square of the bias is smaller than 308 

the MSE. If the MSE is reasonably small after the minimization, the absolute value of the 309 

bias may be small enough. However, to ensure the performance of the ML-OO, the MSE 310 

and bias should be evaluated using the test data after training and before data assimilation. 311 

If both MSE and bias are low enough, the ML model can be used as an observation operator.  312 

In the last step, once the ML-OO is obtained, the data assimilation can be formalized 313 

as: 314 

𝑥𝑥𝑎𝑎 =  𝑥𝑥𝑏𝑏 + 𝐾𝐾[𝑦𝑦 −  ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏,𝜃𝜃,∅,𝑝𝑝)]      (6) 315 

where 𝑥𝑥𝑎𝑎 is the analysis, 𝑥𝑥𝑏𝑏 is the model background, and K is the optimal weight matrix. 316 

Notably, compared with RTTOV-OO, for ML-OO, the original observations can be 317 

assimilated directly without subtracting the bias correction terms.  318 

  Note that the selection of the predictors in ML-OO was based on the TM17 paper 319 

(Table 2). Specifically, in TM17, IWLR, surface temperature, and inverse of the cosine 320 

function of the satellite zenith angle were applied as the predictors for air mass bias 321 

correction. In this study, IWLR was not explicitly added because the vertical profiles of 322 

pressure and temperature in the input can fundamentally reflect IWLR. Surface temperature 323 

and satellite zenith angle are required by the RTM (Saunders et al., 2018). Therefore, they 324 

are important for both the radiative transfer process and air mass bias correction. Latitude 325 

and satellite scan angle were added to the input variables for the scan bias correction. Note 326 
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that latitude is also used in RTTOV to calculate the effects of Earth’s curvature on the 327 

atmospheric path (Hocking 2019). Both latitude and satellite scan angles have been 328 

previously applied for scan bias correction by Zhou and Grassotti (2020). They have used 329 

ML to correct the bias between the simulated radiances and satellite observations. It is 330 

important to note that BT estimates from channels 6, 7, and 8 are not sensitive to the 331 

radiation from the surface. However, we included the surface variables in the input of ML-332 

OO. To remind, we aim to use similar input variables as RTTOV-OO in TM17 to make the 333 

comparison feasible. Moreover, they are also the input variables for RTTOV. Finally, these 334 

variables are useful for some other channels that are more sensitive to the lower atmosphere. 335 

Therefore, we standardized the same set of input variables for all the channels.  336 

 Before feeding the data into the ML model, other preprocessing steps were 337 

performed. As the specific humidity was skewed toward lower values, we used the log 338 

function to transform it to the normal distribution. For the same reason, the pressure was 339 

transformed using the log function. The satellite zenith angle was expressed as 1/cos(θ), 340 

like in TM17. Each satellite dataset was separated into a training set (80%) and a test set 341 

(20%). Finally, the input and output data were standardized to zero mean and unit variance 342 

to facilitate the fast convergence of the ML during the training.  343 

 Fully connected deep neural networks (DNN) were used in this study, as shown in 344 

Fig. 2. We built different DNNs for each channel and each satellite because the number of 345 

collocated observations from the same channel for different satellites is small. Moreover, 346 
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given the channel-related quality control methods, different channels from the same satellite 347 

may have a small number of collocated locations. For example, there were no data from 348 

channels 6 and 7 for land, whereas some data were available from channel 8. There were 349 

205 units in the input layer that matched 205 features in the input data. The output layer had 350 

only a single unit that corresponded to one channel. The optimizer we used was a gradient 351 

descent algorithm known as ‘Adam’, which is well suited for solving problems that are large 352 

in terms of data and/or parameters (Kingma and Ba 2014). We used the rectified linear unit 353 

(ReLU) (Glorot et al. 2011) in the hidden layers and linear regression in the output layer. The 354 

batch size is the number of training examples used in one iteration. The number is typically 355 

selected to be between one and a few hundred (Bengio 2012). For simplicity, it was fixed at 356 

512 in this study. The following hyperparameters were tuned for each DNN model: number 357 

of hidden layers, number of units in one hidden layer, and learning rate. For each 358 

combination of the above hyperparameters, a DNN was constructed, and it was trained 359 

using 80% of the training set (the training set itself was 80% of all data) and evaluated using 360 

20% of the training set (validation set). The validation set was applied for an early stopping 361 

to prevent the overfitting of the model. In other words, if the loss function in the validation 362 

set starts to increase, overfitting occurs. In this study, we used the mean squared error 363 

(MSE) as the loss function. If the MSE of the validation set did not decrease for five 364 

consecutive epochs, we stopped the training. During the training, the ‘KerasTuner’ software 365 

(O’Malley et al. 2019) was utilized to automatically conduct a random search for the best 366 
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combination of hyperparameters for each channel and each satellite. Before the random 367 

search, the search spaces for the hyperparameters were set as follows. The numbers of 368 

hidden layers were 2, 3, and 4. The unit numbers for each hidden layer were 250, 300, 350, 369 

and 400. The learning rates were 10−6  and 10−5 .The maximum number of random 370 

searches was 25. The combination of hyperparameters that produced the best performance 371 

on the validation set was selected for each DNN (Table 3). DNNs were evaluated by 372 

comparing the predicted and true values in the test set (Table 3). The coefficient of 373 

determination (R2) between the predicted and true values was ~1. The absolute values of 374 

the biases were < 0.02 K, while the root mean square errors (RMSEs) were < 0.4 K. As 375 

mentioned in the introduction, minimizing the MSE using the ML optimization algorithm does 376 

not guarantee the minimization of bias. However, the test results revealed low bias. 377 

Therefore, the performance of the DNNs was reasonably good, and they were hereafter 378 

used as ML-OO in our experiment. A linear regression model was applied to the same 379 

dataset for further comparison (Table 3). The RMSEs from the linear regression model were 380 

all larger than 1, which was higher than those from the DNN models, while the R2 score was 381 

also lower. Overall, ML was better than the linear regression approach for solving this 382 

problem.  383 

 384 

3. Experiments 385 

Several data assimilation experiments were conducted to produce data for training 386 
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the ML model and for evaluating its performance (Table 4). The experiments were 387 

categorized into two groups: experiments for training in 2015, and experiments for testing in 388 

2016. The initial conditions of the ensemble were drawn at the same local time on different 389 

days from a single forecast from January to March in 2015. Since they differed from the true 390 

state of the atmosphere, we needed to spin up the model for one month using data 391 

assimilation. As discussed in Section 2, a model state close to the true state of the 392 

atmosphere is required to build a good ML-OO. Thus, we assimilated the conventional 393 

observations as well as AMSU-A BT using RTTOV-OO in Experiments A and B. Note that in 394 

this way, we have implicitly used the information from RTM to build the ML-OO. We will 395 

discuss how to build ML-OO without using RTM in the discussion section. Note that an online 396 

bias correction method was applied during the experiments. Experiment A was designed to 397 

spin up the model. At the end of January 2015, the model state would be close to the true 398 

atmosphere. After finishing the spin-up, the data assimilation was continued in February 399 

2015 to generate the model forecasts for training the ML model (Experiment B). After 400 

finishing the experiment, the model outputs at the model grids in Experiment B were 401 

interpolated to the observation locations. The observations were those without the data 402 

thinning and with quality control, as described in section 2.2 (Fig. 1b). After the interpolation, 403 

the (model) first guess at the observation locations, and the corresponding AMSU-A BT were 404 

paired to train the ML model (experiment C).  405 

 After the ML-OO was built, we evaluated its performance for the same month the 406 
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following year in 2016. In general, ML can better generalize to new data if it captures more 407 

possible combinations and wider ranges of variable values during training. As only one-408 

month data were used for the training, we also evaluated its performance in the same month 409 

of the following year. On 01 January 2016, we used the same initial conditions as in 410 

Experiment A. Due to this, we needed to spin up the model using the RTTOV-OO to 411 

assimilate the AMSU-A BT and conventional observations (Experiment D). At the end of 412 

January 2016, the ensemble members were used for the following data assimilation 413 

experiments in February. Experiment E represented the continuation of Experiment D, 414 

where we assimilated the conventional observations and AMSU-A BT using RTTOV-OO. In 415 

Experiment F, the same observations were assimilated using the ML-OO. Note that no online 416 

bias correction was provided for Experiment F because bias correction was included in the 417 

ML-OO. The results from Experiments E and F were compared to evaluate the performance 418 

of ML-OO compared to RTTOV-OO. Finally, we conducted experiment G, in which we 419 

assimilated only the conventional observations. We compared E against G and F against G 420 

to estimate the impact of assimilating the AMSU-A BT using either RTTOV or ML as the 421 

observation operator.  422 

 423 

4.  Results 424 

The ML models were evaluated in the test experiments. For brevity, we used the 425 

following annotations: CONV-AMSUA-RTTOV, CONV-AMSUA-ML, and CONV to annotate 426 
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the experiments E, F, and G (Table 4), respectively. Fig. 3a illustrates the histogram of the 427 

observations minus the model background (OMB) from the CONV-AMSUA-ML. The 428 

histogram centered at ~0 K. The bias (average of OMB) was estimated to be only 0.002 K, 429 

which was the lowest absolute bias among all the channels. Apart from channels 6 and 7 430 

from NOAA-18, all the other channels exhibited similar OMB distributions (figures are 431 

omitted) and yielded absolute biases of <0.1 K (Table 5). However, channels 6 and 7 from 432 

NOAA-18 experienced large biases (Fig. 3b) (channel 7 is not shown). The biases from 433 

channels 6 and 7 were 0.305 and 0.259 K, respectively (Table 5). In contrast, the same 434 

channels from CONV-AMSUA-RTTOV exhibited much lower biases. It was 0.0461 K for 435 

channel 6 (Fig. 3d). This finding suggests that the bias correction built into the ML-OO might 436 

not be effective for these two channels. The horizontal distribution of the OMB demonstrates 437 

that the values from METOP-B channel 6 were positive or negative in different regions (Fig. 438 

4a), whereas most of the areas showed positive OMB values from NOAA-18 channel 6 (Fig. 439 

4b). To identify the driver of this pattern, we analyzed the changes of the absolute biases 440 

(before the bias correction) from February 2015 to February 2016 from the CONV-AMSUA-441 

RTTOV experiment. The changes were estimated to be 0.17 K and 0.15 K for NOAA-18 442 

channels 6 and 7, respectively. The changes were less than 0.04 K in the other channels. 443 

Because the same RTTOV-OO was used for both periods, the changes thereby indicate that 444 

the characteristics of observations from NOAA-18 channels 6 and 7 changed significantly 445 

from February 2015 to February 2016. As the adaptive bias correction method was applied 446 
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in CONV-AMSUA-RTTOV, the bias from all channels could be corrected (Fig. 3c, d). 447 

However, the training of the ML-OO was based on data from February 2015 and could not 448 

treat the bias well in February 2016 with a significant change in satellite characteristics. 449 

Previous studies have already shown that the characteristics of satellites can be changed 450 

during their operation. For instance, Zou and Wang (2011) have identified bias drifts for 451 

some channels of AMSU-A during certain periods. If the change is significant, as shown in 452 

our study, the current ML-OO method cannot handle the bias well. Online training by 453 

updating pre-trained networks using the latest satellite observations can be useful for 454 

correcting new biases. However, the frequency to update the ML-OO should be evaluated 455 

to balance accuracy and computational cost.  456 

 The root mean square difference (RMSD) and bias of temperature and zonal wind 457 

from the three experiments were evaluated using the European Centre for Medium-Range 458 

Weather Forecasts (ECMWF) reanalysis data (ERA-interim). At 500 hPa, the temperature 459 

RMSDs from CONV-AMSUA-ML were generally higher than that in CONV-AMSUA-RTTOV, 460 

but lower than that in CONV (Fig. 5a). This indicates that although the performance of ML-461 

OO was slightly worse than that of RTTOV-OO at this level, the assimilation of additional 462 

AMSU-A BT by ML-OO improved the forecast, compared with the assimilation of only the 463 

conventional observations. All three experiments exhibited similar trends in the RMSD and 464 

bias evolutions (Fig. 5a, b). The ensemble spreads of temperature from CONV-AMSUA-ML 465 

and CONV-AMSUA-RTTOV were lower than that in CONV because they assimilate more 466 
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data (Fig. 5c). For zonal winds, the RMSD in CONV-AMSUA-ML was also generally higher 467 

than that in CONV-AMSUA-RTTOV but lower than that in CONV (Fig. 5d). Furthermore, the 468 

bias in CONV-AMSUA-ML was similar to that in CONV-AMSUA-RTTOV (Fig. 5e). 469 

 The vertical profiles of the global average RMSD and bias for the temperature and 470 

zonal wind were further evaluated (Fig. 6). Like in the analyses of the time series above, the 471 

RMSDs of temperature and zonal winds from CONV-AMSUA-ML were generally higher than 472 

those in CONV-AMSUA-RTTOV but lower than those in CONV (Fig. 6a, c). Above 600 hPa, 473 

the reduction of RMSDs in CONV-AMSUA-ML relative to CONV was found to be larger. The 474 

T-tests were further conducted to determine the statistical significance of the differences 475 

between the RMSDs of the temperature and zonal wind from CONV-AMSUA-ML and CONV. 476 

As shown in Fig. 6b, for the p-value profiles above 600 hPa, the RMSDs of the temperature 477 

in CONV-AMSUA-ML were significantly different from those in CONV because p-values 478 

<0.05. Below 600 hPa, these differences were insignificant. As a result, the reduction in 479 

RMSDs by assimilating additional AMSU-A BT using ML-OO mainly reduced the RMSDs 480 

above 600 hPa. On the other hand, assimilating additional AMSU-A BT using RTTOV-OO 481 

had a greater reduction of RMSDs in a deeper layer (above 850 hPa were statistically 482 

significant) (Fig. 6a, b). A similar conclusion can be drawn for the zonal wind (Fig. 6c, d). We 483 

also found that the global average RMSD of temperature (zonal wind) in CONV-AMSUA-ML 484 

was 2% (3%) higher than that in CONV-AMSUA-RTTOV, but 4% (4%) lower than that in 485 

CONV. Fig. 7 shows a similar analysis, applied to the biases. As seen, the biases of 486 
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temperature in CONV-AMSUA-ML were higher than those in CONV at most levels (Fig. 7a). 487 

The p-value profile proved that these differences were statistically significant (Fig. 7b). For 488 

zonal winds, the biases in CONV-AMSUA-ML were smaller than those in CONV and close 489 

to those in CONV-AMSUA-RTTOV at most levels below 450 hPa. As explained above, the 490 

biases of the radiance simulated by the ML model to the AMSU-A radiance were high for 491 

channels 6 and 7 from NOAA-18 satellite. Since the AMSU-A BT in channels 6,7 and 8 is 492 

sensitive to temperature in the mid-to-upper troposphere, the higher biases of BT at two 493 

channels might have exacerbated biases in the temperature profile. A higher temperature 494 

bias also exacerbates the temperature RMSD. This finding might be among the potential 495 

drivers, deteriorating the performance of ML-OO, compared to that of RTTOV-OO.  496 

 497 

5. Discussion 498 

The computational cost of training the ML-OO was high. The high training cost was 499 

driven by a random search for the best combination of hyperparameters for each channel 500 

and each satellite. In practice, it critically hinders the assimilation of numerous channels for 501 

other satellites. One can consider designing an NN to treat many channels simultaneously 502 

if sufficient collocated data from different channels are present. For instance, the same 503 

quality control is applied to many channels. Alternatively, some channels can use a pre-504 

trained NN from other similar channels. Furthermore, the prediction time of the current ML-505 

OO was within ~1 to 5 s range, therefore, slower than that of RTTOV, on ~1 s. The 506 
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computational complexity of RTTOV is much lower than that of LBL RTM because the optical 507 

depth is calculated using a linear regression model with a small number of predictors, and 508 

because the radiative transfer equation (see Eq. 4 in Saunders et al. 1999) has only a few 509 

hundreds of multiplications and additions. For our ML-OO, the number of multiplications and 510 

additions were both ~331,800 (for 300 units with 4 hidden layers) in the forward propagation 511 

because it involved several matrix multiplications. Therefore, the computational time of the 512 

NN was slower than that of the RTTOV. There are several ways to accelerate the speed of 513 

the NN. For example, using a more efficient library to operate on the matrix or reducing the 514 

complexity of the NN while maintaining acceptable performance. For other applications, if 515 

the NN is not very complicated, its forecast could be faster than that of complicated 516 

physically based models. Due to this, some previous studies (Pal et al. 2019; Krasnopolsky 517 

et al. 2008) have explored the use of NN to replace the complicated parameterization 518 

schemes in NWP. In short, our method can be more advantageous in terms of execution 519 

time when other observation types are assimilated where complicated observation operators 520 

are used. 521 

The proposed ML-OO does not provide tangent linear or adjoint operators, which 522 

are a core part of an observation operator package such as RTTOV, to support mainly 523 

variational data assimilation methods. However, it is relatively easy to derive the gradients 524 

of an NN because they are differentiable if a differentiable activation function is used (Scheck 525 

2021). Besides, NN has been previously used to emulate the physical parameterization 526 



 26 

scheme. In this way, it provided its tangent and adjoint models with minimal effort for four-527 

dimensional variational data assimilation (Hatfield et al. 2021).  528 

Our study only elucidated the prospects of using ML-OO to assimilate the BT 529 

observations from channels 6 and 7 over the oceans and channel 8 on both land and oceans 530 

under clear-sky conditions, where the radiative transfer process was relatively linear. It is 531 

also beneficial to understand how to extend this method to assimilate BT for a wider variety 532 

of surface conditions and cloudy/rainy regions, where the radiative transfer process is more 533 

nonlinear. Moreover, BT from water vapor channels (such as from microwave humidity 534 

sounders) and infrared channels tend to be more nonlinear. Therefore, it would be also 535 

useful to assimilate the BT from these channels using the ML method.  536 

From a technical standpoint, the NN was trained using Keras, TensorFlow, and 537 

Python language. The weights of the NN were saved to binary files, which were read by 538 

Fortran code in data assimilation. The prediction by NN during data assimilation was also 539 

written in Fortran. We suggest that a standard library can facilitate such integration. For 540 

instance, the Fortran–Keras Bridge (FKB) (Ott et al. 2020) can be tested for such purpose 541 

in future studies. However, if the NN structures become more complicated, the Fortran code 542 

implementation will be challenging. Thus, it might be useful to build standard libraries, 543 

thereby facilitating the use of NN for atmospheric research.  544 

 The information from the RTTOV-OO was implicitly used to obtain the ML-OO. The 545 
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training data of the ML model were obtained from the data assimilation experiments, in which 546 

the radiance observations were assimilated using the RTTOV-OO. Therefore, the new ML-547 

OO somewhat served as an emulator function for the physically based observation operator. 548 

This constraint limited the generalization of the proposed method in this study because some 549 

new observations may completely lack physically based observation operators. Ideally, ML-550 

OO should be built without RTTOV or other physically based OO. To achieve this goal, we 551 

recommend the following procedure for future studies. First, one can run the data 552 

assimilation by assimilating only conventional observation data. Next, only the analysis data 553 

at locations that are close to the locations of the conventional observations are selected as 554 

the training data because they are expected to be more accurate. This method is, however, 555 

limited by the fact that the conventional observations may not have sufficient coverage in 556 

space and time. For instance, there are more conventional observations for land than for 557 

oceans. Future studies can check whether ML-OO based on such an inhomogeneous 558 

dataset will be generalized well or not. In the end, if the ML-OO can be built without a 559 

physically based model to assimilate new data, it can greatly extend our freedom to use 560 

various types of data, and also accelerate the development process to assimilate new data 561 

once a new observing platform is deployed.  562 

 563 

6. Summary 564 

In this study, we used machine learning as an observation operator to assimilate 565 
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brightness temperature from AMSU-A channels 6 and 7 over the oceans and channel 8 over 566 

both land and oceans under clear-sky conditions. The ML-OO was built using forecasts from 567 

the NICAM-LETKF data assimilation system and the observed satellite radiance. First, we 568 

generated the data to train the ML model. We used the NICAM-LETKF system to perform 569 

1-month data assimilation to assimilate the conventional observations and BT using RTTOV-570 

OO. Furthermore, the model forecasts were interpolated from the model grids to the 571 

locations of the satellite observations and were combined with the satellite observations to 572 

train the DNNs. Second, we evaluated the performance of ML-OO by conducting three 573 

experiments under the same initial conditions in the same month of the following year. In the 574 

CONV-AMSUA-RTTOV experiment, the conventional observations and BT were assimilated 575 

using RTTOV-OO; in the CONV-AMSUA-ML experiment, the same observations were 576 

assimilated using ML-OO; in the CONV experiment, only the conventional observations 577 

were assimilated.  578 

ERA-interim was utilized to analyze the RMSD and bias of the temperature and 579 

zonal wind from these experiments. We concluded that the CONV-AMSUA-ML result was 580 

slightly worse than that from CONV-AMSUA-RTTOV, but better than that from CONV. In 581 

numerical terms, the global-averaged RMSD of temperature (zonal wind) in CONV-AMSUA-582 

ML was 2% (3%) higher than that in CONV-AMSUA-RTTOV but 4% (4%) lower than that in 583 

CONV. This finding indicates ML-OO was effective for the assimilation of BT although it was 584 

slightly worse than RTTOV-OO. Moreover, we did not discern any significant bias (< 0.1 K) 585 
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in the simulated BT by ML-OO in most of the satellite channels without a separate bias 586 

correction procedure because the ML model considered bias during training. For two 587 

channels, we discerned significant biases (0.305 K and 0.259 K), which may have been 588 

associated with the significant changes in the satellite characteristics during the testing 589 

period.  590 

Despite these promising results, some limitations of this study should be 591 

emphasized. Foremost, (1) the ML-OO could not handle the bias well if there were significant 592 

changes in the satellite characteristics. Moreover, (2) the ML-OO training in this study was 593 

expensive, which makes it impractical if BT from numerous satellite channels were 594 

assimilated. The performance of the ML-OO was (3) slightly worse than RTTOV-OO in terms 595 

of accuracy and speed, while only BT from limited channels under clear-sky conditions were 596 

assimilated. Lastly, (4) the RTTOV-OO was implicitly used to train the ML-OO. Future studies 597 

will try to alleviate these limitations to improve the proposed ML-OO.  598 

 599 

Data availability  600 

The conventional observations are obtained from the NCEP PREPBUFR data 601 

(https://rda.ucar.edu/datasets/ds337.0/). The AMSU-A radiance data can be obtained from 602 

https://rda.ucar.edu/datasets/ds735.0/. The ERA-interim reanalysis data are from 603 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. The research 604 

data and code in this study are available from the corresponding author on request. 605 

https://rda.ucar.edu/datasets/ds337.0/
https://rda.ucar.edu/datasets/ds735.0/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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 627 

Appendix A: Decompose mean square error (MSE) 628 

X is a random variable. The variance of X can be expressed as  629 

Var(𝑋𝑋) = E[𝑋𝑋2] − (𝐸𝐸[𝑋𝑋])2       (A1) 630 

Therefore,  631 

E[𝑋𝑋2] = Var(𝑋𝑋) + (𝐸𝐸[𝑋𝑋])2            (A2) 632 

Replacing X in equation (A2) by 𝑦𝑦 − ℎ′(𝑥𝑥), where x is the input variable and y is the data 633 

which the function ℎ′(𝑥𝑥) wants to fit, both 𝑥𝑥 and 𝑦𝑦 are random variables.  634 

𝐸𝐸([𝑦𝑦 − ℎ′(𝑥𝑥)]2) = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦 − ℎ′(𝑥𝑥)] + (𝐸𝐸[𝑦𝑦 − ℎ′(𝑥𝑥)])2  635 

= 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦 − ℎ′(𝑥𝑥)) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2             (A3) 636 
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List of Figures 747 

 748 

 749 

 750 

  751 

 752 

Fig. 1 (a) Schematic of 4D-LETKF, adapted from Fig. 3 of Terasaki and Miyoshi (2017). (b) 753 

Locations of AMSU-A BT data from different channels and satellites on 1st February 754 
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2015 after applying the quality control. Data thinning is not applied.  755 

 756 

 757 

Fig. 2 The architecture of one of the DNNs. The number of units in the input layer is 205. 758 

There are 4 hidden layers and each of the layers contains 350 neurons. The number of 759 

units in the output layer is 1. Table 3 summarizes the number of hidden layers and the 760 

number of units per layer for all DNNs.  761 
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 762 

Fig. 3 Histograms of the observations minus model background (OMB) from experiment 763 

CONV-AMSUA-ML in February 2016 for (a) METOP-B channel 6 and (b) NOAA-18 764 

channel 6, and experiment CONV-AMSUA-RTTOV for (c) METOP-B channel 6 and (d) 765 

NOAA-18 channel 6.  766 

 767 

 768 
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Fig. 4 Horizontal distributions of observation minus model background (OMB) for AMSU-A 769 

brightness temperature (K) from experiment CONV-AMSUA-ML from 2100 UTC 31 January 770 

to 0000 UTC 02 February 2016 at (a) METOP-B channel 6 and (b) NOAA-18 channel 6.  771 

 772 

 773 

 774 

Fig. 5 RMSDs between the analysis and the ERA-interim reanalysis for (a) temperature (K) 775 

and (d) zonal wind (m s-1) from three experiments in February 2016. The details of the 776 

experiments can be found in Table 4. The biases between the analysis and the ERA-777 

interim reanalysis for (b) temperature and (e) zonal wind. The ensemble spreads for (c) 778 

temperature and (f) zonal wind. All plots are for 500 hPa. 779 

 780 

 781 
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 782 

Fig. 6 RMSDs between the analysis and the ERA-interim reanalysis for (a) temperature (K) 783 

and (c) zonal wind (m s-1) from three experiments in February 2016. The p-values from 784 

two T-tests between CONV-AMSUA-RTTOV and CONV, and between CONV-AMSUA-785 

ML and CONV are shown in (b) for temperature and (d) for zonal wind. The vertical line 786 

indicates the p-value threshold of 0.05.  787 

 788 
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 789 

Fig. 7 Similar to Fig. 6 but for the biases.  790 
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List of Tables 791 

 792 

 793 

Table 1 Standard deviation of the observation error (K) in the selected channels of AMSU-A 794 

from different satellites. The empty cells imply that the corresponding channels are not 795 

assimilated.  796 

 797 

Channel NOAA-15 NOAA-18 NOAA-19 METOP-A METOP-B 
6  0.3 0.3 0.3 0.3 
7 0.3 0.3 0.3 0.3  
8 0.3 0.3  0.3 0.3 

 798 

 799 

 800 

Table 2 Input features of the ML models.  801 

 802 
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 808 

Table 3 Statistics from the comparison between the simulated brightness temperature (K) 809 

by the neural network models (linear regression models) and the observed brightness 810 

temperature using the test data during the training. The metrics are the root mean square 811 

error (RMSE), the bias (observation - prediction), and the coefficient of determination (R2). 812 

The numbers of hidden layers and the number of units per hidden layer of the DNNs are the 813 

results of the hyperparameter tuning. 814 

 815 

    Deep Neural Networks      Linear Regression 

 Satellites  channels RMSE Bias R2 Hidden layers units RMSE Bias R2 

NOAA-15 7 0.181 0.005 0.998 4 300 1.249 -0.001 0.903 

8 0.239 -0.002 0.999 4 350 1.182 0.002 0.971 

NOAA-18 6 0.204 0.002 0.998 3 350 1.187 0.003 0.949 

7 0.227 -0.007 0.997 3 350 1.318 -0.001 0.910 

8 0.288 0.007 0.998 3 350 1.182 0.001 0.971 

NOAA-19 

6 0.182 -0.004 0.999 3 250 1.191 0.002 0.947 

7 0.366 -0.009 0.993 4 300 1.316 0.003 0.908 

METOP-B 6 0.199 0.007 0.999 4 350 1.150 0.002 0.951 

METOP-A 6 0.180 0.002 0.999 4 350 1.142 0.000 0.952 

7 0.183 -0.015 0.998 4 350 1.266 -0.002 0.915 

8 0.251 0.019 0.999 4 300 1.134 0.000 0.973 

 816 

 817 

Table 4 Experiments for training and testing the ML models. The experiment CONV means 818 

only assimilating conventional observations. CONV-AMSUA-RTTOV indicates assimilating 819 

conventional observations and AMSU-A BT using the RTTOV as the observation operator 820 

together with an online bias correction method, while CONV-AMSUA-ML reflects 821 

assimilating the same observations using ML as the observation operator. Letters A to G 822 

indicate the corresponding experiments described in the main text.  823 

 824 

 825 

 Training experiments test experiments 

 Jan. 2015 
(DA spin-up) 

Feb. 2015 
(DA cycle)  

Jan. 2016 
(DA spin-up) 

Feb. 2016 
(DA cycle) 

CONV-AMSUA-RTTOV 
 

A B D E 

CONV-AMSUA-ML 
 

 
build the 
ML models 

 
F 
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(C) 

CONV 
 

   G 

 826 

 827 

Table 5 Bias (the average of the observation minus the first guess) of the brightness 828 

temperature (K) from test experiments CONV-AMSUA-ML and CONV-AMSUA-RTTOV in 829 

February 2016. *NOAA-18 channels 6 and 7 have larger biases in experiment CONV-830 

AMSUA-ML.  831 

 832 

 833 

    CONV-AMSUA-ML CONV-AMSUA-RTTOV 

    channel 6 channel 7 channel 8 channel 6 channel 7 channel 8 

NOAA-15     -0.010 -0.029  0.0002 0.043 

NOAA-18    0.305* 0.259* 0.021 0.046 0.019 -0.058 

NOAA-19    -0.026 -0.085  -0.048 -0.055  
METOP-B    0.002   -0.002   
METOP-A    0.026 -0.011 -0.003 0.003 -0.017 -0.052 
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