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Abstract 26 

A new operational seasonal forecast system, Japan Meteorological Agency 27 

(JMA)/Meteorological Research Institute (MRI) Coupled Prediction System (CPS) 28 

version 3 (JMA/MRI–CPS3), has been developed. This system represents a major 29 

upgrade of the former system, CPS2. CPS3 comprises atmosphere, land, ocean, and 30 

sea ice forecast models and the necessary initialization systems for these models. For 31 

historical reforecasts, the atmospheric reanalysis dataset JRA-3Q provides initial 32 

conditions for the atmosphere and the external forcings for land, ocean, and sea ice 33 

analysis. In the operational forecast, JMA’s operational atmospheric analysis is used in 34 

conjunction with JRA-3Q to initialize the system in near-real time. The land surface 35 

model is initialized using an uncoupled free simulation, forced by the atmospheric 36 

analysis. The ocean and sea ice models are initialized with the global ocean data 37 

assimilation system MOVE-G3, which incorporates a newly developed four-dimensional 38 

variational method for temperature, salinity, and sea surface height and a three-39 

dimensional method for sea ice concentration. Compared with the previous system, the 40 

CPS3 forecast model components have approximately 2–4 times higher resolution: the 41 

atmosphere and land models are configured with ~55 km horizontal resolution, with 100 42 

vertical atmosphere layers; and the ocean and sea ice models have a resolution of 43 

0.25° x 0.25°, with 60 vertical ocean layers. The physical processes of the atmosphere 44 

are greatly refined in CPS3 relative to CPS2, resulting in improved representation of 45 
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sub-seasonal to seasonal scale variability, including the eastward propagation of the 46 

Madden–Julian Oscillation, winter blocking highs in the North Atlantic, and coupled 47 

atmosphere–ocean variability during El Niño–Southern Oscillation events. Our historical 48 

reforecast experiment for 1991–2020 suggests that CPS3 has greater forecast skill than 49 

CPS2. The usability of the model output has been improved in CPS3 by reorganizing 50 

the operation schedule to provide daily updates of five-member ensemble forecasts. 51 

 52 

Keywords seasonal forecast; ENSO; operational forecast system; MJO; blocking high 53 

54 
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1. Introduction 55 

Seasonal forecasts provide an outlook of climate conditions three to six months ahead 56 

and are used for planning in agriculture and renewable energy production and for 57 

preparation for extreme weather events, when the seasonal cycle differs significantly from 58 

normal. Weather and climate affect our lives across national borders. For this reason, a 59 

number of collaborative frameworks provide consistent forecasts across countries based 60 

on objective information sources. One example is the “Regional Climate Outlook Forums”, 61 

led by the World Meteorological Organization (WMO, 2016), where operational numerical 62 

forecasting systems provide an objective and scientific basis for forecasts. Demand for 63 

seasonal forecasting services has increased dramatically in recent years, and there is a 64 

growing need for numerical forecasting systems to become more accurate and easier to 65 

use. 66 

The main objective of this paper is to describe a new version of a seasonal forecast 67 

system, JMA/MRI–CPS3 [Japan Meteorological Agency (JMA)/Meteorological Research 68 

Institute (MRI)–Coupled Prediction System (CPS) version 3; hereafter CPS3], which 69 

became operational at JMA in February 2022. Predictability of the climate system on sub-70 

seasonal to seasonal timescales depends largely on interactions among the earth system 71 

components, such as the atmosphere and ocean. JMA introduced its first coupled 72 

atmosphere–ocean prediction system in the late 1990s (Yoshikawa et al. 2016). Initially, 73 

the system specialized in forecasting the El Niño Southern Oscillation (ENSO) and the 74 
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forecast coverage was limited to the tropics. Subsequent advances in forecasting 75 

techniques and a significant increase in computing resources led to the creation of 76 

JMA/MRI–CPS version 1 in 2008 (Takaya et al. 2017), which provided global coverage 77 

and seasonal forecasts. CPS3, described in this paper, is the third generation of the 78 

system. 79 

The primary motivation for the development of CPS3 was to enhance the seasonal 80 

forecasting capabilities of the CPS. The secondary goal was to improve the usability of 81 

forecast products and to provide forecast updates on a daily basis. The development was 82 

also intended to allow seamless expansion of the system so that it could be used for sub-83 

seasonal forecasts, which would be a major advancement compared with previous 84 

systems. This latter development is the most significant change in CPS3 from the 85 

previous system, JMA/MRI–CPS2 (Takaya et al. 2018; hereafter CPS2). Seasonal 86 

climate and weather forecasts are used in combination, and information should therefore 87 

be consistent across these timescales. The importance of this consistency has been 88 

widely recognized in recent years, and numerical weather prediction centers have 89 

accelerated their efforts toward this end (Saha et al. 2014; MacLachlan et al. 2015; 90 

Johnson et al., 2019). For CPS3, the first step was to improve the seasonal forecast 91 

model so that it could also be used for shorter, sub-seasonal timescales of two weeks and 92 

longer; this required performance and usability improvements to the existing system.  93 

Section 2 begins with an overview of CPS3, followed by a description of the forecast 94 
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model, initial conditions, initial perturbations, and operational schedule. In order to provide 95 

an intercomparison of forecast skill in later sections, particular emphasis will be placed on 96 

the changes from CPS2. Section 3 evaluates the forecast performance based on 97 

historical reforecast experiments for a 30-year period (1991–2020). Section 4 provides a 98 

summary and discusses future issues. 99 

 100 

2. System configuration 101 

2.1 Overview 102 

CPS3 is an ensemble forecasting system that uses a coupled atmosphere–land–ocean–103 

sea ice forecast model. The system comprises two parts: forecast model initialization and 104 

prediction calculations. Table 1 compares CPS3 with CPS2. 105 

During initialization, CPS3 generates initial conditions for land, lakes, and the ocean and 106 

prepares initial perturbations to be implemented in the coupled model. Here, CPS3 relies 107 

on externally produced atmospheric analyses; i.e., JRA-3Q (Japanese Reanalysis for 108 

Three Quarters of a Century; Kobayashi et al. 2021) and the JMA Global Analysis (GA; 109 

JMA 2022). These analyses provide the initial atmospheric conditions and external 110 

forcings for the land and ocean analyses. 111 

The forecast model comprises GSM (Section 2.2a) and MRI.COM (Section 2.2b), which 112 

have both been configured and improved to be appropriate for seasonal forecasting. The 113 

model-coupling library, SCUP (Yoshimura and Yukimoto 2008), is used to update air–sea 114 

Table 1 
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boundary conditions hourly through the exchange of geophysical parameters between the 115 

models at the sea surface.  116 

 117 

2.2 Forecast model 118 

a. Atmosphere–land surface model 119 

The atmosphere–land surface model in CPS3 is GSM 2003 (Yonehara et al. 2020), 120 

which became an operational weather forecast model at JMA in March 2020. The 121 

horizontal resolution is set to TL319 (≈ 55 km) and 100 vertical layers are used, giving 122 

around double the resolution of CPS2, which used TL159 (≈ 110 km) and 60 vertical layers. 123 

The model top was 0.1 hPa in CPS2 and is raised to 0.01 hPa in CPS3. The model 124 

dynamics and representations of physical processes incorporate multiple improvements 125 

that have been made since GSM 1011 (JMA, 2013), on which CPS2 was based (Yonehara 126 

et al. 2014, 2017, 2018, 2020). The representation of land surface processes has been 127 

reconstructed in CPS3 to consider layer structure and snowpack coverage. Soil 128 

temperature and moisture are multi-layered in CPS3 to better capture diurnal variability. 129 

Surface albedo on sea ice has been refined to account for sea ice thickness and snow 130 

depth (Hunke and Lipscomb 2010). The scheme from Iwasaki et al. (1989) that was used 131 

to represent orographic gravity wave drag in CPS2 is replaced in CPS3 with that from Lott 132 

and Miller (1997), which explicitly accounts for low-level flow blocking and orographic 133 

gravity waves. Sub-grid-scale turbulent orographic drag is newly considered in CPS3, 134 
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following Beljaars et al. (2004) (Kanehama and Yamada 2019). The momentum transport 135 

effects of non-orographic gravity waves are represented in CPS3 following Scinocca 136 

(2003), which has improved the reproducibility of stratospheric quasi-biennial oscillations 137 

(Kanehama 2012). 138 

In GSM 2003, cumulus convection is parameterized following Arakawa and Schubert 139 

(1974), and the set of dynamic and thermodynamic equations is closed using the 140 

predictive equation for cloud-base mass flux from Pan and Randall (1998). In CPS3, 141 

dissipation timescales for convective kinetic energy are treated separately for shallow and 142 

deep cumulus clouds (20 and 40 minutes, respectively). An empirical dependence of the 143 

cumulus entrainment rate on altitude and humidity is introduced in CPS3 (Komori et al. 144 

2020; Bechtold et al. 2008), using a minimum threshold taken from Tokioka et al. (1988). 145 

These changes increase the relative contribution of shallow cumulus to the total kinetic 146 

energy and make the transition from shallow to deep cumulus more continuous. This 147 

improves the dry bias for the mid-troposphere and the optically thin cloud bias in the Inter-148 

Tropical Convergence Zone in the Pacific that were seen in CPS2. Observations have 149 

shown that the air column becomes gradually humidified from the lower to upper 150 

troposphere as the convectively active phase of the Madden–Julian Oscillation (MJO) 151 

approaches (Thayer-Calder and Randall, 2009), and this is captured by CPS3 forecasts. 152 

Kawai et al. (2017) provided an elaborate index that describes the conditions of 153 

appearance of marine stratocumulus clouds. When this index is sufficiently large, CPS3 154 
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weakens vertical mixing to keep a temperature and humidity inversion near the top of the 155 

planetary boundary layer, suppressing dry air entrainment from the free atmosphere to 156 

generate clouds. There was a significant melting bias for Antarctic sea ice in CPS2, and a 157 

related positive bias for downward shortwave radiation fluxes over the Southern Ocean. 158 

CPS3 has reduced these by improving the representation of super-cooled liquid clouds in 159 

the lower troposphere, as these clouds being common in the Southern Ocean region (Kay 160 

et al. 2016; Chiba and Komori 2020). Free convective gusts near the sea surface (Godfrey 161 

and Beljaars 1991) and deep convective downdrafts are included in the calculation of 162 

ocean latent heat release in CPS3, following Redelsperger et al. (2000). In CPS3, we use 163 

Zeng and Beljaars (2005) to solve the heat budget in the warm water layer, while allowing 164 

changes in the assumed vertical temperature profile, which improves the reproducibility of 165 

the diurnal sea surface temperature (SST) cycle. 166 

CPS2 had a dry bias near the land surface over northern hemisphere continents. To 167 

address this, we introduced a fractional land ratio to consider sub-grid-scale water 168 

surfaces in CPS3, shown for Asia in Fig. 1. All water bodies, including rivers, are treated as 169 

isolated lakes that are geographically fixed over time in CPS3 and there is no energy or 170 

mass transport between adjacent grid cells. Instead, a simple thermodynamic lake scheme 171 

is introduced, which predicts lake ice formation and lake temperature variations through 172 

water phase changes and heat transfer between water, ice, and snow. In CPS3, several 173 

changes were introduced to the representation of atmospheric radiation processes that 174 

Fig. 1 
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were used in CPS2. A set of correction schemes from Hogan and Bozzo (2015) and 175 

Hogan and Hirahara (2016) are incorporated into the representation of the surface 176 

downward shortwave radiation flux to improve the estimated incident net surface radiation 177 

at coarse spatio-temporal resolution in CPS3 (radiative fluxes are computed hourly at a 178 

resolution of four grid cells). 179 

A monthly climatology is used for ozone concentration in CPS3, as in CPS2, but the 180 

climatology in CPS3 has been updated with the 1981–2010 average from the latest MRI-181 

CCM2 reanalysis (Deushi and Shibata 2011). Observed greenhouse gas emissions are 182 

used in CPS3 for calculations up to 2016 and are taken from CMIP6 emission scenario 183 

SSP2-RCP4.5 (Vuuren et al. 2011) for later periods. CPS3 uses a three-dimensional 184 

monthly aerosol concentration climatology (Yabu et al. 2017) for both reforecasts and 185 

operational forecasts and includes an experimental option to evaluate and include the 186 

direct radiative effect from volcanic aerosols provided by the user. 187 

Uncertainties in the model physics are calculated using the stochastic physics scheme 188 

in Buizza et al. (1999), where physics tendencies are perturbed with space- and time- 189 

dependent random noise during model integration; CPS3 continues to use the scheme as 190 

it was implemented in CPS2 (Yonehara and Ujiie 2011; Takaya et al. 2018). 191 

 192 

b. Ocean and sea ice model 193 

We use MRI.COM (Tsujino et al. 2017), a community ocean model developed at the 194 
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Meteorological Research Institute, as the ocean and sea ice model in CPS3. CPS3 uses 195 

version 4.6 (v4.6) of MRI.COM, as this was the most recent version available at the time of 196 

development. MRI.COM uses the Boussinesq approximation to solve the primitive 197 

equations using the finite difference method. The horizontal resolution is refined from 1° x 198 

0.3°–0.5° longitude–latitude in CPS2 to 0.25° x 0.25° in CPS3. This resolution is sufficient 199 

to resolve the first baroclinic Rossby radius for most regions within 30° of the equator 200 

(Hallberg 2013) but is too coarse for full resolution at higher latitudes, and it is therefore 201 

referred to as an “eddy-permitting” resolution. In CPS3, we use a generalized orthogonal 202 

coordinate system in the Arctic (latitudes north of 64°N) on a tripolar grid with singular 203 

points in Siberia (64°N, 80°E), Canada (64°N, 100°W), and at the South Pole. CPS3 uses 204 

z* vertical levels (Adcroft and Campin 2004), which can accurately capture flow along 205 

steep seafloor topography. The number of vertical ocean layers is increased slightly, from 206 

52 in CPS2 to 60 in CPS3, with enhancement primarily in layers deeper than 1000 m. The 207 

sea ice model deals with sea ice advection, formation, growth, and melting using five ice-208 

thickness categories. The processes and numerical treatments for the sea ice scheme in 209 

CPS3 remain mostly unchanged from CPS2. Further details are available in Tsujino et al. 210 

(2017). 211 

Fig. 2 compares the SST forecasts for the eastern tropical Pacific for December 22–26, 212 

1999, from CPS2 and CPS3 with an independent satellite-based SST analysis (Merchant 213 

et al. 2014). The La Niña conditions that year meant that low SSTs dominated in the 214 

Fig. 2 
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equatorial region, and cold water meandered from north to south with Tropical Instability 215 

Waves (TIWs). The cold tongue (low SST region) that extends westward from the 216 

Galápagos Islands (~90°W on the equator) is enhanced by the coastal upwelling of the 217 

eastward equatorial undercurrent close to these islands (Karnauskas, 2007). CPS3, with a 218 

higher ocean resolution, is able to reproduce these fine-scale SST features more 219 

realistically than CPS2. TIWs have been reported to enhance meridional heat exchange 220 

across the equator, providing negative feedback to equatorial SST anomalies during 221 

ENSO events (Vialard et al. 2001; An 2008; Imada and Kimoto, 2012; Graham, 2014). In 222 

this case, the northward (or southward) flow carries equatorial cold water away from the 223 

equator, weakening the amplitude of La Niña. The ability of CPS3 to capture these 224 

dynamic effects is likely to mean that the over-development bias for ENSO, which was a 225 

critical issue in CPS2, is improved in CPS3. 226 

 227 

2.3 Initial Conditions 228 

a. Initial conditions for the atmosphere and land surface model 229 

JRA-3Q1 provides the initial atmospheric conditions for CPS3 when run in reforecast 230 

mode, and GA provides these for operational CPS3 forecasts. There are several 231 

differences between JRA-3Q and GA, including system version, resolution, and data cut-232 

 
1 A bug has been found that Typhoon Bogus was unintentionally excluded from JRA-3Q for the period 
after 2013; an updated version is being prepared at the time of writing. However, owing to the limited 
area and period affected by the bug, re-running of the forecast is not planned. 
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off time. JRA-3Q is based on a low-resolution (~40km) version of the operational global 233 

data assimilation system as of December 2018 (JMA, 2019). The analysis period is 234 

extended forward while keeping the version fixed. The GA incorporates developments 235 

conducted since then and has a higher resolution of TL959 (~20 km) as of March 2022. It 236 

will continue to be updated on a regular basis. Although JRA-3Q lags behind real time by 237 

about two days, the GA's preliminary analysis provides initial conditions to CPS3 with a 238 

delay of only a few hours in exchange for a short cut-off time. We have confirmed that 239 

these inconsistencies in the initial atmospheric conditions do not critically affect seasonal 240 

forecast performance. However, these must be addressed for land surface and ocean 241 

analyses because differences in atmospheric forcing accumulate over time and move the 242 

mean states away from those in the forecast. For reforecasts, the initial conditions for the 243 

land surface are calculated using a free simulation of the stand-alone land surface model 244 

of CPS3 itself, using JRA-3Q surface forcing. Only snow cover is used from JRA-3Q. GA is 245 

used to calculate the initial conditions for operational forecasts by branching the long-term 246 

analysis cycle for one day only. This approach allows us to bring forward the completion 247 

time of the simulation while maintaining its historical consistency. Using its own surface 248 

simulation avoids forecast “initial shocks” due to discrepancies among the vegetation in 249 

the land models implemented in JRA-3Q, GA, and CPS3. Physical parameters in the lake 250 

scheme, which are present only in CPS3, are also initialized.  251 

 252 
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b. Initial conditions for the ocean and sea ice model 253 

In CPS3, initial ocean and sea ice conditions are taken from the global ocean data 254 

assimilation system, Multivariate Ocean Variational Estimation/Meteorological Research 255 

Institute Community Ocean Model –Global version 3 (MOVE/MRI.COM-G3; hereafter 256 

MOVE-G3). 257 

Table 2 shows the major differences between this and the earlier global ocean data 258 

assimilation system MOVE/MRI.COM-G2 (MOVE-G2; Toyoda et al. 2013), which was used 259 

in CPS2. In MOVE-G2 and MOVE-G3, gridded SST analyses are assimilated as though 260 

they were observation data. MOVE-G3 uses MGD SST (Kurihara et al. 2006), a quarter-261 

degree resolution analysis that includes data from satellite observations, whereas MOVE-262 

G2 uses COBE-SST (Ishii et al. 2005), a one-degree resolution analysis that is based on 263 

in-situ observations. In addition to the change to the SST products, the assimilation 264 

scheme has changed significantly between MOVE-G2 and MOVE-G3. A 4D-Var method is 265 

used in MOVE-G3, which deals with inhomogeneous observation times better than the 266 

three-dimensional method (3D-Var) used in MOVE-G2 and generates dynamically 267 

balanced initial conditions for the forecast model. One issue with using 4D-Var in CPS3 is 268 

the high computational cost. This, combined with the higher resolution of the ocean model 269 

that must be initialized for CPS3 (relative to CPS2), means that much higher 270 

computational resources are required for CPS3. To address this, we perform 4D-Var on a 271 

lower resolution grid of 1° × 0.3°–0.5° (G3A) and downscale the analyzed fields onto a 272 

Table 2 
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0.25° × 0.25° grid (G3F) using Incremental Analysis Updates (IAU; Bloom et al. 1996). This 273 

two-step approach is based on Usui et al. (2015) and improves the accuracy of analysis 274 

without requiring the computational resources needed for a full-resolution 4D-Var. The 275 

design of G3A and G3F is similar to the inner- and outer- models used in incremental 4D-276 

Var schemes, but forecast fields are not passed from the high-resolution model (G3F) to 277 

the low-resolution model (G3A) for the first guess, and temperature and salinity fields in 278 

G3F are nudged to the G3A analysis fields using the IAU instead of applying the analysis 279 

increments of G3A to G3F directly. The resolutions only have to be converted for the 280 

differences between the two fields that are used for the IAU-nudging. This has the 281 

additional benefit of avoiding computational instabilities that could arise owing to unnatural 282 

currents attributable to inconsistencies in ocean topography between the different 283 

resolutions. 284 

Fig. 3 assesses and compares the water temperature field in the new and old ocean 285 

analysis. Root Mean Square Error (RMSE) is estimated through comparison with ARGO 286 

float data that are withheld from the analysis. The comparison suggests that G3A provides 287 

better estimates in many regions. In particular, temperatures at 1 m depth show clear 288 

improvement (Fig. 3b), which can be attributed to the use of MGD SST and possibly to the 289 

introduction of 4D-Var. Close to the sea ice, there is a checkerboard pattern of large RMSE 290 

differences, which may be due to the small number of ARGO floats available in that region. 291 

The large RMSE in some coastal areas is likely due to the inability of low-resolution 4D-292 

Fig. 3 
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Var to represent coastal upwelling, coastal currents, and the associated nonlinearities. For 293 

100 m depth, improvements are modest in most areas (Fig. 3d). The 4D-Var analysis has 294 

considerably more variability than the analysis that uses 3D-Var, which may account for 295 

the improvements in RMSE being smaller than expected. There are some improvements 296 

around subtropical gyres in the South Indian and South Atlantic Oceans. As the water 297 

temperature at 1 m depth (Fig. 3b) is consistently more accurate in these areas when 4D-298 

Var is used, the combination of improved atmospheric forcing and a better analysis 299 

method may have improved the representation of the large-scale circulation. 300 

Another major improvement is the introduction of sea ice assimilation (Toyoda et al. 301 

2016). MOVE-G2 did not assimilate any sea ice observations. Instead, it was constrained 302 

through the dynamics and thermodynamics of the forecast model that assimilated other 303 

observations. One example that exposes the shortcoming of this approach is that the sea 304 

ice modeled around Antarctica was underrepresented in response to the positive bias in 305 

the incoming shortwave radiation flux in JRA-55 (Kobayashi et al. 2015), and the analysis 306 

scheme had to adopt an empirical bias correction to allow the atmospheric forcing to 307 

match the satellite observations. With the introduction of the improved atmospheric forcing 308 

of JRA-3Q and data assimilation of sea ice concentration, MOVE-G3 no longer needs to 309 

apply such an empirical correction method. In MOVE-G3, a daily, quarter-degree 310 

operational sea ice concentration analysis (Matsumoto et al., 2006) is assimilated using 311 

3D-Var. Although sea ice concentration is the only constraint used in this analysis, other 312 
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parameters, such as ice thickness and sea surface salinity and temperature in ice-covered 313 

regions, are updated in the analysis cycle through forward-model integration. Here, the 314 

3D-Var and IAU for sea ice are performed independently for G3A and G3F so that the 315 

coastal topography is represented optimally in both. 316 

To illustrate the impacts of the newly introduced sea ice assimilation, Fig. 4 compares 317 

the CPS reforecasts with the climatological sea ice extent for the first forecast month in the 318 

Arctic Ocean (See Section 3.1 for details on this reforecast). The agreement of the mean 319 

ice edge locations in the analysis and in the CPS products indicates that there is no 320 

unnatural initial drift in the CPS, and that the observations are properly assimilated. Figure 321 

4 shows data for September and March because these are the months when Arctic sea ice 322 

reaches its smallest and greatest extent, on average. The comparison shows that the bias 323 

in CPS2—which does not assimilate sea ice concentration—is very small. This may be 324 

because the sub-zero SSTs and sea surface fluxes used for data assimilation effectively 325 

controlled the formation and disappearance of sea ice. However, the comparison also 326 

shows that assimilating sea ice concentration results in a closer agreement with 327 

observations. The impact is particularly clear in September, when the sea ice starts to 328 

retreat from the provided initial conditions toward the pole after the CPS2 forecast begins. 329 

The positional bias of the sea ice edge is particularly improved in the Greenland Sea (B in 330 

the figure) and the Chukchi Sea (C) in CPS3, relative to CPS2. We separately confirm that 331 

the improvement in the mean error leads to better anomaly-correlation scores for sea ice 332 

Fig. 4 
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concentration itself and for 2 m air temperature. The impacts during the freezing season 333 

are relatively small, probably because sea ice formation depends more on the chaotic 334 

temporal evolution of the sea surface wind and heat fluxes than on the initial conditions in 335 

the model. The improvements are not sufficient to address the underestimations of sea ice 336 

extent in the Labrador Sea (A) and the Sea of Okhotsk (D), although the ice edges agree 337 

well with the assimilated observations at the initial state. 338 

MOVE-G2 performs a preliminary analysis to initialize the ocean model once every five 339 

days. In contrast, MOVE-G3 is designed to produce an analysis every day by running five 340 

analysis streams and executing preliminary analysis for one of the streams each day, 341 

using observations from the last five days. MOVE-G3 also implements a “delayed-mode 342 

analysis” that waits for observations up to nine days. Both analyses precede each 343 

assimilation run by five days. MOVE-G3 uses JRA-3Q and GA data for the atmospheric 344 

forcing. The idea behind this is the same as the basis for the aforementioned land model 345 

initialization: JRA-3Q is used for delayed analysis, for historical consistency, whereas GA 346 

is used for the preliminary analysis because of its immediate availability and consistency 347 

with the atmospheric initial conditions. The surface heat flux bias has been reported to be 348 

much lower in JRA-3Q than in JRA-55 (Kobayashi et al. 2021), making it a more suitable 349 

data source for the atmospheric forcing for the ocean analysis.  350 

 351 

2.4 Initial Perturbations 352 
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a. Initial perturbations for the atmosphere model 353 

Small perturbations are added to the initial conditions for the ensemble forecast to 354 

reflect uncertainties in the atmospheric analysis. CPS3 uses the Breeding of Growing 355 

Mode (BGM; Toth and Kalnay 1993; Chikamoto et al. 2007) method to extract a set of 356 

fastest growing error modes. For this purpose, the atmosphere-only forecasts are 357 

calculated for 24 hours. The norm is defined from the root mean square of the variability of 358 

the 500 hPa geopotential height, averaged separately over the northern (20°–90°N) and 359 

southern (20°–90°S) hemispheres, and from the 200 hPa velocity potential for the tropics 360 

(20°S–20°N). The estimated perturbation patterns are rescaled with positive and negative 361 

coefficients and added to the analysis. The rescaling factors are fixed in both the 362 

reforecast and operational forecast at 14.5% of the climatological variability for the 500 363 

hPa geopotential height, and at 20% of the climatological variability for 200 hPa velocity 364 

potential; this assumption is made for simplicity. Ideally, the size of the initial spread should 365 

change, as the accuracy of the atmospheric analysis is not constant over time. In fact, 366 

experiments for the summer 2020 (June–July–August) period show that the spread-skill 367 

ratio of the 500 hPa geopotential height for the northern hemisphere is above 2 until the 368 

72nd hour of the forecast, when it should ideally be 1, suggesting that the initial 369 

perturbations are too large for the accurate initial conditions of recent years.  Although not 370 

critical to seasonal forecasting applications, this issue will be addressed in future work. 371 

 372 
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b. Initial perturbations for the ocean model 373 

To represent uncertainties in the ocean initial conditions, CPS3 uses perturbations that 374 

approximate the analysis error covariance structure in the 4D-Var (Fujii et al. 2022). G3A 375 

employs a quasi-Newton method to minimize a cost function, where control variables are 376 

iteratively updated (Fujii and Kamachi, 2003; Fujii, 2005). The size of the updates applied 377 

to the control variables and the gradient of the cost function can be used to obtain 378 

approximate estimates of the eigenvalues and eigenvectors for the error covariance matrix 379 

for the analysis (Niwa and Fujii, 2020). In CPS3, initial perturbations are created by 380 

combining the estimated eigenvectors after scaling so that their amplitude equals half the 381 

analysis increment for the specific day. 382 

Fig. 5 shows an example of the spread of the initial ocean perturbations. Compared with 383 

CPS2, CPS3 has stronger perturbations that spread over multiple vertical layers, rather 384 

than only near the thermocline. The larger spread is due to the arbitrarily chosen scaling 385 

factor mentioned above, but the change in the pattern reflects a fundamental improvement 386 

in the way that the perturbations are generated. In CPS2, ocean perturbations were 387 

created solely from the atmospheric forcing (Takaya et al. 2018). The atmospheric forcing 388 

used for this was also used to calculate the atmospheric perturbations through the BGM; 389 

therefore, it was not an ideal basis for calculating appropriate ocean perturbations, 390 

particularly when the MJO is weak or displaced. Part of the under-representation of the 391 

Central Pacific spread in MOVE-G2 in Fig. 5 is due to the fact that the convectively active 392 

Fig. 5 
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phase of the MJO was in the Atlantic to Indian Ocean near the end of May 2012, and not in 393 

a location that would result in strong perturbations in the Pacific. CPS3 is not affected by 394 

these issues, and provides a straightforward representation of the uncertainties that are 395 

inherent to the ocean analysis. 396 

 397 

2.5 Operational Schedule 398 

CPS2 performed operational model integrations for up to seven months at a time. This 399 

provided the basis for operational ENSO forecasts for the next six months using the 400 

Lagged Average Forecast (LAF) method (Hoffman and Kalnay, 1983). This configuration 401 

was carried over to CPS3, although the operational schedule for CPS3 differs significantly 402 

from that of CPS2: in CPS2, 13-member ensemble forecasts were produced every five 403 

days. Model integrations started two days after the forecast initial time and completed at 404 

three more days later (Fig. 6). In contrast, CPS3 calculates 5-member ensemble forecasts 405 

on the same day as the initial forecast time. As described in Section 2.3, the analysis cycle 406 

was revised to accomplish this change; using GA data, the initial forecast conditions are 407 

calculated with a delay of less than 6 hours (the delay was about 54 hours for JRA-55 and 408 

60 hours for MOVE-G2). 409 

This change means that users now have access to 25 ensemble members for the same 410 

five-day period, nearly double the number that were previously available. If there is no 411 

requirement for the five-day interval, then the ensemble size and the length of the LAF can 412 

Fig. 6 
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be optimized on a daily basis.  413 

 414 

3. Verification of CPS3, based on a 1991–2020 reforecast 415 

3.1 Reforecast settings 416 

In this section, we briefly compare the forecast skill of CPS3 and CPS2, based on a 417 

reforecast for 1991–2020. The same experiment design is used for CPS2 and CPS3 to 418 

calculate 5-member ensemble reforecasts that each start at 00 UTC in the middle of the 419 

month and at the end of the month (Takaya et al. 2018). The start dates are January 16 420 

and 31, February 10 and 25, March 12 and 27, April 11 and 26, May 16 and 31, June 15 421 

and 30, July 15 and 30, August 14 and 29, September 13 and 28, October 13 and 28, 422 

November 12 and 27, and December 12 and 27. These dates are partly determined by the 423 

fact that initial ocean conditions were only available for CPS2 once every five days; the 424 

same experiment design is applied to the reforecasts from CPS2 and CPS3 to facilitate 425 

comparison. The oldest initial date for the reforecasts was set to be 15 days behind the 426 

latest initial date for each month, following the operational LAF configuration of CPS2.  427 

For verification of the sub-seasonal forecasts (Section 3.2), five ensemble members for 428 

each initial date are used from Day 1. For verification of the seasonal forecast (Section 429 

3.3), 10 ensemble members from each month are aggregated and used to set the monthly 430 

and ensemble means from the beginning of the next month. For example, the forecasts 431 

that begin on December 12 and 27 are used to calculate the monthly and ensemble 432 
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averages of January (Month 0), February (Month 1), and so on. The forecast 433 

performances are assessed through comparison with data from JRA-3Q, MGD SST, 434 

NOAA outgoing longwave radiation (OLR; Liebmann and Smith 1997) and GPCP v2.3 435 

(Adler et al. 2018). MGD SST and JRA-3Q data are used for the initialization of CPS3, and 436 

this may unfairly benefit CPS3 in the comparison. We therefore replaced these data with 437 

data from COBE-SST and JRA-55, which are used in CPS2, and found that this made no 438 

significant difference to our conclusions from the comparison. 439 

 440 

3.2 Sub-seasonal forecast 441 

The MJO has pronounced sub-seasonal variability in which active tropical convections 442 

travel eastward with an average period of 30–60 days and affect mid- and high-latitude 443 

variability through atmospheric teleconnections. It is therefore natural to begin with the 444 

MJO when evaluating global model performance. Fig. 7 shows the longitude–time 445 

composite for OLR anomalies, predicted from initial dates when the convectively active 446 

phase of the MJO was in the eastern Indian Ocean. The comparison suggests that CPS3 447 

represents the eastward propagation of the active/inactive convection phases well, 448 

whereas CPS2 has a bias where the convectively active phase becomes stuck in the 449 

western Indian Ocean. We separately confirmed that this bias was more strongly observed 450 

in boreal summer than in winter. The bias was also seen for other initial forecast conditions, 451 

so that the convections tended to stagnate once the active phase entered the Indian 452 

Fig. 7 
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Ocean. Therefore, the improvement is likely to be due to updated physical 453 

parameterizations, rather than to the improved representation of the initial conditions. To 454 

confirm the forecast skill, we calculated correlation coefficients for an all-season MJO 455 

index (Wheeler and Hendon 2004), which remained above 0.5 until Day 21 for CPS2 and 456 

Day 27 for CPS3 (not shown). This score compares favorably with recent numerical 457 

forecasting systems (Vitart, 2017). 458 

Another improvement in CPS3 relative to CPS2 can be seen in the representation of 459 

winter blocking highs in the northern hemisphere (Fig. 8). Both models tend to 460 

underestimate the frequency of the blocking highs and, although this bias is greatly 461 

reduced in the north Atlantic in CPS3, there is little or no improvement over the north 462 

Pacific in CPS3 relative to CPS2. One reason for the change may be the increased 463 

resolution. Previous studies have reported that increasing the horizontal and vertical 464 

resolutions of atmosphere models results in a better representation of dynamic feedbacks 465 

between blocking highs, transient eddies, and the terrain effects of steep mountains, but it 466 

has been shown that such effects are only visible in the Atlantic and that there are 467 

differences among models (Anstey et al. 2013; Berckmans et al. 2013; Schiemann et al. 468 

2017). This is consistent with our result. To isolate the impact of the increased resolution in 469 

CPS3, we compared our atmosphere model (TL319) with a lower resolution configuration 470 

(TL159) and confirmed that the high resolution resulted in a consistent improvement. 471 

However, it is possible that other changes between CPS2 and CPS3 contributed more to 472 

Fig. 8 
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the improvements in the results from the newer model system than the resolution changes, 473 

as there are numerous changes that could also affect the representation of blocking highs, 474 

such as the gravity wave stress scheme that was introduced in CPS3 (Pithan et al. 2016). 475 

Next, we compare the anomaly correlation coefficients (ACCs) for weekly averaged 500 476 

hPa geopotential height as a measure of the sub-seasonal forecast skill (Fig. 9). The 477 

scores show a significant improvement in CPS3 relative to CPS2 for weeks 1 and 2 in both 478 

hemispheres. Subsequent weeks are omitted, but the significant improvement continues 479 

until ACC approaches its lowest value in weeks 3 to 4. For short lead times, the 480 

improvements may be partly attributable to the use of the latest reanalysis, JRA-3Q, as 481 

initial conditions. For later lead times, it is also possible that refinements in the model 482 

physics may have contributed further. In the Northern Hemisphere winter season 483 

(December-January-February), a peak of score improvement can be found over the North 484 

Atlantic (figure not shown). This fact is consistent with the improved climate reproducibility 485 

of the blockings in CPS3 (Fig. 8). In addition, the improved MJO (Fig. 7) may also have 486 

contributed to the overall mid-latitude scores through remote influences. Kubo and Ochi 487 

(2022) compared CPS3 with the operational sub-seasonal forecast system—the JMA 488 

Global Ensemble Prediction System (Yamaguchi et al. 2021)—and reported that CPS3 489 

has a comparable skill when the same ensemble configuration is used for both. 490 

Increasing the ensemble size would make CPS3 more appropriate for sub-seasonal 491 

forecasting; however, this presents a challenge. A forecast ensemble gives the probability 492 

Fig. 9 
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of occurrence for future weather and climate conditions with a limited number of samples. 493 

Increasing the ensemble size is one way of reducing the estimation error for the probability 494 

distribution function. In the LAF approach, the shortfall in the number can be compensated 495 

for by including data from forecasts with older initial dates in the ensemble. For slowly 496 

time-evolving phenomena such as ENSO, Trenary et al. (2018) reported that greater 497 

performance can be expected by extending the LAF length beyond a few days and 498 

aggregating more ensemble members. However, the LAF length should be much shorter 499 

for shorter lead-time forecasts. Fig. 9 can be viewed as a comparison of scores among 500 

ensemble members within a 1-week LAF. The ACCs are as high as 0.9 for Week 1 and 501 

decrease rapidly to about 0.5–0.7 when the initial date becomes a week older. If we 502 

combine the forecasts from these initial dates to form a Week 1 forecast, the forecast skill 503 

will accordingly deteriorate considerably. For some applications, even a delay of a few 504 

days may be critical. By reducing the delay to the initial forecast time and increasing the 505 

effective ensemble size (Fig. 6), CPS3 has improved usability on sub-seasonal timescales 506 

compared with CPS2, but further enhancements are needed to make it suitable for wider 507 

use in the future.  508 

 509 

3.3 Seasonal forecast 510 

ENSO is a major source of predictability on seasonal time-scales. Niño indices, defined 511 

as the regionally averaged SST in the tropical Pacific, are useful measures that provide a 512 
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brief overview of a system's seasonal forecasting capability. Fig. 10 compares analyzed 513 

SST anomalies averaged over NINO3.4 (170°W–120°W, 5°S–5°N) with those predicted 514 

from June for the latter half of the year. The figure shows that CPS2 tends to overdevelop 515 

initial ENSO signals, particularly in the mid-2010s, whereas CPS3 tends to avoid this 516 

monotonous time evolution. CPS3 also represents clearer case-to-case variability in the 517 

forecast spread, although this is still not adequate to capture the observations. This 518 

indicates that CPS3 can simulate a wider variety of ENSO development scenarios. In 519 

Section 2.4, we showed that CPS3 can generate effective ocean initial perturbations, using 520 

the June 2012 case as an example. There is a marked contrast between CPS2 and CPS3 521 

for ENSO forecasts that are calculated from this initial month (Fig. 10). Although the newly 522 

developed perturbation in CPS3 was not designed specifically to capture ENSO, it is 523 

possible that it helped to diverge the initial development of ENSO, at least for this case. 524 

Another contributing factor is the improved forecast model. As shown in Fig. 7, the bias 525 

that caused the MJO to stay at a particular longitude in CPS2 is reduced considerably in 526 

CPS3. This allows for a more chaotic time evolution of sea surface wind, which has been 527 

reported as a key to successful ENSO predictions (Moore and Kleeman, 1999; Kessler 528 

and Kleeman, 2000). In terms of negative feedback processes, TIWs are represented in 529 

more detail in CPS3 than in CPS2 (Fig. 2), thereby suppressing equatorial SST anomalies 530 

and the associated diffusion effect of equatorial anomalies. Improvements in the shallow 531 

cumulus cloud scheme also contribute to the suppression of excessive ENSO through 532 

Fig. 10 
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negative cloud-radiative feedbacks (Wood and Bretherton, 2006), as reported in Chiba and 533 

Kawai (2021).  534 

To overview the changes in ENSO prediction scores, Fig. 11 compares the ACCs 535 

calculated using all forecast cases. It can be seen that CPS3 shows a consistent increase 536 

in scores from Month 0 to Month 6, with the difference from CPS2 being statistically 537 

significant in the first few months. Previous studies have reported that ENSO forecast skill 538 

sharply declines in boreal spring (referred to as the “Spring Predictability Barrier”; Webster 539 

and Young 1992; Tang et al. 2018). When broken down by forecast initial month, early 540 

spring to early summer months (February to June) show a clear improvement in forecasts 541 

for summer and later seasons, indicating that the skill decline, or the predictability barrier, 542 

appears more slowly in CPS3. The root mean square error (RMSE) is significantly lower 543 

for all lead times in CPS3 than in CPS2. The change in the forecast spread is small, 544 

however, the large reduction in RMSE means that the performance has improved from 545 

CPS2 to CPS3 in terms of the spread-to-skill ratio. In particular, forecasts initialized in 546 

Month 0 have a significantly smaller RMSE and a larger spread, bringing the spread-skill 547 

ratio closer to one. This change is likely to be a result of the improved initial ocean 548 

conditions (Fig. 3) and the initial perturbations that were introduced in CPS3. In another 549 

comparative experiment, we found that the introduction of 4D-Var to the ocean analysis in 550 

CPS3, replacing 3D-Var in CPS2, significantly reduces RMSEs for NINO3.4, especially in 551 

forecasts with early lead times up to Month 2. The larger forecast spread for early months 552 

Fig. 11 
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may be a result of the perturbation of sub-surface ocean layers in CPS3, which was not 553 

implemented in CPS2 (Fig. 5). However, also note that the change in the forecast spread 554 

is, on average, smaller at longer lead times. In other words, even though CPS3 gives 555 

stronger perturbations near the thermocline, in some cases the perturbations do not 556 

develop as much as expected. Scaling the initial ocean perturbations larger might seem to 557 

improve the situation. As it turns out, our model tends to dissipate rather than develop 558 

such overly large initial perturbations. Considering that these perturbations are based 559 

solely on the errors in the ocean analysis, this may be because the unstable modes 560 

induced by the added perturbations do not always match the modes that should develop in 561 

the coupled atmosphere-ocean system. The ability to represent errors in initial conditions 562 

is in itself a steady progress, but further understanding of the error development process is 563 

also needed. 564 

To compare the typical pattern of atmosphere and ocean variability during ENSO events,  565 

Fig. 12 shows the distribution of SST, precipitation, and sea level pressure regressed onto 566 

NINO 3.4 SST for December–January–February. The analysis shows that ENSO 567 

fluctuations tend to occur mainly in the central Pacific (~150°W) in this reforecast period. 568 

The variability in CPS2 is skewed toward the eastern Pacific, and the forecast SST and 569 

precipitation anomalies are stronger than the observations. These biases are still evident 570 

in the CPS3 forecasts, but they are improved relative to CPS2. Equatorial SST anomalies 571 

are meridionally broader near 150°W in CPS3 than in CPS2, suggesting the greater 572 

Fig. 12 
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diffusion effect of SSTs (Vialard et al. 2001; An 2008; Imada and Kimoto, 2012; Graham, 573 

2014) in the higher-resolution model (Fig. 2). La Niña events are often weaker than El Niño 574 

events. This asymmetry is particularly pronounced in the eastern equatorial Pacific. We 575 

have separately confirmed with the frequency distribution of SST anomalies in NINO3 576 

(150° to 90°W, 5°S to 5°N) that CPS3 represents such nonlinearities more closely to 577 

observations. CPS3 also reproduces sea level pressure anomalies well in the Indian 578 

Ocean (60°–120°E) and the western tropical Pacific (120°–150°E). We confirmed that 579 

lower tropospheric circulation fields, such as 850 hPa winds, are also improved in CPS3 580 

relative to CPS2 over a wide area from the Indian Ocean to the western Pacific, 581 

suggesting that the interannual variability of the winter Asian monsoon has been improved 582 

through the improved atmospheric response to ENSO in CPS3. 583 

Surface air temperature is one of the primary variables of interest in seasonal forecasts. 584 

Fig. 13 summarizes the regionally and three-month averaged ACCs for 2 m temperature 585 

and related variables. In general, the forecast skill for surface air temperature is 586 

unchanged or improved from CPS2 to CPS3 for most regions and seasons in the tropics 587 

and the northern and southern hemispheres; however, the error bars are large. 588 

Precipitation in the tropics is significantly improved for all seasons in CPS3 relative to 589 

CPS2. A separate geographical comparison confirms that the regions where there are 590 

large differences in the precipitation ACCs for CPS2 and CPS3 coincide well with areas of 591 

high interannual variability around the ITCZ, including the western and eastern tropical 592 

Fig. 13 
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Pacific. As in the case of ENSO in Fig. 12, this suggests that areas of atmospheric 593 

convection tend to be more accurately located in CPS3 than in CSP2. Precipitation 594 

anomalies are associated with circulation responses such as vorticity generation in the 595 

lower/upper troposphere and remote influences on the mid-latitudes through atmospheric 596 

teleconnections. The 850 hPa stream function consistently shows an overall improvement 597 

in the tropics and extratropics from CPS2 to CPS3. In regions where the lower-598 

tropospheric circulation influences surface air temperature variability, such as the 599 

northwestern edge of the northern hemisphere subtropical anticyclone, changes in the 600 

representation of tropical air–sea circulation patterns may contribute to the improved 2 m 601 

temperature scores in CPS3 relative to CPS2. Future work will involve investigating 602 

regional differences in scores to better understand the factors that influence them by using 603 

case studies during the reforecast period. 604 

 605 

4. Summary and conclusions 606 

We have described CPS3, a new operational seasonal forecast system. The latest 607 

atmospheric reanalysis, JRA-3Q, and ocean analysis that incorporates 4D-Var and sea ice 608 

data assimilation schemes have improved the initial conditions used in CPS3 forecasts 609 

relative to those used in CPS2 forecasts. The introduction of a high-resolution forecast 610 

model and the refinement of physical processes within the model result in an improved 611 

representation of interannual variability over a wide range of timescales relative to CPS2, 612 
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including for the MJO and for blocking highs and ENSO. These improvements were 613 

confirmed by forecast scores in reforecast experiments for 1991–2020. The operational 614 

configuration for CPS3 continues to follow the LAF method to achieve a large ensemble, 615 

but nearly doubles the effective ensemble size relative to CPS2. In addition, the forecast 616 

update interval has changed from five days in CPS2 to daily in CPS3. This gives users 617 

greater flexibility for configuring their LAF ensemble. This usability improvement is not 618 

captured in the forecast scores. 619 

The key objective of this report was to present the basic specifications for CPS3, and to 620 

describe the differences between CPS3 and the previous system, CPS2. Only elements 621 

considered relevant to the headline scores of the operational sub-seasonal and seasonal 622 

forecasts have been included in our evaluation. The seasonal characteristics of 623 

atmosphere and ocean circulation in the model were outside the scope of this paper, and 624 

future work should provide a detailed analysis of these. 625 

CPS3 was developed primarily for seasonal forecasting applications. To make it more 626 

suitable for shorter time-scales, it would be advantageous to use a larger ensemble than 627 

the current five members per day. This would allow for a shorter LAF length and would 628 

mitigate the deterioration of forecast skill over time. A larger ensemble size is also needed 629 

to allow reforecasts to more accurately capture past ENSO events (Doi et al. 2019) and to 630 

estimate a more accurate model climatology.  631 

We have reported that the accuracy of the ocean analysis is compromised in some 632 
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areas by the insufficient resolution of  MOVE-G3. This is mainly due to our adoption of the 633 

two-step approach described in Section 2.3b. Although another cost-effective alternative 634 

could be explored, a straightforward solution is to simply increase the resolution of the 635 

analysis when more computing resources become available in the future. It would also be 636 

beneficial to increase the forecast model resolution to become eddy-resolving (~0.1°), as 637 

mesoscale air–sea interactions in the mid-latitudes are reported to have a significant 638 

impact on model representations of large-scale climate (Minobe et al., 2008; Kirtman et al., 639 

2013; Ma et al. 2017). Further developments are needed to explore these exciting issues. 640 

  641 
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(a) CPS3 (b) CPS2 

Fig. 1. Sub-grid-scale land ratio for grid cells in (a) CPS3 and (b) CPS2. 933 

The horizontal resolutions of CPS3 and CPS2 are set to TL319 (~55 km) and TL159 (~110 934 

km), respectively. The land ratio is the land area divided by the area of one atmospheric 935 

model grid cell. 936 
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(a) CCI SST (b) CPS3 

(c) CPS2 

 

Fig. 2. Five-day mean sea surface temperatures (SSTs; °C) for December 22–26, 1999. 938 

(a) CCI SST (Merchant et al. 2014) is shown as an independent SST analysis for 939 

comparison with the MOVE-G3 and MOVE-G2 analyses used in (b) CPS3 and (c) CPS2, 940 

respectively. CPS data are the averages for days 11–15 of the forecast for the control 941 

member. 942 
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(a) RMSE at 1 m depth (b) Percentage difference in RMSE at 1 m depth. 

  
(c) RMSE at 100 m depth (d) Percentage difference in RMSE at 100 m 

depth. 

  

Fig. 3. Root mean square error (RMSE) for water temperatures in MOVE-G3, and the 944 

percentage difference in RMSE relative to the older system, MOVE-G2, at depths of (a, 945 

b) 1 m and (c, d) 100 m. 946 

A reanalysis experiment was conducted for the period 2005–2014 using the old and new 947 

systems, with data from 20% of the Argo floats withheld from assimilation into the 948 

reanalysis and used to evaluate the RMSE of the water temperature in the reanalysis.  949 
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 950 

Fig. 4. Climatological ice cover in March and September. 951 

Contours show a climatological sea ice concentration of 0.15 in March (blue line) and 952 

September (black line) in COBE-SST (analysis). Shading indicates a concentration of 953 

0.15 or greater in March (light blue) and September (gray) in reforecasts from CPS3 954 

(left) and CPS2 (right). The model climatology for March (September) is constructed 955 

from a 10-member ensemble forecast initialized on February 10 and 25 (August 14 and 956 

29). Regional pattern correlation coefficients for sea ice concentration defined over the 957 

Arctic Ocean (40°-90°N) are displayed in the lower left of each panel. Capital letters 958 

denote the positions of the Labrador Sea (A), the Greenland Sea (B), the Chukchi Sea 959 

(C), and the Sea of Okhotsk (D). 960 
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(a) CPS3 (b) CPS2 

Fig. 5. Initial ensemble spread for water temperature at the equator on May 31, 2012. 962 

Shading indicates the standard deviation for water temperature perturbations [ ] for (a) 963 

CPS3 and (b) CPS2 at the equator on May 31, 2012. The black line indicates the 20°C 964 

isotherm, which serves as a guide for the tropical thermocline. The vertical axis 965 

represents the depth below sea surface. 966 

967 
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968 

 969 

Fig. 6. Operational schedule for CPS2 and CPS3. 970 

Numbers indicate the number of members per initial day, and arrows indicate when to start 971 

and complete the model integration. To highlight the differences between CPS2 and 972 

CPS3, only the numbers and arrows for forecast initial dates of December 22 00 UTC 973 

and December 27 00 UTC are drawn in red and blue, respectively. 974 
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(a) NOAA OLR (b) CPS3 

  
(c) CPS2  

 

 

Fig. 7. Longitude–time composite for outgoing longwave radiation (OLR) anomalies for 976 

forecasts starting from a convectively active phase of MJO in the eastern Indian Ocean 977 

(Phase-3). 978 

The horizontal axis is longitude and the vertical axis is forecast lead-time [days]. The 979 

anomalies are defined as the deviation from the 1991–2020 average. The initial phase is 980 

detected according to the definition by Wheeler and Hendon (2004). All initial months 981 

are included. 982 
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(a) JRA-3Q (b) CPS3 

  
(c) CPS2  

 

 

Fig. 8. Climatological frequency [per day] of blocking highs in (a) JRA-3Q, and differences 984 

between JRA-3Q and (b) CPS3 and (c) CPS2.  985 

Blocking highs are detected following Scherrer et al. (2006) using the 7-day mean analysis 986 

for November–February 1991–2020 and corresponding forecasts, where the central day 987 

of the 7-day average belongs to this season at day 4–27. Black lines indicate 988 

climatological frequencies with values above 0.05, at 0.05 intervals. Values north of 75989 

N are not defined in this blocking index. 990 
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  992 

 993 

Fig. 9. Anomaly Correlation Coefficients (ACCs) for the weekly mean 500 hPa geopotential 994 

height. 995 

The ACCs are based on the statistics for forecast lead weeks 1 and 2 in December–996 

January–February or June–July–August 1991–2020. The ACCs between the forecasts 997 

and JRA-3Q are calculated for each 2.5° x 2.5° grid and averaged over the northern 998 

(20°–90°N) or southern (20°–90°S) hemisphere. Error bars represent 95% confidence 999 

intervals estimated over 1000 bootstrap trials for all forecast initial dates in each season.  1000 

 1001 

 1002 

 1003 

  1004 
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(a) 

(b) 

Fig. 10. NINO3.4 SST anomaly time series for analysis and forecasts. 1005 

The figure shows forecasts from (a) CPS3 and (b) CPS2 for lead times of 0–6 months 1006 

(June–December) from June initial conditions (10-member LAFs from May 16 and 31) 1007 

for each year. The black line is MGD SST, red lines are individual ensemble members, 1008 

and the blue line is the ensemble average. 1009 
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(a) NINO3.4 ACC (b) NINO 3.4 RMSE 

  

Fig. 11. (a) Anomaly correlation coefficients for NINO 3.4 SST between MGD SST and 1011 

CPS3 (red) and CPS2 (black). (b) Root mean square error in Kelvin (solid line) and 1012 

forecast spread (dashed line).  1013 

Statistics are based on 360 cases extracted from the two initial dates of each month in 1014 

1991–2020. Lines show the means of 1000 bootstrap trials and error bars show the 95% 1015 

confidence intervals. 1016 
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Fig. 12. Regression coefficients between NINO 3.4 area-averaged SST and global SST 1018 

(shading; K/K), precipitation (black line; mm/day/K), and sea level pressure (blue line 1019 

with hatching in the areas above 1.2; hPa/K) during boreal winter (December–February). 1020 

The regression coefficients are based on the statistics of November initial conditions in 1021 

1991–2020.  1022 

  1023 

(a) MGD SST, GPCP, JRA-3Q (b) CPS3 

  
(c) CPS2 
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 1024 

Fig. 13. Anomaly correlation coefficients (ACCs) for the averages of months 1–3.  1025 

The vertical axis represents ACC and the horizontal axis represents the variable name and 1026 

region. The variable names “Tsurf”, “Prec”, and “PSI850” denote 2 m air temperature, 1027 

precipitation, and the 850 hPa stream function, respectively. The region names "TR", 1028 

“NH”, and “SH” indicate that ACCs are averaged over the tropics (20°S–20°N) and the 1029 

northern (20°–90°N) and southern (20°–90°S) hemispheres, respectively. ACCs are 1030 

computed for the Month 1–3 averages for forecasts starting from each initial month and 1031 

are summarized by the season to which Month 2 belongs. The error bars represent 95% 1032 

confidence intervals estimated over 1000 bootstrap trials for all forecast initial dates in 1033 

each season. 1034 

(a) DJF (Init. Oct–Nov–Dec) (b)  MAM (Init. Jan–Feb–Mar) 

(c) JJA (Init. Apr–May–Jun) (d) SON (Init. Jul–Aug–Sep) 



 61

 1035 

List of Tables 1036 

Table 1. Comparison of the old (CPS2) and new (CPS3) forecast systems. ..................... 62 1037 

Table 2. Comparison of the old and new ocean data assimilation systems. ...................... 62 1038 

  1039 



 62

Table 1. Comparison of the old (CPS2) and new (CPS3) forecast systems. 1040 

  JMA/MRI-CPS2 (June 2015–) JMA/MRI-CPS3 (February 2022–) 

Atmospheric 
model 

Version GSM1011C* GSM2003C* 

Horizontal 
Resolution 

TL159 (≈110 km) TL319 (≈55 km) 

Vertical Resolution 60 layers with top at 0.1 hPa 100 layers with top at 0.01 hPa 

Ocean model 

Version MRI.COM v3.2 MRI.COM v4.6 

Horizontal 
Resolution 

1.0°(longitude) × 0.3°–0.5° (latitude) 0.25°(longitude) × 0.25° (latitude) 

Vertical Resolution 52 layers with bottom boundary layer 60 layers 

Initial conditions 

Atmosphere JRA-55 JRA-3Q (reforecast), global analysis (operation) 

Land/Lake JRA-55/- Offline surface model simulation 

Ocean MOVE/MRI.COM-G2 
MOVE/MRI.COM-G3 

Sea ice - 

Initial 
perturbation 

Atmosphere Tropics, Northern Hemisphere BGMs Tropics, Northern and Southern Hemisphere BGMs 

Ocean Ensemble 3D-Var driven by atmospheric BGMs Analysis uncertainty pattern 

Model perturbation Stochastically Perturbed Parametrization Tendencies (atmosphere only) 

Ensemble size 
Operational Forecast 13 members/5 days 5 members/day 

Reforecast (1991–
2020) 

10 members/month 

 *GSM1011C and GSM2003C are improved versions of GSM1011 and GSM2003 respectively for seasonal forecasting. 

 1041 

 1042 

Table 2. Comparison of the old and new ocean data assimilation systems. 1043 

 1044 

 1045 

System name MOVE-G2 
MOVE-G3 

G3A (low resolution 4D-Var) G3F (high resolution downscaling) 

Horizontal Resolution 1.0° (longitude) × 0.3°–0.5° (latitude) 
1.0° (longitude) x 0.3°–0.5° 

(latitude) 
0.25° (longitude) x 0.25° (latitude) 

Vertical resolution 52 layers with bottom boundary layer 
60 layers with bottom boundary 

layer 
60 layers 

Assimilated observation 
Water temperature, Salinity, Sea surface height - 

- Sea ice concentration 

Assimilated SST COBE-SST (Ishii et al. 2005) MGDSST (Kurihara et al. 2006) - 

Analysis method 
3D-Var/FGAT and the IAU 4D-Var and IAU 

IAU towards temperature and salinity 

of G3A 

- Sea ice concentration 3D-Var 

Atmospheric forcing 
JRA-55 with downward shortwave flux 

correction 
JRA-3Q and the global analysis (GA) 

Assimilation window 10 days 5 days 

Operation 

Schedule 

Frequency 
once per 5 days (2 streams with 5-day 

lag) 
every day (5 streams with 1-day lag) 

Time 00 UTC + 60 hours 00 UTC + 6 hours 


