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Abstract 54 

 55 

In this study, we aimed to systematically and globally evaluate the monthly 56 

precipitation forecasts of JMA/MRI-CPS2, a dynamical seasonal climate forecast (Dyn-57 

SCF) system operated by the Japan Meteorological Agency, by comparing its forecasts 58 

with those of a statistical SCF (St-SCF) system using climate indices. We developed a 59 

new global St-SCF system using 17 climate indices and compared the monthly 60 

precipitation of this system with those of JMA/MRI-CPS2. Consequently, the skill of 61 

JMA/MRI-CPS2 was determined to be globally higher than that of the St-SCF for zero-62 

month lead forecasts. In contrast, for forecasts made with one month or longer lead 63 

times, the deterministic skill of JMA/MRI-CPS2 was comparable to that of the St-SCF 64 

and the probabilistic skill of JMA/MRI-CPS2 remained slightly higher. In addition to 65 

evaluating the skill of JMA/MRI-CPS2, we identified several regions and seasons, for 66 

which JMA/MRI-CPS2 showed a low forecast skill, compared with the St-SCF. This 67 

indicated that JMA/MRI-CPS2 cannot adequately reproduce certain dynamics. In 68 

conclusion, comparing Dyn-SCFs with St-SCFs can clarify the potential regions and 69 

seasons to improve the forecast skill of Dyn-SCFs. 70 

 71 

 72 
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1. Introduction 76 

Seasonal climate forecasts (SCF), which are capable of making weather predictions with 77 

one month to one year lead times, provide useful information for decision-making and 78 

early warning systems in various fields such as agriculture and water resource 79 

management (Doblas-Reyes et al., 2006; Jones et al., 2000; Klemm and McPherson, 80 

2017; Meinke and Stone, 2005; Pozzi et al., 2013); however, their utility relies on forecast 81 

skill. Therefore, SCF skill evaluation is crucial in the construction of SCF systems (Kim et 82 

al., 2012).  83 

Generally, evaluating the skill of SCFs involves analyzing their degree of similarity with 84 

observed data. As a more advanced approach, using climatology or simple statistical 85 

methods in the assessment of added values compared to the SCF system has been 86 

proposed (Luo et al. 2012; Pappenberger et al. 2015; Turco et al. 2017). For dynamical 87 

SCF (Dyn-SCF) systems, particularly those with large computational loads, the benefits of 88 

these added values outweigh their high cost compared with the forecast skill of less 89 

expensive and simpler methods. 90 

In the case of forecasting a few specific climate variables, statistical SCF (St-SCF) 91 

systems are an alternative to the Dyn-SCF systems (Doblas-Reyes et al., 2013). The 92 

forecast skills of the two systems have been compared in various manners and regions 93 

(Folland et al. 1991; Anderson et al. 1999; Barnston et al. 1999; van Oldenborgh et al. 94 

2005; Quan et al. 2006; Wu et al. 2009; Pappenberger et al. 2015; Turco et al. 2017; 95 
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Lenssen et al. 2020). Systematic global comparisons can be used to identify the regions 96 

and seasons in which Dyn-SCF systems have advantages and disadvantages in 97 

forecasting. 98 

Among the various statistical methods used in St-SCF systems, numerous studies have 99 

used climate indices such as Niño 3.4, the Southern Oscillation Index, and the Madden-100 

Julian Oscillation (Quayle 1929; Nicholls, McBride, and Ormerod 1982; McBride and 101 

Nicholls 1983; Gordon 1986; Chu 1989; Stone, Hammer, and Marcussen 1996; Chiew et 102 

al. 1998; Kirono, Chiew, and Kent 2010; Schepen, Wang, and Robertson 2012; Eden et al. 103 

2015; Singh and Qin 2020). The predictability in using climate indices relies on the slow 104 

dynamics of the ocean and atmosphere and their associated climate states. This is similar 105 

for Dyn-SCF systems, whose predictability also depends on the presence of slow 106 

variations in soil moisture, snow cover, sea ice, and ocean surface temperature (Doblas-107 

Reyes et al., 2013). Therefore, the forecast skill of St-SCFs that utilize climate indices is a 108 

suitable benchmark for Dyn-SCFs. By comparing Dyn-SCFs and St-SCFs, slow dynamics, 109 

which are insufficiently reproduced in Dyn-SCF systems, can be clarified, contributing to 110 

improving the skill of Dyn-SCFs. 111 

The global Dyn-SCF system known as JMA/MRI-CPS2 (Japan Meteorological 112 

Agency/Meteorological Research Institute-Coupled Prediction System version 2) (Takaya 113 

et al. 2018) developed by the Japan Meteorological Agency (JMA) and Meteorological 114 

Research Institute (MRI) is used for operational seasonal forecasting in Japan. Takaya et 115 
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al. (2018) reported that JMA/MRI-CPS2 exhibited improved forecast skill performance on 116 

interannual variability in the ocean and atmosphere, including El Niño events, compared to 117 

its predecessor model, JMA/MRI-CPS1 (Takaya et al., 2017). The Tokyo Climate Center 118 

of the World Meteorological Organization publishes monthly forecast skills of JMA/MRI-119 

CPS2. Their evaluation includes reports on where and when precipitation forecast skill is 120 

high or low. Currently, comparisons with St-SCFs have not been performed for JMA/MRI-121 

CPS2. 122 

Precipitation forecasting is essential for effective water management and disaster 123 

reduction. The precipitation forecast skill of Dyn-SCF systems is shown to be lower than 124 

that of temperature forecasts, and areas with highly accurate precipitation forecasts are 125 

limited in the tropics (Doblas-Reyes et al., 2013). To date, the added value of the skill of 126 

Dyn-SCF systems for precipitation forecasts compared to St-SCF systems has not been 127 

determined. 128 

In this study, we aimed to evaluate the monthly precipitation forecast skill of JMA/MRI-129 

CPS2 compared with that of an St-SCF system by using climate indices and discussed its 130 

likelihood of improving the forecast skill of Dyn-SCFs. The outline of this paper is as 131 

follows. Section 2 describes the data and methods, explaining the precipitation observation 132 

data (Section 2.1), the two models: JMA/MRI-CPS2 (Section 2.2) and an St-SCF using 133 

climate indices (Section 2.3), and the evaluation method of forecast skill (Section 2.4). 134 

Section 3 presents the results of forecast skill from three viewpoints: global (Section 3.1), 135 
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spatial (Section 3.2), and regional (Section 3.3). Section 4 outlines and discusses the main 136 

findings. Finally, Section 5 gives the conclusions. 137 

 138 

139 
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2. Data and methods 140 

 The forecast skill of JMA/MRI-CPS2 was evaluated by comparing it with observed 141 

precipitation. An St-SCF system that utilized 17 climate indices was then developed to 142 

generate monthly precipitation forecasts. The forecast skill of this St-SCF system was 143 

evaluated and compared to that of JMA/MRI-CPS2. Table 1 lists the data and models, as 144 

well as the method used for evaluating forecast skill. 145 

 146 

2.1. Observation data on precipitation 147 

Monthly precipitation data from the Global Precipitation Climatology Project (GPCP) (Adler 148 

et al., 2003, 2018) v2.3 provided by the Physical Sciences Laboratory of the National 149 

Oceanic & Atmospheric Administration/Office of Air and Radiation/Earth System Research 150 

Laboratories (NOAA/OAR/ESRL) were used as observations. Data from 1981 to 2020 was 151 

first divided into two half periods: 1981–2000 and 2001–2020. The data in the first period 152 

was used for the bias-correction of JMA/MRI-CPS2 (Section 2.2) and model development 153 

of the St-SCF system using climate indices (Section 2.3), and the second half period data 154 

was used for the evaluation of forecast skill of the two models (Section 2.4). As a pre-155 

processing step, GPCP v2.3 was re-gridded to follow JMR/MRI-CPS2 using the bilinear 156 

method, because the center of their grids did not match even though the spatial resolution 157 

of both JMA/MRI-CPS2 and GPCP v2.3 was 2.5° × 2.5°. 158 

 159 
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2.2. JMA/MRI-CPS2 160 

The main component of JMA/MRI-CPS2 is a coupled atmosphere–ocean model 161 

(JMA/MRI-CGCM2), with an atmospheric component based on the low-resolution version 162 

of the JMA Global Spectral Model (GMS1011C, Japan Meteorological Agency, 2013). Its 163 

spatial resolution is TL159 (approximately 110 km) with 60 vertical layers. The ocean 164 

component of JMA/MRI-CGCM2 is based on the MRI Community Ocean Model version 3 165 

(Tsujino et al., 2010), which includes a sea ice model; it has a spatial resolution of 1° east–166 

west and 0.3–0.5° north–south, and contains 52 vertical layers. The Japanese 55-year 167 

Reanalysis (Kobayashi et al. 2015) was used to initialize the atmospheric data, and the 168 

Global Ocean Data Assimilation System (MOVE/MRI.COM-G2 (Toyoda et al., 2013)) was 169 

used for ocean data. 170 

The JMA/MRI-CPS2 hindcast data were obtained from the Japan Meteorological 171 

Business Support Center. The hindcast period was 1979–2020 and the time resolution 172 

was daily. Daily values were averaged to produce monthly values. The hindcast data had 173 

a spatial resolution of 2.5° × 2.5° and included five ensembles with different initial 174 

conditions, explained as follows. Two forecasts started near the middle and end of each 175 

month; this study used the forecast closer to the end of the month, with the dates: Jan 31, 176 

Feb 25, Mar 27, Apr 26, May 31, Jun 30, Jul 30, Aug 29, Sep 28, Oct 28, Nov 27, and Dec 177 

27. The forecast values in the first six months of the hindcast data, which covered 240 178 

days, was used in the study. Figure 1 shows an example of five-month lead forecasts of 179 
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JMA/MRI-CPS2. For example, precipitation forecasts for July used monthly precipitation 180 

forecasts that began in January. 181 

The hindcast data for 2001–2020 was used for the evaluation of the forecast skill of 182 

JMA/MRI-CPS2. Before the evaluation, the data was bias-corrected, as follows:  183 

𝑆𝐼𝑀!,#,$%(𝑌,𝑀)( = 𝑆𝐼𝑀&,#,$%(𝑌,𝑀) + +𝑂𝐵𝑆!(𝑀)............ − 𝑆𝐼𝑀!,$%(𝑀)...............0 184 

𝑂𝐵𝑆!(𝑀)'''''''''''' =) 𝑂𝐵𝑆"(𝑌#$ , 𝑀)
%&&&

'!"()*+)
 185 

𝑆𝐼𝑀!,$%(𝑀)............... =1 1 𝑆𝐼𝑀&,#,$%(𝑌'( , 𝑀)
)***

+!",-./-

0

#,-
 186 

where 𝑆𝐼𝑀!,#(𝑌,𝑀)(  denotes bias-corrected forecast values for grid i, ensemble k (= 1 to 187 

5), lead month LM (= 0 to 5) for forecast year Y (= 2001 to 2020), and month M. 𝑂𝐵𝑆!(𝑀)............ 188 

is the observed precipitation averaged over the years for bias-correction, 𝑌'( (= 1981 to 189 

2000), for grid i and month M, and 𝑆𝐼𝑀!,$%(𝑀)............... are forecasted precipitation averaged over 190 

the years for bias-correction (𝑌'( 	= 1981 to 2000) and ensembles (k = 1 to 5) for grid i and 191 

lead month LM. 192 

 193 

2.3. Statistical seasonal climate forecast system using climate indices  194 

The St-SCF system using climate indices was constructed by first producing 17 195 

precipitation forecasts from 1981 to 2000 with statistical models for the 17 climate indices. 196 

Second, the statistical model for the climate index with the highest Mean Squared Skill 197 

Score (MSSS) was selected. Third, 100 ensembles of the statistical model for the climate 198 

index were produced by the resampling method. Fourth, 100 ensembles of precipitation 199 
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forecasts from 2001 to 2020 were produced by using the 100 ensembles of the statistical 200 

model.  201 

Statistical models used in this study treat the climate index as the explanatory variable 202 

and precipitation as the objective variable. The model is expressed as follows:  203 

𝑃𝑅𝐸&,1,$%(𝑌,𝑀) = max{𝑓&,1,%,$%(𝐼𝐷𝑋1(𝑌,𝑀 − (𝐿𝑀 + 1))),0} 204 

where 𝑃𝑅𝐸&,1,$%(𝑌,𝑀) denotes the forecast values of precipitation for grid i, climatic 205 

index j, lead month LM (= 0 to 5), forecast year Y, and month M. The expression 206 

𝐼𝐷𝑋1(𝑀 − (𝐿𝑀 + 1)) is the value of climatic index j in M – (LM + 1), and 𝑓&,1,%,$% is a 207 

function for the precipitation in M for grid i from climatic index j in M – (LM + 1). Figure 1 208 

shows an example of a five-month lead forecast by the St-SCF using climate indices. In 209 

the statistical model for precipitation forecasts in July, the precipitation for that month was 210 

treated as the objective variable and the climate indices in January as the explanatory 211 

variables. 212 

 In the first step, the leave-one-out method was used for producing precipitation forecasts 213 

from 1981 to 2000. After removing the data of one forecast year from 1981 to 2000, the 214 

function 𝑓&,1,%,$% was determined by using the remaining data through the smoothing 215 

spline method (Wood, 2017). In this study, the “gam” function in the “mgcv” package of R 216 

software v4.05 was used for the smoothing spline method. An example of this function, 217 

𝑓&,1,%,$%, is shown in Figure 2. Next, the forecast values were obtained using the function 218 

determined from 𝑓&,1,%,$% and the data removed in the first step. By repeating the above 219 
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procedures for all years from 1981 to 2000, forecast values were obtained. In addition to 220 

the smoothing spline method, linear models were also used for the function, 𝑓&,1,%,$%. The 221 

description of a part of the forecast skill of the linear models has been provided as 222 

Appendix. 223 

 In the third step, 100 ensembles of the statistical model for the climate index with the 224 

highest MSSS were constructed with the resampling method (Eflon, 1979; Masutomi et al., 225 

2012; Masutomi et al., 2015). First, 𝑓&,1,%,$% was determined by using the statistical model 226 

for the climate index with the highest MSSS and precipitation data from 1981 to 2000 with 227 

the smoothing spline method. Note that the leave-one-out method was not used in this 228 

step. Then, new precipitation data from 1981 to 2000 were produced by resampling 229 

residues between observed precipitation and precipitation calculated by the determined 230 

𝑓&,1,%,$% and by adding the resampled residues to the observed precipitation. By repeating 231 

the resampling procedures 100 times, 100 ensembles of new precipitation data were 232 

obtained. In the final step, 100 ensembles of 𝑓&,1,%,$% were constructed by the 100 233 

ensembles of new precipitation data through the smoothing spline method. 234 

Table 2 summarizes the 17 climate indices used in this study by category. These indices 235 

were selected from climate indices provided by the NOAA Physical Sciences Laboratory, 236 

and the values were updated within approximately a week after the end of each month. 237 

 238 

2.4. Evaluation of forecast skill 239 
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The deterministic and probabilistic forecast skills of JMA/MRI-CPS2 and St-SCF using 240 

climate indices were evaluated. The MSSS was used for the deterministic forecast skill, 241 

while the area under receiver operating characteristic curve (AUC) was used for the 242 

probabilistic one. The MSSS value is expressed as: 243 

𝑀𝑆𝑆𝑆(𝑀) = 1 −
𝑀𝑆𝐸(𝑀)
𝑉𝐴𝑅(𝑀),	 244 

𝑀𝑆𝐸(𝑀) =
1
𝑁1 +𝐹(𝑌,𝑀) − 𝑂(𝑌,𝑀)0)

)*)*

+,)**-
, 245 

	𝑉𝐴𝑅(𝑀) =
1
𝑁1

(𝑂(𝑌,𝑀) − 𝑂.(𝑀)))
)*)*

+,)**-
, 246 

where 𝑀𝑆𝐸(𝑀) is the mean squared error for month M, 𝑉𝐴𝑅(𝑀) is the variance for 247 

month M, 𝐹(𝑌,𝑀) and 𝑂(𝑌,𝑀) are, respectively, forecast and observation values in year 248 

Y (= 2001 to 2020), N (= 20) is the number of years for the evaluation, and 𝑂.(𝑀) is mean 249 

precipitation over 20 years from 2001 to 2020 for month M. A positive MSSS value 250 

indicates that the forecast has higher skill than climatological forecasts. For the evaluation 251 

of deterministic forecast skill, five ensemble mean values of JMA/MRI-CPS2 and 100 of 252 

the St-SCF using climate indices were used.  253 

The AUC was calculated above and below the mean observational precipitation during 254 

2001-2020. The forecast probability for each category was calculated using the 255 

ensembles of each model. The mean value of AUCs for each category was used for the 256 

evaluation. The detailed calculation of the AUC is described in Mason (2018). An AUC is 257 

smaller than 0.5 means that the forecast skill is lower than that of climatological forecasts. 258 
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The evaluation was conducted for global data at a spatial resolution of 2.5° × 2.5° for 259 

JMA/MRI-CPS2 and the St-SCF system using climate indices. In addition to the global 260 

evaluation by grids, the following five global metrics were calculated: (i) MSSS-rp: the ratio 261 

of areas with positive MSSS; (ii) MSSS-hi: the ratio of areas with positive and higher 262 

MSSS between JMA/MRI-CPS2 and the St-SCF using climate indices; (iii) AUC-av: the 263 

global average of AUC; (iv) AUC-r0.5: the ratio of areas with AUC >0.5; (v) AUC-hi: the 264 

ratio of areas with AUC >0.5 and the higher AUC between JMA/MRI-CPS2 and St-SCF 265 

using climate indices. The calculations of these metrics are described in Figure 3. AUC-av 266 

is a simple metric for representing the global average AUC. While the global average of 267 

MSSS (MSSS-av) can be calculated, it was not used in this study because MSSS has no 268 

lower limit. Moreover, large MSSS negative values in any grid tend to influence the global 269 

mean. MSSS-rp and AUC-r0.5 are used to represent the ratio of areas where models have 270 

higher forecast skill than climatology or random forecasts, respectively. MSSS-hi and 271 

AUC-hi are the metrics for representing the ratio of areas with higher forecast skill and are 272 

appropriate for understanding the improved model. Note that all values of forecast skill are 273 

shown with three significant digits, although the significant digits of the original data are 274 

unknown. 275 

  276 

 277 

278 
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3. Results 279 

3.1. Comparison of global forecast skill  280 

Figure 4 shows the global values of MSSS-rp and AUC-av for JMA/MRI-CPS2 for each 281 

lead month. Although JMA/MRI-CPS2 has high forecast skill in zero-month lead forecasts, 282 

the forecast skill decreases rapidly in the one-month lead forecasts, and gradually declines 283 

thereafter. The highest forecast skill of zero-month lead forecasts was observed in 284 

February, with an MSSS-rp of 0.325 and AUC-av of 0.643, while the worst forecast skill 285 

was observed in two different months: May with an MSSS-rp of 0.213, and September with 286 

an AUC-av of 0.590. For one-month lead forecasts, February had an MSSS-rp of 0.157, 287 

less than half the value of zero-month lead forecasts. Comparing the MSSS-rp and AUC-288 

av of the ocean and land, the forecast skill for ocean is evidently higher than that for land. 289 

Figure 5 shows the global values of MSSS-rp and AUC-av for the St-SCF using climate 290 

indices for each lead month. The forecast skill decreases as the lead month increases, but 291 

the decrease is significantly smaller than in JMA/MRI-CPS2. The highest forecast skill of 292 

zero-month lead forecasts for the global forecast was observed in two months: December 293 

with an MSSS-rp of 0.172, and January with an AUC-av of 0.537, while the worst forecast 294 

skill was observed in: April with an MSSS-rp of 0.136, and June with an AUC-av of 0.513. 295 

For one-month and five-month lead forecasts, the MSSS-rps of December were 0.157 and 296 

0.145, and the AUC-avs of January were 0.532 and 0.521, respectively. Comparing the 297 
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ocean and land areas shows that the forecast skill is higher for ocean forecasts with lead 298 

times of zero to five months. 299 

Figure 6 shows a comparison of the annual mean deterministic (MSSS-rp, MSSS-hi) and 300 

probabilistic (AUC-av, AUC-r0.5, and AUC-hi) forecast skills between JMA/MRI-CPS2 and 301 

the St-SCF using climate indices. Evidently, both the deterministic and probabilistic 302 

forecast skills of JMA/MRI-CPS2 were much higher than those of the St-SCF for zero-303 

month lead time. The difference drastically became smaller for one-month leads. For one-304 

month or longer lead forecasts, deterministic forecast skills (MSSS-rp, MSSS-hi) between 305 

JMA/MRI-CPS2 and the St-SCF using climate indices were not different. The probabilistic 306 

forecast skills (AUC-av, AUC-r0.5, and AUC-hi) of JMA/MRI-CPS2 were still higher than 307 

that of the St-SCF using climate indices, although the difference was small and gradually 308 

decreased for longer lead forecasts. Therefore, the forecast skill of JMA/MRI-CPS2 is 309 

generally higher for zero-month lead forecasts. However, if the forecasts are longer than 310 

one month, the deterministic skill of JMA/MRI-CPS2 is comparable to that of the St-SCF 311 

using climate indices while the probabilistic skill of JMA/MRI-CPS2 remains slightly higher.  312 

 313 

3.2. Spatial comparison of global forecast skill  314 

Figure 7 shows the spatial distribution of MSSS for JMA/MRI-CPS2 in March, June, 315 

September, and December. In zero-month lead forecasts, areas with a positive MSSS is 316 

distributed worldwide; even in the middle latitudes, such as east Australia in September 317 



 18 

and Kazakhstan in December. However, the areas with positive MSSS were limited to low 318 

latitudes in one-month or longer lead forecasts. 319 

Figure 8 shows the spatial distribution of MSSS for the St-SCF using climate indices for 320 

the same months as shown in Figure 7. The figure shows that the areas with high MSSS 321 

are generally limited to low latitudes even in zero-month lead forecasts. Figure 9 shows 322 

the climate indices selected for each grid with positive MSSS, demonstrating that the 323 

selected indices depend on the regions and forecast month. Table 3 presents the area 324 

ratio of selected climate indices for one-month lead forecasts. The climate index with the 325 

largest selected area was MEI. The indices whose ratio of the selected area is >0.01 were 326 

MEI, NINO1.2, NINO3, NINO3.4, NINO4, and SOI, which are ENSO-related, indicating 327 

that the St-SCF using climate indices largely relied on ENSO, presenting a physical 328 

background of the model.  329 

Figure 10 shows the annual mean of MSSS-hi (left) and AUC-hi (right) by latitudes for 330 

JMA/MRI-CPS2 (red line) and the St-SCF using climate indices (black line). The 331 

deterministic and probabilistic forecast skills of JMA/MRI-CPS2 were generally higher than 332 

those of the St-SCF using climate indices at all latitudes for zero-month lead forecasts. For 333 

one-month or longer lead forecasts, the skills of JMA/MRI-CPS2 were still higher than 334 

those of the St-SCF using climate indices at low latitudes, but as the lead month 335 

increases, the differences between the two models decreased and the latitudes at which 336 

JMA/MRI-CPS2 has a higher forecast skill tended to narrow. Comparing the probabilistic 337 
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and deterministic forecasts, the differences in probabilistic forecasts between JMA/MRI-338 

CPS2 and the St-SCF using climate indices were larger at low latitudes than those in the 339 

deterministic forecasts. This is because the AUC-hi of the JMA/MRI-CPS2 at low latitudes 340 

was higher than that at high latitudes, while the AUC-hi of the St-SCF using climate indices 341 

did not change by latitudes. This is the reason why the global probabilistic forecast skills of 342 

JMA/MRI-CPS2 were slightly higher than those of the St-SCF using climate indices for 343 

one-month or longer lead forecasts, while there were no differences in the global 344 

deterministic forecasts between the two models (Figure 6). 345 

 346 

3.3. Regional comparison of forecast skill for south Philippines in April and 347 

southwest Australia in December  348 

Figures 7 and 8 show that the St-SCF using climate indices have a positive MSSS in 349 

south Philippines during April and southwest Australia during December from zero- to two-350 

month lead forecasts; JMA/MRI-CPS2 had a negative MSSS. Figure 11 compares the 351 

precipitation at a grid in south Philippines (a; 120º E, 10º N) for April and in southwest 352 

Australia (b; 117.5 º E and 30º S) for December from 2001 to 2020 between observations 353 

and forecasts for zero- to two-month lead times by JMA/MRI-CPS2 and the St-SCF using 354 

climate indices. The MSSS values are also shown in Figure 11. The MSSSs of the St-SCF 355 

using climate indices were positive and higher than those by JMA/MRI-CPS2. In particular, 356 

they could accurately reproduce the annual variation of observations, even for forecasts 357 
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two months in advance; whereas JMA/MRI-CPS2 was unable to forecast them. Figure 12 358 

shows the relationship between climate indices and precipitation based on observations 359 

and forecasts of JMA/MRI-CPS2 for south Philippines and southwest Australia. From this 360 

figure, the inadequacies of the forecasts of JMA/MRI-CPS2 are evident. For example, in 361 

the zero-month-led forecasts of JMA/MRI-CPS2 for south Philippines, the linear 362 

relationship between climate indices and the forecasted precipitation was weak, with the 363 

forecasted precipitation showing a larger variation than the observation precipitation, 364 

especially for indices in the range –1 to 0. Although the forecasts of JMA/MRI-CPS2 with 365 

one- and two-month lead times showed a clear linear relationship with the climate indices, 366 

they tended to overestimate precipitation in south Philippines. Additionally, the forecasts 367 

for Australia could not reproduce higher precipitation for large negative indices, i.e., below 368 

–1; at an index of approximately 0, the zero-month led forecasts of JMA/MRI-CPS2 were 369 

associated with a large error. These results indicated that certain dynamics were not well 370 

reproduced by JMA/MRI-CPS2, implying that further analysis and incorporation of these 371 

dynamics into this forecast system will improve its forecast skill. 372 

  373 
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4. Discussion 374 

4.1. Forecast skill of JMA/MRI-CPS2 in comparison to St-SCF  375 

The forecast skill of JMA/MRI-CPS2 was evaluated by Takaya et al. (2018) and published 376 

by the Tokyo Climate Center. That evaluation showed that the forecast skill of precipitation 377 

was higher at low latitudes and for zero-month lead forecasts; MSSS, the deterministic 378 

forecast skill, is highest in February and lowest in April to June, while AUC, the 379 

probabilistic skill, is highest in February and lowest in September. The same forecast skills 380 

were confirmed in this study (Figures 4 and 7). In addition, by comparing with the St-SCF 381 

using climate indices as benchmark, we identified the regions and lead periods in which 382 

JMA/MRI-CPS2 was advantageous. For example, the zero-month lead forecast skill of 383 

JMA/MRI-CPS2 was globally higher than that of the St-SCF (Figures 6 and 10). In general, 384 

Dyn-SCF systems are known to have particularly high forecast skill in the tropics (Doblas-385 

Reyes et al., 2013). Our study is the first to demonstrate the added value of Dyn-SCF 386 

systems on one-month lead forecasts over St-SCF systems. Additionally, for forecasts 387 

longer than a month, the deterministic skill of JMA/MRI-CPS2 was comparable to that of 388 

the St-SCF using climate indices and the probabilistic skill of JMA/MRI-CPS2 was slightly 389 

higher (Figure 6). At mid- and high-latitudes, no large differences were observed in 390 

deterministic and probabilistic forecast skills between the two models (Figure 10). These 391 

results clearly indicate that improving the skill of JMA/MRI-CPS2 for longer-term forecasts 392 
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over one month is a challenge that must be addressed. The improvement in the skill of 393 

Dyn-SCFs in comparison to St-SCFs is discussed in the next section. 394 

 395 

4.2. Improvement of forecast skill by comparing with St-SCF using climate indices  396 

Various methods have been proposed to improve the forecast skill of Dyn-SCFs, 397 

including the initialization of soil moisture (Prodhomme et al., 2016b) and higher resolution 398 

(Prodhomme et al., 2016a). For JMA/MRI-CPS2, Takaya et al. (2021) showed that the 399 

forecast skill increases significantly with the number of ensembles. However, the 400 

realization of these improvements required a great deal of effort. In addition, if potential 401 

regions and seasons for improvement were known in advance, the model improvement 402 

could have been more efficient. In this study, by comparing the forecast skill of JMA/MRI-403 

CPS2 with that of the St-SCF system, we found that in several regions and seasons, 404 

JMA/MRI-CPS2 showed a low forecast skill whereas the St-SCF using climate indices 405 

showed a high forecast skill. This clearly indicated the presence of certain dynamics that 406 

are not well-reproduced by JMA/MRI-CPS2, implying that the skill of the Dyn-SCF system 407 

could still be improved via the incorporation of these dynamics. Therefore, the comparison 408 

between them clearly highlights potential regions and seasons for improvement of forecast 409 

skill. Thus, we proposed an approach for identifying such regions and seasons by 410 

comparing the forecast skill of Dyn-SCFs with that of St-SCFs. 411 

 412 

413 
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5. Conclusions 414 

By comparing JMA/MRI-CPS2 with an St-SCF using climate indices as a benchmark, we 415 

identified the regions and lead periods in which JMA/MRI-CPS2 performed better. The 416 

main findings are as follows: 417 

(i): The skill of JMA/MRI-CPS2 for global zero-month lead forecasts was higher than 418 

that of the St-SCF. 419 

(ii): For one-month or longer forecasts, the deterministic skill of JMA/MRI-CPS2 was 420 

comparable to that of the St-SCF and its probabilistic skill was slightly higher.  421 

These findings not only present the significant added value of JMA/MRI-CPS2, but also its 422 

challenges for model improvement. In addition, the comparison of JMA/MRI-CPS2 and the 423 

St-SCF using climate indices identified the potential regions and seasons for which 424 

JMA/MRI-CPS2 does not adequately reproduce climate dynamics, implying that the skill of 425 

Dyn-SCFs can still be improved by incorporating these dynamics into the Dyn-SCF 426 

system. Thus, we concluded that:  427 

(iii) Comparing Dyn-SCFs with St-SCFs can determine potential regions and 428 

seasons for improvement of the forecast skill of Dyn-SCFs. 429 

This approach is expected to be widely applied to improve the forecast skill of Dyn-SCFs. 430 

 431 

432 
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Appendix 588 

 Figure A1 shows the MSSS-rp and MSSS-hi for JMA/MRI-CPS2 and the St-SCF using 589 

climate indices based on the spline method (St-SCF-spl) and St-SCF using climate indices 590 

based on the linear method (St-SCF-lin). No difference was detected in the forecast skill 591 

between St-SCF-spl and St-SCF-lin.  592 

593 
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Figure 1: Five-month lead forecast by JMA/MRI-CPS2 and the St-SCF using climate 652 

indices. 653 
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Figure 2: Spline interpolation curve (red line) of MEI in July for estimating August 657 

precipitation at 110º longitude and –2.5º latitude. The plots denote the 658 

observational precipitation and the values of the MEI. 659 
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Figure 3: Example calculations of (i) MSSS-rp: the ratio of areas with positive MSSS; 664 

(ii) MSSS-hi: the ratio of areas with positive and higher MSSS between JMA/MRI-665 

CPS2 and the St-SCF using climate indices; (iii) AUC-av: the global average AUC; 666 

(iv) AUC-r0.5: the ratio of area with AUC >0.5; (v) AUC-hi: the ratio of area with 667 

AUC >0.5 and higher AUC between JMA/MRI-CPS2 and the St-SCF using climate 668 

indices. The boxes represent grids and the numbers in the boxes indicate the grid 669 

area and MSSS/AUC.  670 
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Figure 4: MSSS-rp (top) and AUC-av (bottom) by JMA/MRI-CPS2 (left: global average 677 

(GLB); center: average over land (LND); right: average over ocean (OCN)). 678 
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Figure 5: MSSS-rp (top) and AUC-av (bottom) by the St-SCF (left: global average 684 

(GLB); center: average over land (LND); right: average over ocean (OCN)). 685 
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Figure 6: Comparison of MSSS-rp (top left), MSSS-hi (top right), AUC-av (bottom 694 

left), AUC-r0.5 (bottom center), and AUC-hi (bottom right) between JMA/MRI-CPS2 695 

and the St-SCF using climate indices.  696 

 697 
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 699 

Figure 7: Spatial distribution of MSSS for JMA/MRI-CPS2. The left, center-left, center-right, and right columns denote March, June, September, 700 

and December, respectively. The top, middle, and bottom denote the zero- to two-month leads.  701 

 702 
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 703 

 704 

Figure 8: Spatial distribution of MSSS for the St-SCF using climate indices. The left, center-left, center-right, and right columns denote March, 705 

June, September, and December, respectively. The top, middle, and bottom denote the zero- to two-month leads.  706 
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 708 

Figure 9: Climate indices selected for grids with positive MSSS. The left, center-left, center-right, and right columns denote March, June, 709 

September, and December, respectively. The top, middle, and bottom denote the zero- to two-month leads.  710 
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 719 

Figure 10: Comparison of latitude for MSSS-hi (left) and AUC-hi (right) for zero- (top) 720 

to five-month (bottom) leads. The red and black lines are the values by JMA/MRI-721 

CPS2 and the St-SCF using climate indices, respectively.  722 
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(a) South Philippines 726 

 727 

 728 

 729 

(b) Southwest Australia 730 
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Figure 11: Comparison of precipitation at south Philippines (a; 120º E, 10º N) and 734 

southwest Australia (b; 117.5º E, 30º S) from 2001–2020 between observations 735 

(GPCP: black circle) and forecasts (red dots) by JMA/MRI-CPS2 and the St-SCF with 736 

NINO3.4 or NINO4. Ths MSSS values are also shown.  737 
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(a) South Philippines 740 

 741 

(b) Southwest Australia 742 

 743 

Figure 12: Relationship between climate indices and precipitation in south 744 

Philippines (a; 120º E, 10º N) and southwest Australia (b; 117.5º E, 30º S). The dots 745 

indicate the observational precipitation and climate indices values. The red triangles 746 

indicate the forecasted precipitation and climate indices values. 747 
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 750 

 751 

 752 

Figure A1: Comparison of MSSS-rp (left) and MSSS-hi (right), between JMA/MRI-753 

CPS2 and the St-SCF using climate indices through the spline method (St-SCF-754 

spl) and the linear method (St-SCF-lin).  755 
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Table 1: Summary of the data, models, and method used for skill evaluation. 766 

Item Description 

Variable Precipitation 

Area Global 

Spatial resolution 2.5º×2.5º (144 column; 73 rows) 

Period 2001–2020 

Time resolution Monthly 

Lead month of prediction 0–5 months 

Evaluation of forecast skill 

Deterministic: Mean squared skill score 

(MSSS), MSSS-rp, and MSSS-hi 

Probabilistic: area under receiver operation 

characteristic curve (AUC), AUC-av, AUC-

r0.5, and AUC-hi 

Observation 
Global Precipitation Climatology Project 

(GPCP) v2.3 (regrided) 

Dynamical model JMA/MRI-CPS2 (bias-corrected) 

Statistical model Seventeen climate indices 

 767 

 768 
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Table 2: Seventeen climate indices evaluated in this study 770 

Category Name Long name URL 

Teleconnecti

ons 

PNA 

Pacific North 

American 

Index 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/da

ta/indices/pna_index.tim 

WP 
Western Pacific 

Index 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/da

ta/indices/wp_index.tim 

EA/WR 

Eastern 

Atlantic/Wester

n Russia 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/da

ta/indices/eawr_index.tim 

NAO 
North Atlantic 

Oscillation 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/da

ta/indices/nao_index.tim 

NOI 

Northern 

Oscillation 

Index  

https://www.pfeg.noaa.gov/products/P

FEL/modeled/indices/NOIx/data/noi

x.txt 

ENSO 

MEI v2 
Multivariate 

ENSO Index  

https://psl.noaa.gov/enso/mei/data/me

iv2.data 

Nino 

1+2 

Extreme Eastern 

Tropical Pacific 

SST (0-10S, 

90W-80W)  

http://www.cpc.ncep.noaa.gov/data/in

dices/ersst5.nino.mth.91-20.ascii 

Nino 3 

Eastern Tropical 

Pacific SST 

(5N-5S, 150W-

90W)  

http://www.cpc.ncep.noaa.gov/data/in

dices/ersst5.nino.mth.91-20.ascii 
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Nino 4 

Central Tropical 

Pacific SST 

(5N-5S) (160E-

150W)  

http://www.cpc.ncep.noaa.gov/data/in

dices/ersst5.nino.mth.91-20.ascii 

Nino 3.4 

East Central 

Tropical Pacific 

SST (5N-5S) 

(170-120W)  

http://www.cpc.ncep.noaa.gov/data/in

dices/ersst5.nino.mth.91-20.ascii 

SST: Pacific 

(except 

ENSO) TPI(IPO

) 

Tripole Index for 

the 

Interdecadal 

Pacific 

Oscillation 

(unfiltered) 

https://psl.noaa.gov/data/timeseries/IP

OTPI/tpi.timeseries.ersstv5.data 

SST: Atlantic 

(except 

WHWP) 

TNA 
Tropical Northern 

Atlantic Index 

https://www.esrl.noaa.gov/psd/data/co

rrelation/tna.data 

TSA 

Tropical 

Southern 

Atlantic Index 

https://www.esrl.noaa.gov/psd/data/co

rrelation/tsa.data 

Atmosphere 

QBO 
Quasi-Biennial 

Oscillation 

https://www.esrl.noaa.gov/psd/data/co

rrelation/qbo.data 

SOI 

Southern 

Oscillation 

Index 

https://www.esrl.noaa.gov/psd/data/co

rrelation/soi.data 

AAO 
Antarctic 

Oscillation 

http://www.cpc.ncep.noaa.gov/produc

ts/precip/CWlink/daily_ao_index/aa
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o/monthly.aao.index.b79.current.as

cii 

AO 
Antarctic 

Oscillation 

http://www.cpc.ncep.noaa.gov/produc

ts/precip/CWlink/daily_ao_index/mo

nthly.ao.index.b50.current.ascii 
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 773 

Table 3: Area ratio of selected climate indices for one-month lead forecasts. 774 

Climate Index Area ratio 

MEI 0.0161 
NINO1.2 0.0123 
NINO3 0.0125 
NINO3.4 0.0120 
NINO4 0.0127 
TPI 0.0091 
PNA 0.0069 
WP 0.0068 
EA_WR 0.0058 
NAO 0.0054 
NOI 0.0071 
TNA 0.0054 
TSA 0.0093 
QBO 0.0048 
SOI 0.0133 
AAO 0.0063 
AO 0.0059 

 775 


