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Abstract5

Inspired by the detection of the Pekeris mode of atmospheric free oscillations by a recent6

study, high-accuracy numerical calculations of the problem of determining the equivalent7

depth of atmospheric free oscillations are performed. Here, the computational method is8

largely based on a previous study, but with modifications to improve the accuracy of the9

calculation. Two equivalent depths are found, with values of 9.9 km and 6.6 km. The10

former corresponds to the Lamb mode and the latter corresponds to the Pekeris mode.11

These values deviate from those obtained in the previous study, especially for the Pekeris12

mode. The causes of this discrepancy is discussed, as well as the correspondence between13

the equivalent depths obtained in this study and that of the Pekeris mode detected in the14

recent study.15
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1. Introduction16

The explosive eruption of the Hunga Tonga-Hunga Ha’apai volcano on January 15,17

2022 is the largest eruption since the development of the modern global observation net-18

work of the Earth and has had a significant impact on various fields of earth science. One19

such prominent example is the first detection of the Pekeris mode by Watanabe, et al.20

(2022).21

The Pekeris mode was theoretically predicted by Pekeris (1937) as a free oscillation22

mode with solving the vertical structure equation of the atmospheric tidal theory for23

various temperature profiles of the atmosphere, which were considered realistic at that24

time. Pekeris (1937) showed that a mode with the equivalent depth of about 8 km could25

exist as a different mode from the Lamb mode. A detailed calculation of the vertical26

structure equation giving a more realistic temperature structure of the atmosphere, U.S.27

Standard Atmosphere, 1976 (NOAA, et al., 1976), which we cite as USSA76, was later28

performed by Salby (1979). There, the existence of a mode with the equivalent depth29

of 9.6 km and a mode with the equivalent depth of 5.8 km were suggested. The former30

corresponds to the Lamb mode and the latter corresponds to the Pekeris mode, which31

Salby (1979) named as “the ducted mode”. Whereas the Lamb mode has been detected32

in many studies (see Sakazaki and Hamilton, 2020, and references therein), the Pekeris33

mode has not been detected until Watanabe, et al. (2022). In Watanabe, et al. (2022),34

they analyzed radiance observations taken from the Himawari-8 geostationary satellite35

and showed that two distinct wave fronts were detected, the phase speeds of which were36

about 315 m s−1 and 245 m s−1. The former corresponds to the Lamb mode and the latter37

corresponds to the Pekeris mode. The equivalent depths of these two modes estimated38

by using the determined phase speeds are 10.1 km and 6.1 km, respectively.39

The value of the equivalent depth of the Pekeris mode determined by Watanabe, et al.40
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(2022) is close to that calculated by Salby (1979) but there is still a difference. Since the41

equivalent depth and the existence or non-existence of the Pekeris mode strongly depend42

on the vertical temperature profile of the atmosphere, this discrepancy may be caused by43

the difference between the temperature profile of USSA76 used by Salby and that of the44

atmosphere on the day of the Tonga eruption when the Pekeris mode was detected by45

Watanabe, et al. (2022). However, it is also possible that this discrepancy is due to an46

accuracy problem in Salby (1979)’s calculation method itself, which is discussed in the47

next section.48

In the present manuscript, we reexamine Salby (1979)’s calculation method of the49

equivalent depth of the atmospheric free oscillations and propose a modifications to im-50

prove the accuracy of the calculation to determine the equivalent depth with higher ac-51

curacy. The remainder of the present paper is organized as follows. In Section 2, after52

we briefly review Salby (1979)’s calculation method, we propose modifications. Compu-53

tational results based on the modified methods are shown in Section 3. Summary and54

discussion are presented in Section 4.55

2. Methods56

2.1 Salby (1979)’s method and its modification57

The vertical structure equation and the lower boundary condition derived from the58

linearized primitive equations, which was solved in Salby (1979), are as follows (equation59

(8) in Salby (1979)).60 [
d

dζ
− 1

H̃

] [
1

H̃ ′ + κ

d

dζ
(H̃Z)

]
+ αZ = 0, (1)

H̃Z ′ − κZ = 0 (ζ = 0). (2)
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Here, Z(ζ) is a function of the vertical structure of the pressure disturbance, and ζ = z/H,61

where z is the geometric altitude and H is a prescribed scale height. Note that H was62

denoted by H̄ in Salby (1979) but here we denote it by H to avoid confusion with H̃.63

The parameter κ = (γ − 1)/γ, where γ is the specific heat ratio, and α = H/h, where h64

is the equivalent depth. Also, H̃ is a local scale height defined as,65

H̃(ζ) =
R0T (ζ)

g0H
. (3)

Here R0 is the gas constant of the dry atmosphere, g0 is the gravity acceleration, and T (ζ)66

is the vertical temperature profile of the background field. These notations are changed67

from Salby (1979) to be consistent with later descriptions in the present manuscript.68

In Salby (1979), the vertical structure equation (1) and the boundary condition (2)69

were not treated as they were, but the numerical calculation was done after applying the70

following transform,71

Z(ζ) = eξ/2H̃−1[H̃ ′ + κ]1/2v(ζ) (4)

and rewriting (1) and (2) as72

v′′ + k2(ζ;α)v = 0, (5)

H̃v′ +

[
1

2
− (H̃ ′ + κ) +

H̃H̃ ′′

2(H̃ ′ + κ)

]
v = 0 (ζ = 0). (6)

(equation (11) in Salby (1979)). Here, ξ is defined as,73

ξ(ζ) =

∫ ζ

0

dη

H̃(η)
, (7)

and k2(ζ;α) is a refractive index, which is defined as,74

k2 = − 1

4H̃2
+

H̃ ′′′

2(H̃ ′ + κ)
− 3(H̃ ′′)2

4(H̃ ′ + κ)2
− H̃ ′′

2H̃(H̃ ′ + κ)
+

α(H̃ ′ + κ)

H̃
. (8)

Note that this explicit form was not written in Salby (1979).75
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Salby (1979) numerically solved (5) downward starting from a sufficiently high al-76

titude, which seems to be ζ = 60 (not explicitly written in Salby (1979)), where the77

radiation or evanescent boundary condition was imposed, and examined how well the78

lower boundary condition (6) was satisfied with changing the value of α continuously.79

There, the background temperature profile T (ζ) was set as described by USSA76, and80

the prescribed scale height H was set as,81

H =
R0T∗

g0
, (9)

where T∗ = 250K. This means that H ≈ 7.3 km because USSA76 sets that g0 = 9.80665 m82

s−2 andR0 = R∗/M0, whereR
∗ is the universal gas constant which was set asR∗ = 8314.3283

kg m2 s−2 K−1 kmol−1 and M0 is the mean molecular weight at the sea surface, which84

was set as M0 = 28.9644 kg kmol−1.85

In Salby (1979), it was shown that the error of (6) becomes very small (though not86

zero) when α = 0.764 and α = 1.25. The corresponding equivalent depth were h = 9.6 km87

and h = 5.8 km, respectively. The former corresponds to the Lamb mode, and the latter88

to the Pekeris mode (although the latter was called “ducted mode” there). The equivalent89

depth of the latter, 5.8 km, is not significantly different from the estimated value of the90

equivalent depth of the Pekeris mode detected in Watanabe, et al. (2022), 6.1 km. Hence,91

this value of the equivalent depth for the Pekeris mode obtained by Salby (1979) seems92

to be reasonable, but there is still a difference. Similarly, the equivalent depth for the93

Lamb mode obtained by Salby (1979) is also slightly smaller than the value of about 1094

km estimated in many previous studies (see Sakazaki and Hamilton, 2020, and references95

therein). These discrepancies may, of course, be due to the fact that the realistic vertical96

temperature structure of the atmosphere is more or less different from that specified by97

the USSA76, but the calculation method of Salby (1979) has the following problem that98

reduces the accuracy of the numerical calculations if we examine the method.99
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The above mentioned problem in Salby (1979) is clearly manifested in (8) since it100

contains terms up to the third-order derivative of H̃. In the case of a background field101

setting like USSA76, where there is a discontinuity in the vertical gradient of temperature,102

H̃ ′′ behaves like the δ-function and H̃ ′′′ behaves like the derivative of the δ-function. This103

makes it very problematic to determine k2 and to calculate it. Since the profile of k2(ζ;α)104

in Fig. 3 of Salby (1979) was continuously drawn, some kind of smoothing must have105

been done, but there was no mention of it. Also, considering the transform formula (4),106

it is Z(ζ) that should be continuous with respect to ζ, not v(ζ). Therefore, it is not a107

good idea to treat the differential equation (5) for v(ζ). Furthermore, in Salby (1979), the108

information on how (5) was discretized in the vertical direction and solved numerically109

was not written. Hence, it is difficult to reproduce Salby (1979)’s result for the error110

dependence on α.111

To overcome the above problems, we use only the following basic transform:112

Z(ζ) = eξ/2Z̃(ζ). (10)

Then, using Z̃, the vertical structure equation (1) and the lower boundary condition (2)113

can be written as,114 (
d

dζ
− 1

2H̃

)[
1

H̃ ′ + κ

(
d

dζ
+

1

2H̃

)
(H̃Z̃)

]
+ αZ̃ = 0, (11)

H̃Z̃ − H̃

H̃ ′ + κ

(
d

dζ
+

1

2H̃

)
(H̃Z̃) = 0 (ζ = 0). (12)

Now, by introducing (X,Y ) as115

X(ζ) = H̃Z̃, Y (ζ) =
1

H̃ ′ + κ

(
d

dζ
+

1

2H̃

)
(H̃Z̃), (13)

we can derive the following equations:116 (
d

dζ
+

1

2H̃

)
X = (H̃ ′ + κ)Y, (14)(

d

dζ
− 1

2H̃

)
Y +

α

H̃
X = 0 (15)
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from (11) and (13). Then, we obtain117

dX

dζ
= − 1

2H̃
X + (H̃ ′ + κ)Y, (16)

dY

dζ
= − α

H̃
X +

1

2H̃
Y. (17)

These are simultaneous ordinary differential equations for (X,Y ). Using (X,Y ), the lower118

boundary condition (12) can be expressed as,119

X − H̃Y = 0 (ζ = 0). (18)

As the upper boundary condition, the radiation boundary condition or the evanescent120

condition should be imposed. If we assume that T (ζ) = Tt(constant) where ζ ≥ ζt,121

it follows that H̃ = H̃t(constant) there. Then, from (14) and (15), we can derive the122

following differential equation:123 (
d2

dζ2
− 1

4H̃2
t

)
X +

ακ

H̃t

X = 0 (ζ ≥ ζt). (19)

Hence, introducing q as124

q = − 1

4H̃2
t

+
ακ

H̃t

, (20)

we can write the evanescent condition as125

X(ζ) ∝ e−
√
−qζ (ζ ≥ ζt) (21)

if q < 0. Also, if q > 0, we can write the radiation condition as126

X(ζ) ∝ e−i
√
qζ (ζ ≥ ζt) (22)

since we can choose one of the two solutions by choosing the sign of the frequency of127

the disturbance without loss of generality. Because we are solving a linear homogeneous128
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problem, there is an arbitrariness of constant multiples in the solution. Therefore, we can129

set as,130

X = 1, Y =
1

κ

(
−
√
−q +

1

2H̃t

)
(ζ = ζt), (23)

if q < 0. Also, if q > 0, we can set as,131

X = 1, Y =
1

κ

(
−i

√
q +

1

2H̃t

)
(ζ = ζt). (24)

We can use either (23) or (24) as the starting condition at the point where ζ = ζt, and132

we can solve (16) and (17) in the decreasing direction of ζ. When (X,Y ) at ζ = 0 is133

finally obtained, we can examine how well the lower boundary condition (18) is satisfied.134

The calculation method introduced in this subsection will be referred to as the modified135

Salby’s method.136

2.2 More sophisticated calculation137

In the previous subsection, we proposed a modification to overcome the problems138

with the calculation method of Salby (1979). In the setting of Salby (1979), however,139

there was still a problem that the gravity acceleration was assumed to be constant at140

g0 and the gas constant was treated as a constant (i.e., the mean molecular weight was141

treated as a constant), even though the altitude range above 80 km was also treated.142

In particular, the equivalent depth of the Pekeris mode may change if these effects are143

taken into account. Hence, it is necessary to examine the case where these effects are144

included. The vertical structure equation (1) and the lower boundary condition (2),145

however, were derived with assuming that the gravitational acceleration and the gas146

constant were constant in Salby (1979). Therefore, we will also perform the calculation147

using the vertical structure equation and the lower boundary condition without these148

assumptions. We begin with the following vertical structure equation and the lower149

8



boundary condition in the log-pressure coordinate derived from the linearized primitive150

equations (Andrews, et al., 1987, equation (4.2.7a) and (4.2.7b)):151

d2W

dẑ2
+

(
N2

∗
g0h

− 1

4H2

)
W = 0, (25)

dW

dẑ
+

(
RT

g0h
− 1

2

)
W

H
= 0 (ẑ = 0). (26)

Here, ẑ = −H ln(p(ζ)/p(0)) and p(ζ) is the vertical profile of background pressure. Note152

that notations are changed from Andrews, et al. (1987) to be consistent with descriptions153

in the present manuscript. The function W represents the vertical dependence of the am-154

plitude of the disturbance in the log-pressure coordinate through the following equation:155

dẑ/dt ∝ eẑ/(2H)W , where t is time. The squared log-pressure buoyancy frequency N2
∗ is156

written as,157

N2
∗ =

1

H

(
d(RT )

dẑ
+

κRT

H

)
. (27)

Here, R = R∗/M and M is the mean molecular weight considering altitude dependence.158

Note that the log-pressure buoyancy frequency differs from the usual buoyancy frequency.159

In addition, note also that the definition of the squared log-pressure buoyancy frequency,160

(27), is different from that in Andrews, et al. (1987). This form of definition is derived by161

considering the altitude dependence of R. See equation (6.17.23) of Gill (1982) and the162

explanation preceding it for details. Note, however, that the symbols are used differently.163

Since the following relationship:164

dẑ

dζ
= H2 g(ζ)

R(ζ)T (ζ)
(28)

holds between ẑ and ζ (where, g(ζ) is the gravity acceleration considering altitude depen-165

dence), we can rewrite (28) as,166

dẑ

dζ
=

H

Ĥ
(29)
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if we introduce Ĥ as,167

Ĥ(ζ) =
R(ζ)T (ζ)

g(ζ)H
. (30)

Hence, (25) can be rewritten in ζ-coordinate as,168

Ĥ
d

dζ

(
Ĥ
dW

dζ

)
+

(
N2

∗H
2

g0h
− 1

4

)
W = 0. (31)

Also, since we can rewrite N2
∗H

2 as,169

N2
∗H

2 = H
T

H

(
Ĥ

H

H

T

d(RT )

dζ
+ κR

)
= T

(
R

gH

d(RT )

dζ
+ κR

)

= gH
RT

gH

(
T

gH

1

T

d(RT )

dζ
+ κ

)
= gHĤ

(
Ĥ

RT

d(RT )

dζ
+ κ

)
,

(32)

the vertical structure equation (31) can be rewritten as,170

Ĥ
d

dζ

(
Ĥ
dW

dζ

)
+

(
α
g

g0
Ĥ

(
Ĥ

RT

d(RT )

dζ
+ κ

)
− 1

4

)
W = 0. (33)

The lower boundary condition (26) can be expressed in ζ-coordinate as,171

Ĥ
dW

dζ
+

(
RT

g0h
− 1

2

)
W = 0 (ζ = 0). (34)

Furthermore, noting that R(0)T (0)/g0 = Ĥ(0)H since g0 = g(0), we can rewrite (34) as,172

Ĥ
dW

dζ
+

(
αĤ − 1

2

)
W = 0 (ζ = 0). (35)

Similarly as the previous subsection, if we introduce V as,173

V = Ĥ
dW

dζ
, (36)

we can rewrite (33) into the following simultaneous ordinary differential equations for174

(W,V ).175

dW

dζ
=

1

Ĥ
V, (37)

dV

dζ
= − 1

Ĥ

(
α
g

g0
Ĥ

(
Ĥ

RT

d(RT )

dζ
+ κ

)
− 1

4

)
W. (38)
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Also the lower boundary condition (35) can be expressed as,176

V +

(
αĤ − 1

2

)
W = 0 (ζ = 0). (39)

Similarly as the previous subsection, the upper boundary condition can be imposed as177

follows with assuming that T (ζ)/M(ζ) = (T/M)t (constant) where ζ ≥ ζt for (25) to be178

a differential equation with constant coefficients. Then, if we introduce r̂ as179

r̂ =
1

H2

(
κR∗(T/M)t

g0h
− 1

4

)
=

1

H2

(
α
κR∗(T/M)t

g0H
− 1

4

)
, (40)

we can impose the evanescent condition as,180

W (ζ) ∝ e−
√
−r̂ẑ(ζ) (ζ ≥ ζt) (41)

if r̂ < 0. Also, if r̂ > 0, the radiation condition can be imposed as,181

W (ζ) ∝ e−i
√
r̂ẑ(ζ) (ζ ≥ ζt). (42)

Considering that we obtain182

V = Ĥ
dW

dζ
= Ĥ

dẑ

dζ

dW

dẑ
= H

dW

dẑ
(43)

from (29) and (36), we can set as,183

W = 1, V = −
√
−r̂H (ζ = ζt) (44)

if r̂ < 0. Also, if r̂ > 0, we can set as,184

W = 1, V = −i
√
r̂H (ζ = ζt). (45)

We can use either (44) or (45) as the starting condition at the point where ζ = ζt, and we185

can solve (37) and (38) in the decreasing direction of ζ. When (W,V ) at ζ = 0 is finally186

obtained, we can examine how well the lower boundary condition (39) is satisfied. The187
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calculation method introduced in this subsection will be referred to as the sophisticated188

method.189

The following should be added at the end of this subsection. The variable W is of190

a different nature than Z in the previous subsection, so their vertical profiles cannot be191

directly compared in the next section. The variable corresponding to variable Z is induced192

from W as follows (Andrews, et al., 1987, equation (4.2.6a)):193

U =
dW

dẑ
− W

2H
=

1

H

(
Ĥ
dW

dζ
− W

2

)
=

1

H

(
V − W

2

)
. (46)

Then, UH corresponds to Z except for constant multiples and we compare the profiles of194

these variables in the next section.195

3. Results196

3.1 Numerical results using the modified Salby’s method197

We integrate the simultaneous ordinary differential equations (16) and (17) for (X,Y )198

in the decreasing direction of ζ up to ζ = 0 by using the classical 4th-order Runge-Kutta199

method with giving the starting point condition (23) or (24). Then we check the value200

of the left-hand side of the lower boundary condition (18). Here, we use the temperature201

profile of USSA76 (Fig. 1) as T necessary for the calculation of H̃(ζ). We set the top Fig. 1202

boundary at ζt = 1000 km/H since USSA76 describes the altitude range up there. The203

derivative of T that is necessary to compute H̃ ′ is evaluated by the central difference as204

T (ζ)′ =
T (ζ +∆ζ)− T (ζ −∆ζ)

2∆ζ
. (47)

Here, we set ∆ζ = 10 m/H. This ∆ζ setting is also used for the ζ decrement in the205

Runge-Kutta integration. Note that extrapolation based on the T definition in USSA76206

is used to compute (47) at ζ = ζt and ζ = 0. We have checked the dependence of the207

following results on ∆ζ and sufficient convergence have been confirmed.208
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We repeat the integration with changing α continuously in the range of 0.5 ≤ α ≤ 1.5209

and evaluate the left-hand side of (18). Figure 2 shows the dependence of ϵ = |(X −210

H̃Y )/X| (ζ = 0) on α. Similarly as shown by Salby (1979), there are two distinct dips Fig. 2211

but at α = 0.739 and α = 1.107. The corresponding equivalent depths are h = 9.90212

km and h = 6.61 km, respectively. In particular, the equivalent depth corresponding to213

the latter Pekeris mode is significantly different from the value obtained in Salby (1979),214

which is considered to be because the equivalent depth of the Pekeris mode strongly215

depends on the vertical temperature profile of the atmosphere and is strongly affected by216

the calculation errors that cannot be avoided in the Salby (1979)’s calculation method.217

The vertical profiles of the disturbance amplitudes, |Z̃|, of the two modes obtained218

from the numerical calculations in this subsection are shown in Fig. 3. Note that the219

shown “amplitude” is the transformed one, |Z̃|, not |Z|. Similarly as shown in Salby220

(1979), the Pekeris mode (Fig. 3b) has a node in the stratosphere whereas the amplitude221

of the Lamb mode (Fig. 3a) decreases monotonically, almost exponentially, with altitude.222

Note that the node of the Pekeris mode is located at a geometric altitude of around 22.5223

km in this calculation, which is lower than that obtained in Salby (1979), 3.5H ≈ 25.5224

km, there. We guess that this discrepancy is a reflection of the accuracy problem with225

Salby (1979)’s calculation method.226 Fig. 3

3.2 Numerical results using the sophisticated method227

Similarly as the previous subsection, we integrate the simultaneous ordinary differen-228

tial equations (37) and (38) for (W,V ) in the decreasing direction of ζ up to ζ = 0 by229

using the classical 4th-order Runge-Kutta method with giving the starting point condition230

(44) or (45) and examine the value of the left-hand side of (39). Numerical settings are231

the same as those of the previous subsection but here we take the altitude dependence of232
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the gravity acceleration g(ζ) and the mean molecular weight M(ζ) described in USSA76233

(Fig. 4). Fig. 4234

Figure 5 shows the dependence of ϵ = |(V +(αĤ−1/2)W )/W | (ζ = 0) on α. Although235

the shape of the graph is different from that of Fig. 2 due to the difference in the solved236

equations, there again are two distinct dips but at α = 0.739 and α = 1.114. The cor-237

responding equivalent depths are h = 9.90 km and h = 6.57 km, respectively. Whereas238

the equivalent depth of the former Lamb mode is the same as the value obtained in the239

previous subsection, the equivalent depth of the latter Pekeris mode is slightly smaller240

than the value obtained in the previous subsection. This difference is caused by the inclu-241

sion of the altitude dependence of the gravitational acceleration and the mean molecular242

weight. In fact, if the equations and boundary conditions used are left unchanged and243

the calculations are performed with these fixed at g0 and M0, the positions of the dips in244

the α− ϵ graph are exactly the same as in Fig. 2 (although the figure is not shown). Fig. 5245

The vertical profiles of the disturbance amplitudes, |W |, of the two modes obtained246

from the numerical calculations in this subsection are shown in Fig. 6. Note that the247

shown “amplitude” here is |W |, not |Z̃|. Displaying this quantity does not change the248

fact that the amplitude of the Lamb mode (Fig. 6a) decreases monotonically with altitude,249

but for the Pekeris mode (Fig. 6b), the node is at an geometric altitude of about 10.3250

km. In Watanabe, et al. (2022), it was shown that the Pekeris mode simulated by a251

GCM (= General Circulation Model), had a node at a pressure level of about 90 hPa (c.f.252

Watanabe, et al. (2022)’s Fig. 8b) with the amplitude being expressed in terms of vertical253

p-velocity (ω). Here, note that ω ∝ −e−ẑ/(2H)W and the node of ω should be compared254

with that of W . Since the pressure level of 90 hPa is at a geometric altitude of about 17255

km in USSA76, the altitude of the node of the Pekeris mode determined by Watanabe, et256

al. (2022) is considerably higher than that determined in this subsection. This discrepancy257
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could be due to differences in the vertical profiles of background temperatures or to some258

imperfection in the GCM used in Watanabe, et al. (2022).259

Since the drawn profiles are for |W | in Fig. 6, which does not correspond to |Z|260

shown in Fig. 3, we cannot compare these profiles directly. Instead of |W |, Fig. 7 draws261

the profiles of |UH| for U defined by (46). Comparing Figs. 3 and 7, it can be seen262

that although the solution methods are different, the obtained amplitude profiles of the263

eigenfunctions are almost identical except for constant multiples. Note also that it is264

natural that the altitudes of the nodes are displaced between |W | shown in Fig. 6b and265

|UH| shown in Fig. 7b, considering the continuity equation since U corresponds to the266

horizontal convergence.267 Fig. 6

Fig. 7The results shown in Fig. 2 and Fig. 5 are based on the geometrical altitude of the268

upper boundary of 1000 km, but Salby (1979) seems to set the geometrical altitude of269

the upper boundary at 60H ≈ 440 km. Therefore, we have done the same computations270

except for setting the upper boundary at 440 km, the α − ϵ graph hardly changes (not271

shown) and the equivalent depths of the Lamb and Pekeris modes are not changed with272

an accuracy of three significant digits.273

Depending on the setting of the position of the top boundary, however, perfect reso-274

nance may occur and the value of the equivalent depth may be slightly shifted. Figure275

8 shows the α − ϵ graph for the case where the upper boundary is set to be 91 km (the276

upper edge of the lowest temperature region in USSA76). In this case, the positions of277

the dips are at α = 0.739 and α = 1.104, where ϵ goes to zero. This means that a perfect278

resonance occurs and the Lamb mode and the Pekeris modes are exactly free oscillation279

modes. The reason for this perfect resonance is that the atmospheric temperature is low280

at 91 km, where r < 0, and evanescent solutions are selected. In this case, the equivalent281

depth of the Lamb mode remains unchanged at 9.90 km, while that of the Pekeris mode282
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is 6.63 km.283 Fig. 8

From the results shown above, as long as the vertical temperature profile defined284

USSA76 is used, we can conclude that the equivalent depths of Lamb mode and Pekeris285

mode are 9.9 km and 6.6 km, respectively, with an accuracy of two significant digits if286

the upper boundary for the computation is above the lower edge of the thermosphere. In287

the present manuscript, the altitude dependence of the gravity acceleration and the mean288

molecular weight are taken into account. In the thermosphere, the specific heat ratio γ289

should also change with height, but this is not taken into account (In USSA76, only the290

information that γ = 1.4 is given, and the altitude dependence of γ is not described).291

However, considering the fact that the equivalent depths of the Lamb and the Pekeris292

modes did not change between the above calculations with setting the upper boundary293

at 1000 km and that with setting the upper boundary at 440 km (even though the mean294

molecular weight is nearly 5 times different at those two altitudes), it is considered that295

even if the dependence of γ on the altitude is given accurately, it will not affect the296

calculation of equivalent depth.297

4. Summary and Discussion298

In the present manuscript, we re-examined the calculation of Salby (1979) in relation to299

the Pekeris mode, which was firstly detected by Watanabe, et al. (2022) from observations300

of waves generated by the eruption of Tonga, in order to examine what its equivalent depth301

value would be under a standard vertical atmospheric temperature profile such as USSA76.302

After examining the calculation of Salby (1979), it was found that the transformation of303

the equation there was inappropriate for the case where there is a discontinuity in the304

vertical temperature gradient, such as USSA76. Therefore, in the present manuscript, we305

presented an improved calculation method and calculated the equivalent depths for the306
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Lamb and the Pekeris modes. In addition, several calculations were performed for different307

position settings for the upper boundary, taking into account the altitude dependence of308

the gravity acceleration and mean molecular weight, which were not taken into account in309

Salby (1979). It is concluded that the equivalent depth values obtained in Salby (1979) are310

incorrect, and that under the atmospheric temperature profile of USSA76, the equivalent311

depths of the Lamb and the Pekeris modes are 9.9 km and 6.6 km, respectively, in two312

significant digits (The equivalent depth of the Pekeris mode varies slightly depending on313

the setting of the position of the upper boundary, but does not change within the range314

of two significant digits).315

The equivalent depth of 6.6 km for the Pekeris mode obtained in the present manuscript316

is larger than that of 6.1 km estimated from the observation of waves generated by the317

eruption of Tonga in Watanabe, et al. (2022). There seem to be two main reasons for this318

discrepancy: first, the USSA76 vertical temperature profile used in the present manuscript319

is for midlatitudes, which may be different from the vertical temperature profile at the320

latitudes where the Pekeris mode was excited and where it propagated by the time used to321

determine its phase velocity; second, Watanabe, et al. (2022) estimated the phase velocity322

of waves from observations, it is possible that the phase velocity can differ from that of323

the stationary atmosphere due to background winds. We should also note here that, in324

Watanabe, et al. (2022), they also conduced a spectral analysis of 57 years of hourly global325

reanalysis data and showed that there was a distinct spectral peak corresponding to the326

Pekeris mode (Watanabe, et al. (2022)’s Fig. 9d), but the corresponding equivalent depth327

for the spectral peak seemed to be larger than 6.1 km. This may imply that the long-term328

climatological value of the equivalent depth of the Pekeris mode may be close to the value329

determined in the present manuscript, 6.6 km. In order to investigate which of the above330

mentioned reasons may be responsible for the discrepancy between the equivalent depth331
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of the Pekeris mode obtained in the present manuscript and that estimated by Watanabe,332

et al. (2022), the first step would be to calculate the equivalent depth using the present333

method, given the horizontally averaged vertical temperature profile of the atmosphere334

at the time of Tonga’s eruption, which will be our next work.335

Supplements and Data Availability Statements336

Supplement 1 is a Fortran90 program which computes the α dependence of ϵ shown337

in the present manuscript. The terms and conditions of the program are subject to the338

JMSJ Submission Regulation.339

All data analyzed in this study are generated by this program.340
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Fig. 1. Vertical temperature profile described in USSA76. (a): temperature profile up to
1000 km. (b): temperature profile up to 100 km.
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Fig. 2. Dependence of the error (ϵ) of the lower boundary condition on the parameter
α = H/h. The computation is done by using the equations in Section 2.1 and setting
the top boundary at 1000 km.
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Fig. 3. Vertical profiles of the amplitudes, |Z̃|, of the two modes obtained in Section 3.1.
(a): case for α = 0.739 (h = 9.90km). (b): case for α = 1.107 (h = 6.61km).
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Fig. 4. Vertical profiles of the gravity acceleration and the mean molecular weight de-
scribed in USSA76. (a): gravity acceleration. (b): mean molecular weight.
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Fig. 5. Same as Fig. 2 except that the computation is done by using the equations in
Section 2.2.
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Fig. 6. Vertical profiles of the amplitudes, |W |, of the two modes obtained in Section 3.2.
(a): case for α = 0.739 (h = 9.90km). (b): case for α = 1.114 (h = 6.57km).
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Fig. 7. Vertical profiles of the amplitudes, |UH|, of the two modes obtained in Section
3.2. (a): case for α = 0.739 (h = 9.90km). α = 1.114 (h = 6.57km).
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Fig. 8. Same as Fig. 5 except that the computation is done by setting the top boundary
at 91 km.
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