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Abstract17

In a global numerical weather prediction (NWP) modeling framework we18

study the implementation of Gaussian uncertainty of individual particles19

into the assimilation step of a localized adaptive particle filter (LAPF). We20

obtain a local representation of the prior distribution as a mixture of basis21

functions. In the assimilation step, the filter calculates the individual weight22

coefficients and new particle locations. It can be viewed as a combination23

of the LAPF and a localized version of a Gaussian mixture filter, i.e., a24

Localized Mixture Coefficients Particle Filter (LMCPF).25

Here, we investigate the feasibility of the LMCPF within a global opera-26

tional framework and evaluate the relationship between prior and posterior27

distributions and observations. Our simulations are carried out in a stan-28

dard pre-operational experimental set-up with the full global observing sys-29

tem, 52 km global resolution and 106 model variables. Statistics of particle30

movement in the assimilation step are calculated. The mixture approach31

is able to deal with the discrepancy between prior distributions and obser-32

vation location in a real-world framework and to pull the particles towards33

the observations in a much better way than the pure LAPF. This shows34

that using Gaussian uncertainty can be an important tool to improve the35

analysis and forecast quality in a particle filter framework.36
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1. Introduction39

Let us consider a state space Rn of dimension n ∈ N , an observation40

space Rm of dimension m ∈ N and a sequence of observations yk ∈ Rm at41

points in time tk for time index k = 1, 2, 3, . . . . Based on a prior distribution42

p
(b)
k (x), x ∈ Rn, at time tk, the task of Bayesian data assimilation is to43

calculate a posterior probability distribution p(a)
k (x) at time tk. States and44

observations are linked by the equation45

yk = H(xtruek ) + εk (1.1)46

with the true state vector xtruek ∈ Rn at time tk, some observation error47

εk and the observation operator H : Rn → Rm. Usually, the prior p(b)
k is48

estimated from earlier analysis steps, from which the distribution is propa-49

gated through time to some recent analysis time tk based on some numerical50

model M .51

The approximation of a general prior distribution by an ensemble of52

states, also known as a set of particles, has a long tradition in mathemat-53

ical stochastics, see for example Bain and Crisan (2009). It is also well-54
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known, that sampling as usually carried out by Markov Chain Monte Carlo55

(MCMC) methods (Anderson and Anderson, 1999; Bain and Crisan, 2009;56

Crisan and Rozovskii, 2011) works well in low dimensions, but when we57

sample in a high-dimensional space (where high usually refers to dimensions58

above n=5), the methods basically collapse, since the number of necessary59

samples to find some probability different from zero grows exponentially60

with the dimension (van Leeuwen, 2010; Snyder et al., 2008, 2015; Bickel61

et al., 2008). Alternative methods based on particular approximations of62

the prior and posterior have been developed, with the Ensemble Kalman63

Filter (EnKF) (Evensen, 1994; Evensen and van Leeuwen, 2000; Evensen,64

2009) and the Local Ensemble Transform Kalman Filter (LETKF) by Hunt65

et al. (2007) as important and widely used methods for high-dimensional66

filtering. These methods, however, rely on the approximation of the prior by67

a Gaussian, which is a strong limitation when applied to highly non-linear68

dynamical systems as either global or high-resolution Numerical Weather69

Prediction (NWP).70

Different routes to carry out non-Gaussian assimilation have been taken71

by the filtering community for example with Gaussian mixtures (Anderson72

and Anderson, 1999), locally applied Gaussian mixtures (Bengtsson et al.,73

2003) or by the development of particular filters such as the GIGG filter74

of Bishop (2016). For an overview of different ensemble-based data assim-75
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ilation methods, we refer to Vetra-Carvalho et al. (2018) and van Leeuwen76

et al. (2019). An alternative route has been chosen by the 4D-VAR com-77

munity with an ensemble of 4D-VARs based on perturbed observations,78

compare Klinker et al. (2000).79

Over the past years particle filters have become mature enough to be80

used for very-high-dimensional non-Gaussian filtering, compare van Leeuwen81

(2009); van Leeuwen et al. (2015); Farchi and Bocquet (2018) and van82

Leeuwen et al. (2019) for recent reviews. Localization for particle filters83

is used by Reich and Cotter (2015); Poterjoy and Anderson (2016); Penny84

and Miyoshi (2016) and Potthast et al. (2019). Instead of the localization85

Kawabata and Ueno (2020) have used an adaptive observation error esti-86

mator to avoid the filter collapse in a regional mesoscale model. Particle87

filters have been successfully used for full-scale NWP systems. In particu-88

lar, in Poterjoy et al. (2017) a localized particle filter has been studied for a89

regional NWP model over the US. The team Frei and Künsch (2013) devel-90

oped a hybrid Ensemble Kalman Particle Filter which Robert et al. (2017)91

has tested for the regional COSMO NWP model. The Localized Adaptive92

Particle Filter (LAPF) described in Potthast et al. (2019) has been tested93

for the global ICON NWP model. The LAPF (Potthast et al., 2019) has94

shown to provide reasonable assimilation results for an global atmospheric95

data assimilation for the ICON model in quasi-operational setup. It has96
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been successfully run for a month of assimilations with 106 degrees of free-97

dom (52 km global resolution) and shows a stable behaviour synchronizing98

the system with reality.99

Here, our starting point is the investigation of the behaviour of the100

LAPF with respect to errors in the prior distribution p(b)
k . By studying the101

statistics of the observations vector mapped into ensemble space, we will102

show that in many cases the model forecasts show significant distance to103

the observations, and the particle filter based on a limited number of delta104

distributions does not pull the particles close enough to the observations105

when the move of particles is only achieved through adaptive resampling.106

To allow individual particles to move towards the observations, we fur-107

ther develop the LAPF by bringing ideas from Gaussian mixtures into its108

framework. We reach this goal by including model and forecast uncertainty109

for each particle, as for example suggested by the Low-Rank Kernel Particle110

Kalman Filter (LRKPKF) of Hoteit et al. (2008), compare also Liu et al.111

(2016a) and Liu et al. (2016b). The basic idea is to consider each particle to112

be a Gaussian where its width is representing its uncertainty. This means113

we study a prior distribution given by a Gaussian (or more general radial114

basis function RBF) mixture. Then, the prior has the form115

p(b)(x) := c

L∑
`=1

c`e
− 1

2
(x−x(b,`))TG−1(x−x(b,`)), x ∈ Rn, (1.2)116
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with constants c` = 1/
√

(2π)n det(G) for the individual Gaussian basis117

functions with mean x(b,`) and covariance G and a normalization constant118

c, which in this case is given by c = 1/L. For this approximation, and119

when the observation operator H is linear, we can explicitly calculate the120

posterior distribution as a corresponding Gaussian mixture, i.e.,121

p(a)(x) := c̃

L∑
`=1

c`w`e
− 1

2
(x−x̃(a,`))T G̃−1(x−x̃(a,`)), x ∈ Rn, (1.3)122

with some matrix G̃ (calculated e.g. in Chapter 5.4 of Nakamura and Pot-123

thast (2015)), constants w` given by124

w` =

∫
Rn

c̃`e
− 1

2
(x−x(b,`))TG−1(x−x(b,`))e−

1
2

(y−H(x))TR−1(y−H(x)) dx125

=

∫
Rn

c̃`e
− 1

2
(x−x̃(a,`))T G̃−1(x−x̃(a,`))e−

1
2

(y−H(xb,`))T (HGHT +R)−1(y−H(xb,`)) dx126

= c̃`

√
(2π)n det(G̃) e−

1
2

(y−H(xb,`))T (HGHT +R)−1(y−H(xb,`))
127

= e−
1
2

(y−H(xb,`))T (HGHT +R)−1(y−H(xb,`)) (1.4)128

with c̃` = 1/
√

(2π)n det(G̃) as explicitly calculated by equation (40) in

Schenk et al. (2022), with temporary analysis states x̃(a,`), ` = 1, ..., L, with

c̃ :=
1∑L

`=1 c`w`

√
(2π)n det(G̃)

,
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and with the components129

q(a,`)(x) := c̃c`w`e
− 1

2
(x−x̃(a,`))T G̃−1(x−x̃(a,`)), x ∈ Rn. (1.5)130

The constant c̃ will normalize the integral of p(a) to one, but not individual131

terms q(a,`) given by (1.5). If there are no further constraints to the variables,132

the `-th posterior particle can be directly drawn with relative probability w`133

from the distribution component q(a,`)(x) leading to an analysis ensemble134

member x(a,`). This drawing process is carried out based on localization,135

adaptivity and the transformation into ensemble space as developed for the136

LAPF (Potthast et al., 2019); details will be described in Sections 2.1 and137

2.2. As for other particle filters, the posterior particles will be calculated by138

an ensemble transform matrix, with details worked out in Section 2.2. For139

each posterior ensemble member, based on the prior Gaussian mixture, this140

matrix defines transformation coefficients arising from the weights of each141

particle. The name Local Mixture Coefficients Particle Filter (LMCPF) has142

been used to distinguish from other localized particle filter methods. For143

example, Reich and Cotter (2015) present Localized Particle Filter (LPF)144

versions, which include sophisticated optimal transport properties. A fur-145

ther LPF method is introduced by Penny and Miyoshi (2016) and the LAPF146

(already implemented at the German Weather Service in 20141) is presented147

1Shown by German Climate Computing Center DKRZ Git Records
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by Potthast et al. (2019). We note that the choice for G of formula (1.2)148

as a scaled version of the ensemble correlation matrix of Hunt et al. (2007)149

, i.e., G = κB, with B = 1
(L−1)

XXT , resembles the choices made for the150

LETKF (Hunt et al., 2007) and leads to very efficient code.151

We will investigate the usefulness of the Gaussian uncertainty within152

the particle filter in very high-dimensional systems, leading to moves or153

shifts of the particles towards the observations. Statistics of these shifts154

will be shown, demonstrating that for this global atmospheric NWP system155

the uncertainty plays an important role. Further, our numerical results156

show that the LMCPF is a particle filter with a quality comparable to the157

LETKF for state-of-the-art real-world operational global atmospheric NWP158

forecasting systems. This will be demonstrated by numerical experiments159

based on an implementation of the particle filter in the operational data160

assimilation software suite DACE2 of Deutscher Wetterdienst (DWD).161

The LMCPF is introduced in Section 2, where we first summarize the in-162

gredients we build on in Section 2.1. Then, an elementary Gaussian filtering163

step in ensemble space is described in Section 2.2. Finally, the full LMCPF164

method is presented in Section 2.3. We describe the high-dimensional ex-165

perimental environment for our development and evaluation framework for166

numerical tests in Section 3. The numerical results for the global weather167

2Data Assimilation Coding Environment
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forecasting model ICON are shown in Section 4. We study the statistics168

of the relationship of observations and the ensemble as well as the cor-169

responding statistics of the shift vectors of the Gaussian particles of the170

LMCPF. We show the large improvements with respect to standard NWP171

scores which the LMCPF can achieve compared to the LAPF. Addition-172

ally, we present case studies comparing the LMCPF forecast scores to the173

operational LETKF.174

2. Localized Mixture Coefficients Particle Filter (LM-175

CPF)176

The basic idea of a Bayesian assimilation step is to calculate a posterior177

distribution p(a)(x) for a state x ∈ Rn based on a prior distribution p(b)(x) for178

x ∈ Rn, some measurement y ∈ Rm and a distribution of the measurement179

error p(y|x) of y given the state x. The famous Bayes formula calculates180

p(a)(x) = cp(b)(x) · p(y|x), x ∈ Rn, (2.1)181

with normalization constant c such that
∫
Rn p

(a)(x) dx = 1.182

Our setup for data assimilation is to employ an ensemble {x(b,`) ∈ Rn, ` =183

1, ..., L} of states, which are used to estimate or approximate p(b)(x). The184

basic analysis step of data assimilation is to construct an analysis ensemble185
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{x(a,`) ∈ Rn, ` = 1, ..., L} of analysis states, which approximate p(a)(x) in a186

way consistent with the approximation of p(b)(x) by x(b,`), ` = 1, ..., L. The187

above idea is common to both the Ensemble Kalman Filter (EnKF) and to188

particle filters. We employ the notation189

X(b) :=
(
x(b,1) − x, ..., x(b,L) − x

)
∈ Rn×L (2.2)190

for the matrix of ensemble differences to the ensemble mean x defined by191

x :=
1

L

L∑
`=1

x(b,`) ∈ Rn. (2.3)192

For the ensemble differences in observation space we employ193

Y(b) :=
(
y(b,1) − y, ..., y(b,L) − y

)
∈ Rm×L (2.4)194

with the mean y defined by195

y :=
1

L

L∑
`=1

y(b,`) ∈ Rm (2.5)196

and197

y(b,`) := H(x(b,`)). (2.6)198

From now on we will use X for X(b) and Y for Y(b) for brevity. In the case199
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of a linear observation operator we have y = Hx and Y = HX. Usually, for200

EnKFs, the approximation of the covariance matrix is chosen to be based201

on the estimator202

B :=
1

L− 1

L∑
`=1

(x(`) − x) · (x(`) − x)T ∈ Rn×n. (2.7)203

The estimator B can also be written as B = 1
L−1

XXT . Usually, in this case204

the prior is approximated by205

p(b)(x) = cBe
− 1

2
(x−x)TB−1(x−x) (2.8)206

with B−1 well defined3 for all x = x + Xβ with some vector β ∈ RL. The207

normalization constant cB can be calculated based on a matrix Φ ∈ RL×L̃
208

which consists of an orthonormal basis of N(X)⊥ ⊂ RL of dimension L̃ < L209

by210

cB :=

(∫
RL̃

e−
1
2

(XΦα)TB−1(XΦα)
√

det(ΦTXTXΦ) dα

)−1

, (2.9)211

where det(ΦTXTXΦ) is the Gramian of the injective mapping XΦ : RL̃ →212

3The standard arguments, see Lemma 3.2.1 of Nakamura and Potthast (2015), show
injectivity of XXT on R(X): XXTXβ = 0 with β ∈ RL yields XTXβ ∈ N(X) ∩
R(XT ) = R(XT )⊥ ∩ R(XT ), thus XTXβ = 0. The same argument for Xβ ∈ N(XT )
yields Xβ = 0, thus XXT is injective on R(X). For surjectivity we consider v ∈ R(X),
i.e. v = Xw with w ∈ RL = N(X)⊕N(X)⊥ = N(X)⊕R(XT ), such that w = w1 + w2

with w1 ∈ N(X) and w2 = XTβ with some β ∈ Rn = R(X) + R(X)⊥. Repeating the
last argument leads to a β1 ∈ R(X) with w = XTβ1 and thus surjectivity. Invertibility
of B is thus shown.
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Rn, i.e. the determinant of the Gram matrix ΦTXTXΦ. The approximation213

of the classical particle filter is214

p(b)(x) = c
L∑
`=1

δ(x− x(b,`)), x ∈ Rn, (2.10)215

with the delta distribution δ(·) and a normalization constant c = 1/L. A216

well-known idea is to employ Gaussian mixtures (c.f. Hoteit et al. (2008);217

Liu et al. (2016a,b)), i.e., use the approximation218

p(b)(x) = c
L∑
`=1

c`e
− 1

2
(x−x(b,`))TG`

−1(x−x(b,`)), (2.11)219

where G` ∈ Rn×n is some symmetric and positive definite matrix which220

describes the uncertainty of the individual particle, c` = 1/
√

(2π)n det(G`)221

is a normalization constant for each of the Gaussians under consideration222

and c is an overall normalization constant.223

• The matrix G` is the covariance of each Gaussian and can be seen224

as a measure for the short-range forecast error consisting of model225

error and some of the uncertainty in the initial conditions beyond the226

distribution of the ensemble of particles itself. We will discuss the227

important role of G` in several places later, when we describe the228

LMCPF and its numerical realization. In particular, we will investi-229

gate the situation where G` is a multiple of the covariance matrix B230
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defined above.231

• The Gaussian mixture filter can be seen as a generalization of the232

classical particle filter, where instead of a delta distribution a Gaus-233

sian around each prior particle is employed to calculate the posterior234

distribution and draw from it. Here, we will employ localization and235

adaptivity as developed for the LAPF in combination with the mixture236

concept within the LMCPF.237

2.1 The Localized Adaptive Particle Filtering Ingredients and238

Preparations239

The goal of this section is to collect, prepare and summarize all com-240

ponents employed for the LMCPF. For the following derivation we assume241

linearity of H, we will discuss the form of the equations in the case of242

non-linear H later. Then, we have YT = XTHT and with γ = 1
L−1

the243

standard estimator for the covariance matrix is given by B = γXXT . We244

will later use B as measure of uncertainty of individual particles, then using245

the scaling246

γ =
κ

(L− 1)
(2.12)247

with a parameter κ > 0 scaling the standard covariance matrix. Following248

standard arguments as in Hunt et al. (2007); Nakamura and Potthast (2015)249
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or Potthast et al. (2019), this leads to the Kalman gain250

K = BHT (R + HBHT )−1
251

= γXXTHT (R + γHXXTHT )−1
252

= γXYT (R + γYYT )−1 (2.13)253

with invertible observation error covariance matrix R ∈ Rm×m. We note254

that we have255

(I + γYTR−1Y)YT = YTR−1(R + γYYT ) (2.14)256

by elementary calculations. We also note that I + γYTR−1Y is invertible257

on RL and R+γYYT is invertible on Rm by assumption on the invertibility258

of R. Then, multiplying (2.14) by (I + γYTR−1Y)−1 from the left and by259

(R + γYYT )−1 from the right we obtain260

YT (R + γYYT )−1 = (I + γYTR−1Y)−1YTR−1. (2.15)261

Now, (2.15) can be used to transform (2.13) into262

K = γX(I + γYTR−1Y)−1YTR−1. (2.16)263
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This can be used to calculate the covariance update step of the Kalman264

filter in ensemble space as follows. We derive265

B(a) = (I−KH)B(b)
266

=
(
I− γX(I + γYTR−1Y)−1YTR−1H

)
γXXT

267

= X
(
I− γ(I + γYTR−1Y)−1YTR−1Y

)
γXT

268

= X
(

(I + γYTR−1Y)−1
[
I + γYTR−1Y − γYTR−1Y

])
γXT

269

= X(I + γYTR−1Y)−1γXT
270

= γX(I + γYTR−1Y)−1XT . (2.17)271

For collecting the formulas we now move back to using X(b) for X. The272

analysis ensemble X(a) which generates the correct posterior covariance by273

B(a) = γX(a)(X(a))T is given by274

X(a) := X(b)
(
I + γYTR−1Y

)− 1
2 ∈ Rn×L, (2.18)275

where the matrix I + γYTR−1Y ∈ RL×L lives in ensemble space, it is276

symmetric and invertible by construction, for all γ > 0.277

The localized ensemble transform Kalman filter (LETKF) following Hunt278

et al. (2007) based on the square root filter for calculating the analysis en-279
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semble can be written as280

x(a) := x(b) + γX(b)w = x(b) + K(y − y) (2.19)281

with282

w := (I + γYTR−1Y)−1YTR−1(y − y) ∈ RL (2.20)283

and284

X(a) := X(b)W (2.21)285

with286

W := (I + γYTR−1Y)−
1
2 ∈ RL×L. (2.22)287

The above equations are carried out at each analysis grid point where the288

matrix R is localized by multiplication of each entry with a localization289

function depending on the distance of the variable to the analysis grid point290

Hunt et al. (2007). Using291

X(a,full) :=
(
x(a,1), ..., x(a,L)

)
= (x(a) + x(a)) ∈ Rn×L (2.23)292

the full update of the LETKF ensemble can be written as293

X(a,full) = x(b) + γX(b)w + X(b)W, (2.24)294
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where we define the sum of a vector (here x(b) or γX(b)w) plus a matrix295

(here X(b)W) by adding the vector to each column of the matrix.296

For non-linear observation operator H as in (18) of Hunt et al. (2007)297

the operator K is defined by the last line of (2.13), see also (2.16) and the298

ensemble transform by (2.21) with W by (2.22). This basically corresponds299

to an approximate linearization of H in observation space based on the300

differences y(b,`) − y.301

2.2 An Elementary Gaussian Filtering Step in Ensemble Space302

Let us consider a Bayesian assimilation step (2.1) based on the approx-303

imation of the prior p(b)(x) as a Gaussian mixture (2.11). We first describe304

the steps in general, then derive the ensemble space version of the equa-305

tions. To each particle, we attribute a distribution with covariance G, i.e.,306

we define307

p(b,`)(x) :=
1√

(2π)n det(G)
e−

1
2

(x−x(b,`))TG−1(x−x(b,`)), x ∈ Rn, (2.25)308

which is normalized according to equation (4.5.28) of Nakamura and Pot-309

thast (2015). Then, the full prior is a Gaussian mixture310

p(b)(x) = c

L∑
`=1

c`e
− 1

2
(x−x(b,`))TG−1(x−x(b,`)), x ∈ Rn, (2.26)311
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with c` := 1/
√

(2π)n det(G) (i.e., we choose the variance uniform for all `)312

and with some normalization constant c = 1
L
in this case. Bayes formula313

leads to the posterior distribution314

p(a)(x) = c̃
L∑
`=1

c`

(
e−

1
2

(x−x(b,`))TG−1(x−x(b,`))e−
1
2

(y−H(x))TR−1(y−H(x))
)
, (2.27)315

x ∈ Rn, with a normalization constant c̃, here different from the normaliza-316

tion constant in (2.26). We note that the terms in round brackets constitute317

individual Gaussian assimilation steps. In the case where H is linear or ap-318

proximated by its linearization H, the posterior of each of these terms can319

be explicitly calculated the same way as for the Ensemble Kalman Filter.320

Following Nakamura and Potthast (2015), Section 5.4, we define321

x(a,`) := x(b,`) + GHT (R + HGHT )−1(y −H(x(b,`))), ` = 1, ..., L, (2.28)322

and323

K = GHT (R + HGHT )−1, G(a) := (I −KH)G. (2.29)324
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Then, we know that325

q(a,`)(x) = c̃c`e
− 1

2
(x−x(b,`))TG−1(x−x(b,`))e−

1
2

(y−H(x))TR−1(y−H(x))
326

= c̃c`e
− 1

2
(x−x(a,`))T [Ga]−1(x−x(a,`))e−

1
2

(y−H(x(b,`)))T (HGHT +R)−1(y−H(x(b,`)))
327

= c̃c`w`e
− 1

2
(x−x(a,`))T [G(a)]−1(x−x(a,`)), x ∈ Rn, (2.30)328

with constants w` given by (1.4). Since c` does not depend on `, the329

constants are irrelevant for the resampling step and will be removed by the330

normalization step. Note that the constants w`, ` = 1, ..., L, are extremely331

important, since they contain the relative weights of the individual posterior332

particles with respect to each other. They should not be ignored! Here, we333

first describe the full posterior distribution, which is now given by334

p(a)(x) = c̃
L∑
`=1

c`w`e
− 1

2
(x−x(a,`))T [G(a)]−1(x−x(a,`)), x ∈ Rn. (2.31)335

In the case of the classical particle filter, the Gaussians c`e−
1
2

(x−x(b,`))TG−1(x−x(b,`))
336

become δ-distributions c`δ(x− x(b,`)) with weights c` = 1. In this case, the337

individual posterior weights w` are given by the likelihood of observations338

w` := e−
1
2

(y−H(x(b,`)))TR−1(y−H(x(b,`))), ` = 1, ..., L. (2.32)339
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This choice will also be a reasonable approximation in the case of small340

variance G of the Gaussians under consideration in comparison with the341

distance y − H(x(b,`)). In the general Gaussian case, the weights can be342

calculated from (1.4). For our numerical experiments we use non-zero G343

with some positive variance, and tested both the exact weights (1.4) or344

approximate weights w` given by (2.32).345 Figure 1

In Figure 1 we show a comparison of the normalized approximative346

weights (2.32) as dashed lines and the normalized exact determined weights347

(1.4) as solid lines, for a selected point of the full NWP model described in348

Sections 3 and 4. Here, each ensemble member (L=40) is described by a dif-349

ferent color. For this plot we varied the parameter κ, described in equation350

(2.12), between 0 and 5. Figure 1 shows how the normalized approxima-351

tive weights differ from the normalized exact weights. We have carried out352

experiments both with the exact and approximate weights, we found that353

overall the results with exact weights show a better performance.354

Let us now describe the ensemble space transformation of the above355

equations. The ensemble space as a subset of the state space is spanned by356

X given in (2.2). Our ansatz for the model error covariance is γXXT with357

some scaling factor γ. We note that for the LETKF, γ = 1
L−1

. Here, γ > 0358

can be any real number. We will provide some estimates for what γ can be359

in a global NWP model setup in our numerical part in Section 4. In the360
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transformed space this leads to the covariance γI ∈ RL×L to be used for the361

ensemble transform version of (2.27). Recall the ensemble transformation362

x − x = Xβ, x(`) − x = Xe` and x − x(`) = X(β − e`) for ` = 1, ..., L ,363

where e` is the standard unit vector with one in its `-th component and364

zero otherwise leading to365

(x− x(`))T (γXXT )−1(x− x(`)) = (β − e`)Tγ−1XT (XXT )−1X(β − e`)366

= (β − e`)Tγ−1I(β − e`). (2.33)367

We note that XT (XXT )−1X = I is true only on the subspace N(X)⊥, but368

we can employ the arguments used to justify equation (15) of Hunt et al.369

(2007) to use the covariance γ−1I in ensemble space for the prior term. For370

the observation error term of (2.27) in ensemble space RL we use equation371

(11) of Potthast et al. (2019), i.e., we have372

q(a,`)(β) = ĉc`e
− 1

2
(β−e`)T (γ−1I)(β−e`)e−

1
2

[P (y−ȳ−Yβ)]TR−1[P (y−ȳ−Yβ)], β ∈ RL,

(2.34)373

with norming constant ĉ, for ` = 1, ..., L, where P is the orthogonal pro-374

jection onto span{Y} with respect to the scalar product in Rm weighted375

by R−1; it is defined in equation (10) of Potthast et al. (2019) and Lemma376
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3.2.3 of Nakamura and Potthast (2015) to be given by377

P = Y(YTR−1Y)−1YTR−1. (2.35)378

As in (13) - (15) of Potthast et al. (2019) the right-hand side of (2.34) can379

be transformed into380

q(a,`)(β) = ĉc`e
− 1

2
(β−e`)T (γ−1I)(β−e`)e−

1
2

[C−β]TA[C−β], ` = 1, ..., L, (2.36)381

with382

A := YTR−1Y, C := A−1YTR−1(y − y). (2.37)383

We now carry out (2.28) and (2.29) in ensemble space based on (2.13) and384

(2.14), leading to the new mean of the posterior distribution for the `-th385

particle prior distribution386

β(a,`) = e` + γ(I + γYTR−1Y)−1YTR−1Y(C − e`) (2.38)387

and the new covariance matrix of this distribution388

G(a)
ens = (

1

γ
I + YTR−1Y)−1 ∈ RL×L (2.39)389

independent of ` when G = γXXT is independent of `. This means that390
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we obtain391

q(a,`)(β) = ĉc`w`e
− 1

2
(β−β(a,`))TG

(a)
ens(β−β(a,`)), β ∈ RL (2.40)392

with β(a,`) given by (2.38) and G
(a)
ens given by (2.39) for the posterior distri-393

bution of the `-th particle in ensemble space. We denote the term394

β(shift,`) := γ(I + γYTR−1Y)−1YTR−1Y(C − e`) (2.41)395

as the shift vector for the `-th particle in ensemble space, i.e., β(a,`) =396

e` + β(shift,`) in Eq. 2.38. The use of the model error γI corresponding to397

γXXT for this particle in ensemble space leads to this shift in the analysis.398

The shift has important effects:399

1. it moves the particle towards the observation in ensemble space,400

2. by the use of particle uncertainty, it constitutes a further degree of401

freedom which can be used for tuning of a real system.402

One of the major advantages and problems at the same time of the LAPF403

as well as a classical particle filter is that the particles are taken as they404

are. If the model has some local bias, i.e., if all particles have a similar405

behaviour and do not fit the observation well, then there is no inherent406

tool in the classical particle filter or the basic LAPF to move the particles407
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towards the observation - this move is only achieved by selection of the408

best particles, closest to the observation. By resampling and rejuvenation,409

effectively the whole ensemble is moved towards the observation. Here, with410

the introduction of uncertainty of individual particles into the assimilation411

step, this is already carried out for each individual particle by calculating412

a posterior mean β(a,`) in (2.38) of the posterior component q(a,`)(β) given413

by (2.40) for the model error prior distribution q(b,`)(x) attributed to each414

particle (2.25).415

2.3 Putting it all together: the full LMCPF416

Here, we now collect all steps to describe the full LMCPF assimilation417

step and data assimilation cycle. The LMCPF assimilation cycle is run418

analogously to the LETKF or LAPF assimilation cycle, i.e., we start with419

some initial ensemble x(a,`)
0 at time t0. Then, for time steps tk, k = 1, 2, 3, ...420

we421

(1) carry out a propagation step, i.e., we run the model forward from422

time tk−1 to tk for each ensemble member, leading to the background423

ensemble x(b,`)
k at time tk.424

(2) Then, at each localization point ξ on a coarser analysis grid G we425

carry out the localized ensemble transform (2.37), calculating C and426

A. Localization is carried out as for the LETKF and LAPF, i.e.,427
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the matrix R is weighted depending on the distance of each of its428

observations to the analysis point.429

(3) We now carry out a classical resampling step following Section 3.d of430

Potthast et al. (2019). This leads to a matrix431

W̆i,` =

 1, if R` ∈ (waci−1
, waci ],

0, otherwise,

(2.42)432

i, ` = 1, ..., L, draw r` ∼ U([0, 1]), set R` = `−1+r`, with accumulated433

weights wac, wac0 = 0, waci = waci−1
+ wk,i, wk,i := p(yk|x(b,i)) and434

W̆ ∈ RL×L defined by (2.42) with entries one or zero reflecting the435

choice of particles. As for the LETKF and LAPF this is carried out at436

each localistion point ξ on a coarser analysis grid G to ensure that the437

weight matrices only change on scales on the order of the localization438

length scale. Here, we use W̆ instead of W̆(ξ) for brevity.439

(4) The posterior matrixG(a)
ens given by (2.39) and the shift vectors β(shift,`)

440

given by (2.41) for ` = 1, ..., L are calculated for each localization point441

ξ. We define442

W(shift) :=
(
β(shift,1), ..., β(shift,L)

)
∈ RL×L. (2.43)443

Then, if we want the shift given by the `th-particle, we obtain it by444
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the product W(shift)e`. If we have a selection matrix W̆ for which445

each column with index ζ, ζ = 1, ..., L, contains some particle e` with446

` = `(ζ), which has been chosen to be the basis for the corresponding447

new particle, we obtain the shifts for these particles by the product448

W(shift)W̆. According to the analysis equation (2.38) the new coor-449

dinates in ensemble space are calculated by450

(
β(a,1), ..., β(a,L)

)
= W̆ + W(shift)W̆. (2.44)451

(5) For each particle we now carry out an adaptive Gaussian resampling452

or rejuvenation step. The rejuvenation is carried out the same way as453

described in Section 3.e and 3.f of Potthast et al. (2019), i.e., we first454

calculate455

ρ =
dTo−bdo−b − Tr(R)

Tr(H 1
L−1

XXTHT )
(2.45)456

at each localization point, with the actual ensemble covariance matrix457

1
L−1

XXT and with the observation minus background statistics do−b =458

yk − ȳk where ȳk denotes the ensemble mean in observation space459
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described in (2.5) at time tk4. Then we scale ρ by some function460

σ(ρ) :=


c0, ρ < ρ(0),

c0 + (c1 − c0) ρ−ρ(0)
ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1),

c1, ρ > ρ(1),

(2.46)461

where the constants ρ(0), ρ(1), c0, c1 are tuning constants. We note that462

temporal smoothing is applied to ρ as usual for LETKF or LAPF. Let463

N ∈ RL×L be a matrix with entries drawn from a normal distribution,464

i.e., each entry is taken from a Gaussian distribution with mean zero465

and variance 1. This is chosen uniformly for all localization points466

ξ on the analysis grid G. Then, the rejuvenation plus shift step is467

carried out by468

W := W̆ + W(shift)W̆ + [G(a)
ens]

1
2Nσ. (2.47)469

Again, we note that W = W(ξ), W(shift) = W(shift)(ξ), W̆ = W̆(ξ),470

[G
(a)
ens]

1
2 = [G

(a)
ens]

1
2 (ξ) and σ = σ(ξ) are functions of physical space471

with ξ ∈ G chosen from the analysis grid G.472

(6) The matrices W are calculated at each analysis point ξ on a coarser473

4The R matrix is taken from operations, where it is estimated based on standard
Desrozier statistics. Usually ρ is kept between a minimal and maximal positive value,
e.g. 0.7 and 1.5 for operations to account for statistical outliers in the estimator.
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global analysis grid G. We now interpolate the matrices onto the full474

model grid Gmodel.475

(7) Finally we calculate the analysis ensemble (2.23) by476

X(a,full) = x(b) + X(b)W (2.48)477

= x(b) + X(b)W̆︸ ︷︷ ︸
class. resampling

+X(b)W(shift)W̆︸ ︷︷ ︸
shift

+ X(b)[G(a)
ens]

1
2Nσ︸ ︷︷ ︸

adapt. Gauss. resampling

478

Comparing (2.48) with (2.24) we observe some similarities and some dif-479

ferences. The LETKF does not know the selection reflected by the matrix480

W̆, instead it transforms the ensemble by its matrix W. Both know a481

shift term, for the LETKF it is given by w, for the LMCPF by W(shift)W̆,482

shifting each particle according to model error (here taken proportional to483

ensemble spread), where the LETKF shifts according to the full ensem-484

ble spread. The LMCPF also takes into account that part of the ensemble485

spread which is kept during the selection process. Further, it employs adap-486

tive resampling around each remaining shifted particle. This helps to keep487

the filter stable and achieve an appropriate uncertainty described by o − b488

statistics.489
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3. Experimental Environment: the Global ICONModel490

3.1 The ICON Model491

We have carried out experiments testing the LMCPF algorithm in the492

global ICON (ICOsahedral Nonhydrostatic) model, i.e., the operational493

global NWP model of DWD, compare Zängl et al. (2014) and Potthast494

et al. (2019) for further details on the systems. ICON is based on an un-495

structured grid of triangles generated by subdivision from an initial icosahe-496

dron. The operational resolution is 13 km for the deterministic run and 40497

km for the ensembles both for the data assimilation cycle and the ensemble498

prediction system (EPS). The upper air prognostic variables such as wind,499

humidity, cloud water, cloud ice, temperature, snow and precipitation live500

on 90 terrain-following vertical model levels from the surface up to 75 km501

height. In the operational setup, we have 265 million grid points. We also502

note that there are further prognostic variables on the surface and on seven503

soil levels, in particular soil temperature and soil water content, as well as504

snow variables, sea ice fraction, ice thickness and ice surface temperature of505

ICON’s integrated sea-ice model.506

The data assimilation for the operational ensemble is carried out by an507

LETKF based on Hunt et al. (2007). We run a data assimilation cycle with508

an analysis every 3 hours. Forecasts are calculated based on the analysis509
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for 00 and 12 UTC, with 180 hours forecast lead time. For the operational510

system, forecasts with shorter lead times of 120 hours for 06 and 18 UTC511

and 30 hours for 03, 09, 15 and 21 UTC are calculated. The ensemble data512

assimilation cycle is run with L=40 members.513

For the experimental setup of our study, we employ a slightly lower hor-514

izontal resolution of 52 km for the ensemble and 26 km for the deterministic515

run (in the operational setup a part of the observations quality control is516

carried out within the framework of the deterministic run, we keep this517

feature for our particle filter experiments). An incremental analysis update518

with a window of t ∈ [−90 min, 90 min] around the analysis time for starting519

the model runs is used. The analysis is carried out for temperature, humid-520

ity and two horizontal wind components, i.e., for four prognostic variables521

per grid point. This leads to n = 6.6 · 106 free variables at each ensemble522

data assimilation step. Forecasts are only carried out for 00 and 12 UTC.523

We employ L=40 members for the experimental runs as well.524

3.2 Comparison in an Operational Framework525

For testing and developing algorithms in the operational framework,526

the tuning of basic algorithmic constants is a crucial part. The task of527

testing in a real-world operational setup is much more intricate than for528

what is usually done when algorithms are compared in a simulation-only529
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small-scale environment. In particular for new algorithms, the whole model530

plus assimilation cycled NWP system needs a retuning and it is difficult531

to compare one algorithmic layer only within a very complex system with532

respect to its performance. To compare two algorithms A and B, there are533

two important points to be taken into account:534

(1) Tuning Status of the Methods. There might be a raw or default535

version of the algorithms, but when you compare scores with the task536

of showing that some algorithm is better than the other, you need to537

compare tuned algorithms. In principle, you have to tune algorithm A538

to give the best results and then you have to tune algorithm B to give539

the best results and then compare the results of tuned A and tuned540

B. If A has been tuned for several years, but B is raw, the results give541

you insight into the tuning status of A and B, but not necessarily of542

the algorithms as such! So we have to be very careful with generic543

conclusions.544

(2) Quality Control of Obervations. When you compare two algo-545

rithms for assimilation or two models, verification provides a variety546

of scores. But verification with real data needs quality control of these547

data, since otherwise scores are mainly determined by outliers, and548

one broken device can make the whole verification result completely549

useless. But how is the data quality controlled? Usually we employ550
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o−f (observation minus first guess) statistic and remove observations551

which are far away from the model first guess. This leads to an im-552

portant point: each algorithm A and B needs to use its own quality553

control. If model biases change between A and B, you will have a554

different selection of ’good’ observations.555

But how do you compare two systems which employ different observa-556

tions? One solution can be to use observations for comparison which557

passed both quality controls. A second method is to verify each al-558

gorithm separately and then compare the scores (this is what is done559

with World Meteorological Organization (WMO) score comparisons560

between global models). A third method is to try to use ’indepen-561

dent’ observations. But these also need some quality control, and562

since they are not linked to any of the forecasting systems, it is un-563

clear in what way their use in verification helps to judge a particular564

algorithm or to compare two algorithms.565

For our experiments, we compare the LMCPF with the LAPF and the566

LETKF. The LETKF has a relatively advanced tuning status. LAPF has567

been mildly tuned and the LMCPF is relatively new. We carried out several568

tuning steps to try to make LMCPF and LETKF comparable. Further,569

we employ quality control for the observations in each system separately.570

Verification of the o − f statistics is based on each system independently.571
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Here, one important performance measure is the number of observations572

which passes the quality control. If this number is larger for B than for A,573

we can conclude that the system fits better to the observations, which is574

a good indicator for the quality of a short-range forecast. For comparison575

of forecasts the joint set of observations is used, those which pass both the576

quality control of algorithm A and algorithm B.577

4. Numerical Results578

The goal of this numerical part is, firstly, to investigate the relationship579

between the observation vector mapped into ensemble space and the en-580

semble distribution. Secondly, we show since the LMCPF moves particles581

based on the Gaussian uncertainty of individual particles, it bridges the582

gap between forecast ensemble and observations. Furthermore we study its583

distribution. The third part shows results of observation - first guess (o-f)584

statistics for the LMCPF with different choices for κ > 0 compared to the585

LETKF and the LAPF. Fourthly, we investigate the evolution of ensemble586

spread with different parameter settings. In the last part we demonstrate587

the feasiblity of the LMCPF as a method for atmospheric analysis and588

subsequent forecasting in a very high-dimensional operational framework,589

demonstrating that it stably runs for a month of global atmospheric analysis590

and forecasting.591 Figure 2
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4.1 Distributions of Observations in Ensemble Space592

In a first step, we study (a) the distance between the observation and593

the ensemble mean and (b) the minimum distance between the observation594

and the ensemble members. In ensemble space, for distance calculations595

an appropriate metric needs to be used. Recall that Rm with dimension596

m is the observation space and RL with dimension L the ensemble space.597

Given a vector β ∈ RL in ensemble space, the distance corresponding to the598

physical norm || · ||R−1 in observation space, which is relevant to the weight599

calculation of the particle filter, is calculated by600

||Yβ||2R−1 = 〈Yβ,Yβ〉R−1601

= 〈Yβ,R−1Yβ〉602

= (Yβ)TR−1Yβ603

= βT (YTR−1Y)β604

= 〈β,Aβ〉605

= ||β||2A (4.1)606

where 〈·, ·〉 denotes the standard L2-scalar product in Rm or RL, respec-607

tively. The notation 〈·, ·〉D with some positive definite matrix D denotes608

the weighted scalar product 〈·,D ·〉 and || · ||D = 〈·, ·〉D, here with either609

R−1 in Rm or A in RL. Note that for A to be positive definite we need610
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L ≤ m.611

The matrixA including the standard LETKF localization in observation612

space has been integrated into the data assimilation coding environment.613

Here, we show results from an LMCPF one month experiment studying one614

assimilation step at 0 UTC of May 6, 2016. The cycle has been started May615

1, such that the results illustrate a situation where the spin-up period is616

over and LMCPF spread has reached a steady state (compare Figure 8).617 Figure 3

At each analysis grid point ξ of some coarse global analysis grid G we618

have a matrix A (see Eq. (2.37)), L = 40 ensemble members and one619

projected observation vector C ∈ RL (see Eq. (2.37)). This leads to a620

total of Nω = 10890 samples ω numbering the analysis grid points in a621

given height layer, e.g. for 850 hPa. The distance of the observations to the622

ensemble mean is given by623

dC(ω) := ||C(ω)||A(ω), (4.2)624

where the metric A is chosen to be consistent with (2.36). The minimal625

distance of the observations vector to the ensemble members is given by626

dmin(ω) := min
j=1,...,L

||C(ω)− ej||A(ω), (4.3)627

with ω = 1, ..., Nω, where we employed (4.1) and where we note that in628
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ensemble space the ensemble members x(b,j) − x are given by the standard629

unit normal vectors ej, j = 1, ..., L.630

To analyse the role of moving particles towards the observation in en-631

semble space, in Figure 2 we show global histograms for dC and dmin for632

three height levels of approximately 500 hPa, 850 hPa and 1000 hPa. When633

the distribution of both dC and dmin are similar, i.e. the distribution of634

the minimal distance of the observation to the ensemble members and the635

distribution of the distance of observations to the ensemble mean are com-636

parable, it indicates that we have a well-balanced system. To understand637

the particular form of the distributions, we compare it with simulations of638

random draws of a Gaussian distribution in a 40 dimensional space shown639

in Figure 3. When you draw from a Gaussian with mean zero and standard640

deviation σ = 4, we obtain Figure 3 (a). The behaviour of the histograms of641

the norms of the points drawn changes significantly if we consider mixtures642

with different variances in different space directions. Figure 3 (a)-(e) shows643

different distributions with variances given by644

σj =
η

jν
, j = 1, ..., L (4.4)645

where the constant η ∈ (4, 15, 30, 40, 50) has been chosen to achieve a max-646

imum around 4 and different decay exponents ν ∈ (0, 0.5, 1, 2, 3) have been647
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tested. The distributions of Figure 2 correspond to a decay exponent be-648

tween ν = 1 and ν = 2. How much is this reflected by the eigenvalue dis-649

tributions for the matrices A? We have carried out a fit to the eigenvalue650

decay of A for a selection of analysis points. The constant η is obtained by651

using j = 1, which leads to σ1 = η. Taking the logarithm on both sides now652

yields653

ν log(j) = log(η)− log(σj), j = 2, ..., L. (4.5)654

A fit of ν can be obtained for example by division through log(j) and taking655

the mean of the remaining right-hand side. The distribution of the resulting656

exponents is displayed in Figure 3 (f). The results find exponents between657

0.7 and 2.2. The corresponding distributions are those shown in Figure658

3(c) and (d), which are quite close to the distributions of dC found in the659

empirical particle-filter generated NWP ensemble in Figure 2.660

4.2 The Move of Particles661

At a second step, we want to investigate the capability of the LMCPF662

to move particles towards the observation by testing different choices of663

κ > 0 given by (2.12). In Figure 4 we compare histograms of the norm664

of the mean ensemble shift in ensemble space for pressure level 500 hPa,665

determined for May 6th, 0 UTC. The four histograms show the statistics666

for the three filters in different settings: a) LAPF, b) LMCPF with κ = 1,667
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c) LMCPF with κ = 2.5 and d) LMCPF with κ = 25.668 Figure 4

There are two effects seen in Figure 4. First, we see the distribution of669

average shifts or moves of the ensemble mean generated by the LAPF and670

the LMCPF with three different choices κ controlling the size of the uncer-671

tainty used for each particle. The mean shift increases if the uncertainty672

increases, i.e., from κ = 1 to κ = 2.5 and κ = 25. To develop an under-673

standing of the relative size of this shift let us look at the one-dimensional674

version of formula (2.41) given by675

s(κ) =
κb

r + κb
, (4.6)676

with background variance b and observation error variance r, reflecting the677

size of the particle move. When we, for example, choose r = 4 and b = 16,678

as we would get with typical values for the error of 2 ms−1 for wind mea-679

surements and an ensemble standard deviation of 4 ms−1, and then study680

κ ∈ (1, 2.5, 10, 25), we obtain factors of size s(κ) ∈ (0.8, 0.9, 0.97, 0.99). If681

the observation has a distance of 3.6 to the ensemble mean, as seen in Fig-682

ure 2, this would make the means observed in Figure 4 plausible. For small683

κ = 1 here the particle move is 0.8 times the innovation, for large κ = 25684

it is 0.99 times the innovation y −H(x(b)). In Figure 4 we observe this be-685

haviour with the median of the ensemble increments being median = 2.62686
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in (a) to median = 3.54 in (d).687 Figure 5

As a final step of this part, we want to investigate not only the overall688

distribution of the particle moves, but relate the size of the average particle689

move to the distance of the observation to the ensemble mean. Figure690

5 shows scatter and density plots for the LMCPF with different particle691

uncertainty. We employ the same values for κ as in Figure 4, (a) and (d)692

with κ = 1, (b) and (e) with κ = 2.5, (c) and (f) show results for κ = 25.693

Displayed are statistics for the average particle move vs. the difference of694

the observation vectors from the ensemble mean, all for the pressure level695

at 500 hPa.696

The results of Figure 5 show that clearly the move of the particles is697

related to the necessary correction as given by the distance of the observa-698

tion to the individual particle. There is a clear correlation of the average699

move to the observation discrepancy with respect to the ensemble mean. If700

we would investigate each particle individually in one dimension, all points701

would be on a straight line with slope given by (4.6). The situation in a702

high-dimensional space with non-homogeneous metric is more complicated703

as reflected by Figure 5. The figure confirms that the method is working as704

designed.705
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4.3 Assimilation Cycle Quality Assessment of the LMCPF706

Here, studying standard global atmospheric scores for the analysis cycle707

we investigate the quality of the LMCPF by testing different choices of κ >708

0, investigate the interaction effects between particle uncertainty, ensemble709

spread and adaptive spread control and compare it to the way the LETKF710

moves the mean of the ensemble. For this aims we show two figures.711 Figure 6

Figure 6 shows the functionality of the LMCPF by a display of the712

analysis and the first guess errors for upper air temperature for an ICON713

assimilation step, comparing the LETKF and the LMCPF with exact and714

approximate weights, respectively. Here, in the first line we show statistics715

for the LMCPF (blue line) with exact weights and κ = 2.5 compared to716

the LETKF (red line). The left panel shows the number of observations717

which passed quality control, the middle panel shows the root mean square718

error (RMSE) of observation minus first guess statistics (o−f) (also known719

as observation - background (o − b) statistics) and the right panel shows720

the RMSE for observations minus analysis statistics (o − a). The blueish721

shading shows areas with lower values for the LMCPF in comparison to the722

LETKF. The second row shows the comparison of the LMCPF with exact723

(blue lines) and approximate (red lines) weights.724

It can clearly be seen that with respect to o − f scores the LMCPF is725

able to outperform the LETKF in case studies with one assimilation step726
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when an appropriate size of the uncertainty of each particle, here given by727

the size of κ, is found. The experiments demonstrate that the exact weights728

yield better results than the approximate weights.729

The numerical experiments prove that the particle uncertainty enables730

the LMCPF to move the background ensemble towards the observation in731

a way comparable to or even better than the LETKF. This effect remains732

active during model propagation and can also be observed for the first guess733

statistics and for forecasts with short lead times. Here, the LMCPF is able734

to outperform the operational version of the LETKF.735 Figure 7

In Figure 7 we show a comparison of analysis cycle verification for a736

full one month period of LMCPF, LAPF and LETKF experiments. The737

columns are showing the same statistics as in Figure 6. The first row in738

Figure 7 shows the differences between LETKF (red line) and LMCPF with739

exact weights and κ = 2.5 (blue line) for a full month of cycling (Jan 2022).740

The second row shows the comparison of LAPF (red line) and LMCPF741

with with approximate weights and κ = 2.5 (blue line) for one month (May742

2016). Again, the blueish shading indicates lower numbers or RMSE values743

for the experiment (LMCPF), the yellowish shading indicates lower values744

for the reference (LETKF resp. LAPF).745

Row one shows that the LMCPF with particle uncertainty given by746

κ = 2.5 can outperform the LETKF for short lead times, which is very747
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important for practical applications. Here the LMCPF is up to 2.5% better748

than the LETKF for the o−f statistics. In this experiment, for some levels749

in the atmosphere the o − a and o − f statistics of the LMCPF are up750

to 0.5% worse than the LETKF. The amount of data which passes quality751

control is quite similar for all methods under consideration, however, at752

some levels we loose up to 1.1% of observations in comparison with the753

LETKF. This is an effect of quality control based on the ensemble spread -754

a smaller ensemble spread as we observe for the particle filter leads to less755

observations passing quality control. In the second row of Figure 7 we show756

the statistics of LAPF (Potthast et al., 2019) vs. LMCPF. Here we can757

clearly see that the LMCPF shows much better upper air scores than the758

LAPF. It clearly shows the importance of allowing a movement of particles759

towards the observations by using particle uncertainty.760

Overall we conclude that with respect to the verification of the analysis761

cycle the LMCPF with particle uncertainty given by κ = 2.5 is comparable762

to the LETKF, with some levels to be better, some to be worse, overall763

differences mostly below 3%. The upper air verification for the analysis764

cycle of the LMCPF in operational setup is more than 10% better than for765

the LAPF.766
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4.4 The Evolution of the Ensemble Spread767

It is an important evaluation step to investigate the stability of the768

LMCPF for global NWP over longer periods of time. To this end, we have769

run a period of one month. We compare the particle spread evolution of the770

LMCPF, the LAPF and LETKF in Figure 8. All experiments were started771

with an ensemble which consists of 40 identical copies of the particles, i.e.,772

with an ensemble in degenerate state. Thus, here the tests also evaluate773

the capability of the whole system to resolve degeneracy and return to an774

ensemble with reasonable stable spread.775 Figure 8

In a sequence of experiments we have tested the ability of the LMCPF776

to reach and maintain a particular ensemble spread using a combination of777

the choice of κ with a posterior covariance inflation778

G̃(a)
ens = κpostG

(a)
ens (4.7)779

for each particle with G̃
(a)
ens replacing G

(a)
ens in equation (2.48), which is used780

to generate the analysis ensemble by random draws. We also note that for781

the random draw of equation (2.46) we employed bounds given by c0 and782

c1. The parameter combinations chosen for six different experiments over783

one week are compiled into Table 1. The corresponding spread evolution is784

visualized in Figure 8. The results show that, starting with an initial ensem-785
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ble of identical particles, after some spin-up phase of 2-3 days all particle786

filters reach their particular spread level and keep it stable over a longer787

period of time. We carried out selected longer term studies comparing the788

behaviour of the LMCPF (red), the LAPF (blue) and the LETKF (black)789

over a period of one month.790 Table 1

The control of the ensemble spread is a delicate topic. A larger ensem-791

ble spread does not necessarily lead to better forecast scores, measured by792

RMSE (Skill) of the ensemble mean or its standard deviation (SD), defined793

as the RMSE after the bias has been subtracted. With the ability to con-794

trol separately the strength of the adaptive resampling and the ability of the795

filter to pull the particles towards the observations, we have independent796

parameters at hand to adapt the approximations to a real-world situation.797

At the same time, the way the assimilation step of the LMCPF pulls the798

ensemble to the observations is based on both the size of the particle un-799

certainty, which itself is depending on the ensemble spread, and within the800

cycled environment on the adaptive resampling. Of course, it would be de-801

sirable to develop tools to estimate the real uncertainty adequate for each802

particle, and to keep all parts of the system consistent. We expect this to803

lead to much further research and discussions, which are beyond the scope804

of this work.805
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4.5 Forecast Quality of the LETKF and LMCPF experiments806

As the last part of the numerical results, we study the quality of longer807

forecasts based on the analysis cycle of the LMCPF with κ = 2.5 and808

compare it to the LETKF based forecasts in Figure 9 and to forecasts based809

on the LAPF analysis cycle in Figure 10. For this purpose, forecasts were810

run twice a day at 00 UTC and 12 UTC. In Figure 9 we display upper air811

verification for the LMCPF (dashed lines) with exact weights and for the812

LETKF (solid lines). The different colors identify the different lead times,813

from one day up to one week. The first row shows the upper air temperature814

and the second row shows the verification of pressure forecasts. The first815

panel shows the Continuous Ranked Probability Score (CRPS), the second816

panel the Standard Deviation (SD), the third panel the Root Mean Square817

Error (RMSE) and the last panel shows the Mean (ME). For CRPS, SD818

and RMSE it is the aim to receive statistics as low as possible; for the Mean819

(=Bias) it is the goal to reach zero. We used the same observations for820

verification in both experiments.821

Studying the results shown in Figure 9, we observe that forecast scores822

are very similar for LMCPF and LETKF for the upper air temperature.823

For pressure forecast the bias (ME) for the LMCPF is mostly smaller than824

for the LETKF below 50hPa.825

In Figure 10 we show the same statistics as in Figure 9 focussing on826
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relative humidity and upper air temperature for the comparison of LMCPF827

and LAPF, where here we used the approximate weights or both to study828

the effect of the shifts only. Here, it can be clearly seen that the LMCPF829

shows lower RMS errors than the LAPF for both variables and for all levels.830

For relative humidity the LMCPF is clearly better for the shorter lead times831

up to three days, but with less prominence it still outperforms the LAPF832

for the longer lead times up to one week. For the upper air temperature the833

RMSE statistics are clearly better for the LMCPF for all lead times. It is834

worth noting that the biases for the two particle filters show a quite similar835

behaviour.836

These results altogether demonstrate that using particle uncertainty is837

an important ingredient for improving first guess and forecast scores of the838

particle filter.839 Figure 9

Figure 10

5. Conclusions840

In this work we develop the use of a Gaussian mixture within the frame-841

work of the Localized Adaptive Particle Filter (LAPF) introduced in Pot-842

thast et al. (2019), as an approximation to model and forecast particle843

uncertainty in the prior and posterior distributions. The filter, following844

earlier ideas of Hoteit et al. (2008) and Liu et al. (2016a,b) constructs an845

analysis distribution based on localized Gaussian mixtures, whose posterior846
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coefficients, covariances and means are calculated based on the prior mix-847

ture given by the ensemble first guess and the observations. The analysis848

step is completed by resampling and rejuvenation based on the LAPF tech-849

niques, leading to a Localized Mixture Coefficients Particle Filter (LMCPF).850

In contrast to the LAPF the LMCPF is characterized by a move or shift of851

the first guess ensemble towards the observations, which is consistent with852

the non-Gaussian posterior distribution based on a Bayesian analysis step,853

and where the size of the move is controlled by the size of the uncertainty854

of individual particles.855

We have implemented the LMCPF in the framework of the global ICON856

model for numerical weather prediction, operational at Deutscher Wetterdi-857

enst. Our reference system to test the feasibility of ideas and demonstrate858

the quality of the LMCPF is the LETKF implementation operational at859

DWD, which generates initial conditions for the global ICON Ensemble860

Prediction System ICON-EPS. We have shown that the LMCPF runs sta-861

bly for a month of global assimilations in operational setup and for a wide862

range of specific LMCPF parameters. Our investigation includes a study863

of the distribution of observations with respect to the ensemble mean and864

statistics of the distance of ensemble members to the projection of the ob-865

servations into ensemble space. We also study the average size of particle866

moves when uncertainty is employed for individual Gaussian particles within867
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the LMCPF and provide an analytic explanation of the histogram shapes868

with a comparison to the eigenvalue distribution of the matrices A on which869

the particle weights are based.870

We show that the upper air first guess errors of the LMCPF and LETKF871

during the assimilation cycle are very similar within a range of plus-minus872

1-3%, with the LMCPF being better below 850 hPa and the LETKF being873

better in some range above. Forecast scores for a time-period of one month874

have been calculated, demonstrating as well that the RMSE of the ensembles875

is comparable for upper air temperature, relative humidity, wind fields and876

pressure (2-3%). The size of the mean spread of the LMCPF strongly877

depends on parameter choices and is usually stable after a spin-up period.878

In several shorter case studies we demonstrate that by varying the pa-879

rameter choices, we can achieve better first guess RMSE for the LMCPF in880

comparison to the LETKF, which shows that for very short range forecasts881

the quality of the method can be comparable to or better than that of the882

LETKF. While reaching a break-even point for operational scores with a883

new method establishes an important mile-stone, we need to note that there884

are many open and intricate scientific questions here with respect to the885

choice of parameters for the Gaussian mixture and their inter-dependence886

as well as about the control of an optimal and correct ensemble spread both887

in the analysis cycle and for the forecasts.888
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Overall, with the LMCPF we demonstrate significant progress compared889

to the localized adaptive particle filter (LAPF) for numerical weather pre-890

diction in an operational setup, demonstrating that the LMCPF has reached891

a stability and quality comparable to that of the LETKF, while allowing892

and taking care of diverse non-Gaussian distributions in its analysis steps.893

Clearly, there is much more work to be done. The automatic choice894

of current tuning parameters is an important topic. Also, in further steps895

we will take a look at the quality control. Currently, the LMCPF and896

the LETKF are using the same observation quality control, but the LM-897

CPF seems to need a more accurat approach. Furthermore, we have im-898

plemented the LAPF and LMCPF in the Lorenz 63 and Lorenz 96 models899

and are studying the characteristics of the particle filters in low-dimensional900

systems.901
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1057

Figure 1. We show a comparison between the normalized approximative

weights calculated as in (2.32) versus the normalized exact calculated

weights (1.4). The solid lines show the normalized exact determined

weights and the dashed lines the normalized approximative weights.

The colors vary for different ensemble members (L=40). On the x-axis

we show the value for κ of equation (2.12), on the y-axis the values of

the weights.
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1065

Figure 2. We show global histograms of dC and dmin defined in (4.2) and

(4.3) for three different pressure levels: 500 hPa in (a) and (d), 850 hPa

in (b) and (e) and 1000 hPa in (c) and (f), with dC in (a)-(c) and dmin

in (d)-(f). Shown are statistics for the LMCPF with κ = 25 for May

6th, 0 UTC.

1066

1067

1068

1069

1070

59



1071

Figure 3. We show simulations of distributions of random draws in an

L = 40 dimensional space, with different mixtures of variances given

by formula (4.4), here with η ∈ (4, 15, 30, 40, 50) and ν ∈ (0, 0.5, 1, 2, 3)

in (a) to (e). A histogram of the fit of exponents ν as in (4.4) to the

eigenvalue decay of the matrices A for a selection of 1000 points is

shown in (f). The fit is obtained from the mean of exponents derived

from formula (4.5).
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1079

Figure 4. We show global histograms of the norm of the mean ensemble

shift at pressure level at 500hPa. On the x-axis we show the norm of

shift of mean vectors in ensemble space and on the y-axis we show the

frequency. We display the histogram for (a) the LAPF, (b) the LMCPF

with κ = 1, (c) the LMCPF with κ = 2.5 and (d) shows the LMCPF

with κ = 25. The pink line displays the median, which is also shown

on the top of each plot. Shown are the statistics for May 6th, 0 UTC.
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1087

Figure 5. We show scatter and density plots of the average particle move

versus the distance of the observation vector to the ensemble mean, all

for the pressure level 500 hPa in ensemble space. On the x-axis we can

see the norm of the observation distance to ensemble mean and on the

y-axis we show the average size of the corresponding particle move. We

display statistics for the LMCPF with different particle uncertainty, for

each setting a scatter plot and a density plot which shows high density

of points in a better way. (a) and (d) show the statistics for κ = 1, (b)

and (e) for κ = 2.5 and (c) and (f) for κ = 25, all for May 6th, 0 UTC.
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1097

Figure 6. We show the observation verification of upper air temperature

measured by airplanes, in particular the first guess and analysis scores.

The three columns show the number of observations which passed qual-

ity control, the RMSE for o − f statistics and the RMSE for o − a

statistics for the LMCPF with exact weights (blue line) compared to

the LETKF (red line) in the first row and the LMCPF (blue line) with

exact weights compared to the LMCPF with approximate weights (red

line) in the second row. We display results for one global assimilation

step at 20220101 00 UTC.
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1107

Figure 7. Again, we show some observation verification statistics for upper

air temperature measured by airplanes. We show the same statistics as

in Figure 6 but for experiments carried out for the period one month

each. In the upper row the comparison between LETKF (red line)

and LMCPF (blue line) with exact weights is shown for Jan 2022, in

the lower row we show the comparison between LAPF (red line) and

LMCPF (blue line) in May 2016.
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1115

Figure 8. The evolution of the ensemble spread is shown for three filters

and six different parameter choices for the LMCPF for a time period

of both one month (LETKF - black, LAPF - blue, LMCPF - red) and

for one week for different parameter choices for the LMCPF (see Table

1). The x-axis shows the period in one day steps. The y-axis shows

the upper air temperature at ICON model level 64 (≈ 500 hPa) in

Kelvin. The first row shows the mean of the spread, the second row

the minimum and the third row the maximum.
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1124

Figure 9. We display forecast scores for the LMCPF (dashed) with ex-

act weights and the LETKF (bold lines) calculated for January 2022.

Shown are the continuous rank probability score (CRPS), the standard

deviation (SD), the RMSE and the mean (ME). First row shows the

upper air temperature, the second row shows pressure forecast verifi-

cation. The colors indicate the different lead times from one day to 7

days.
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1132

Figure 10. Exemplarily for relative humidity and upper air temperature

we show the improvement of the LMCPF with approximate weights

(dashed) compared to the the LAPF (bold lines) for May 2016.
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Exp No. κ κpost c1 ρ(1)

2 0.5 5 0.5 1.5
3 0.5 3 0.5 1.5
4 0.3 5 0.5 1.5
5 1 1 0.3 3.0
6 0.5 3 0.5 3.0
7 0.3 5 0.5 3.0

Table 1. Parameter choices for the six one week experiments of Figure 8.

Further, we used c0 = 0.02 and ρ(0) = 1.0 for all experiments.
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