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Abstract 30 

 31 

This study focused on the total precipitable water (TPW) products of the Advanced Microwave 32 

Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission—Water 33 

(GCOM-W). The GCOM-W satellite has been flying in the Afternoon Constellation (A-train) orbit 34 

to synergize with other A-train satellites, such as Aqua. In this study, we compared two datasets of 35 

AMSR2 TPW from July 2012 to December 2020, independently produced by the Japan Aerospace 36 

Exploration Agency (JAXA) and Remote Sensing Systems (RSS). There were no significant 37 

differences in TPW anomaly trends between them. However, significant differences in the absolute 38 

values of TPW were found in the northwest Pacific and northwest Atlantic Oceans during the 39 

boreal summer season. We investigated the meteorological conditions that caused these differences 40 

using reanalysis, in-situ observation data, and visible and infrared data from the MODerate 41 

resolution Imaging Spectroradiometer (MODIS) on the Aqua. The results showed that the lower 42 

atmosphere had an inversion layer with relative humidity close to 100%, and very low altitude 43 

clouds (i.e., fog) were often distributed in the areas where the TPW differences between JAXA 44 

and RSS are large. The temperature profiles represented in the JAXA and RSS algorithms were 45 

approximated by a simple model. The influence of the inversion layer and fog on the JAXA and 46 

RSS TPW algorithms was also investigated using a radiative transfer model. Sensitivity 47 

experiments suggested that the inversion layer was associated with the underestimated TPW for 48 

the JAXA algorithm, while it was associated with the overestimated TPW for the RSS algorithm. 49 
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1. Introduction 55 

Water vapor is the most important greenhouse gas and causes significant positive feedback to 56 

global warming (Held and Soden 2000; Zhai and Eskridge 1997; Wagner et al. 2006). The 57 

Intergovernmental Panel on Climate Change (IPCC) Working Group I (WG I) Sixth Assessment 58 

Report (AR6), released in August 2021, concluded from observations, reanalysis, and models that 59 

total precipitable water vapor (TPW) has very likely increased since 1979 and that the combined water 60 

vapor and lapse rate feedback makes the single largest contribution to global warming (IPCC 2021). 61 

Variations in water vapor content also significantly impact the global energy balance and other climate 62 

systems, such as clouds and precipitation, through absorption and release of latent heat (Trenberth et 63 

al. 2003, 2009). Thus, water vapor is key to understanding the mechanisms of global climate and 64 

water cycle changes. Observing and analyzing water vapor continuously and homogeneously is 65 

essential on a global scale over an extended period. 66 

 67 

There are three principal methods for determining water vapor content: in-situ observation using 68 

radiosondes (Dai et al. 2011; Zhai and Eskridge 1997), estimation from zenith path delay (ZPD) of 69 

Global Positioning System (GPS) observations (Wang et al. 2007; Nilsson and Elgered 2008), and 70 

remote sensing using satellites (Wentz and Schabel 2000; Wagner et al. 2006). Water vapor 71 

observations by radiosonde and ground-based GPS are highly accurate, and many studies of water 72 

vapor trends have been conducted using these methods. In particular, radiosonde observation data 73 

have been accumulated over a long time, and the IPCC Third Assessment Report listed water vapor 74 
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trends at radiosonde stations in the northern hemisphere (Ross and Elliott 2001). However, radiosonde 75 

and ground-based GPS observation data are limited to land, small isolated islands, and ships, so the 76 

spatiotemporal inhomogeneity of the data has been noted as a disadvantage (Dai et al. 2011). Satellite-77 

based remote sensing is suitable for global climate studies because it provides data that are more 78 

spatiotemporally homogeneous than radiosonde or GPS-based observations. Observations by passive 79 

microwave radiometers are less affected by clouds, unlike those by visible and infrared sensors 80 

(Wagner et al. 2006), even though they are made chiefly over oceans. In addition, multiple satellites 81 

have made microwave observations continuously since 1979 (Mears et al. 2018; Kidd et al. 2021). 82 

Thus, data from spaceborne passive microwave radiometers are important for monitoring long-term 83 

global water vapor. Indeed, the IPCC Fourth, Fifth, and Sixth Assessment Reports provide TPW 84 

trends over the ocean using microwave satellite data (IPCC 2007, 2013, 2021). 85 

 86 

Previous studies reported estimates of global water vapor trends: 0.436 ± 0.10 kg m-2 decade-1 for 87 

1988–2011 (microwave satellites; Mears et al. 2018); 0.34 ± 0.10 (microwave satellites), 0.22 ± 0.28 88 

(radiosonde), 0.34 ± 0.26 (GPS), 0.34 ± 0.14 (reanalysis data from the European Centre for Medium-89 

Range Weather Forecasts), and 0.27 ± 0.18 kg m-2 decade-1 (reanalysis data from National Centers for 90 

Environmental Prediction) for 2000–2014 (Chen and Liu 2016); and 0.50 (ultraviolet and visible 91 

satellites), 0.24 kg m-2 decade-1 (reanalysis data from Hamburg Ocean Atmosphere Parameters and 92 

Fluxes from satellite data) for 1996–2005 (Mieruch et al. 2014). IPCC AR6 WG1 reported that the 93 

global TPW trend is very likely to be positive (since 1979) because various satellites have enabled a 94 
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quasi-global assessment of total column water vapor. On the other hand, it is noted that the estimation 95 

of the magnitude of the TPW trend requires medium confidence due to the uncertainties associated 96 

with changes in observation systems. The uncertainty caused by changes in observation systems is 97 

also examined in the Global Energy and Water Cycle Exchanges project (GEWEX) water vapor 98 

assessment (G-VAP) (Schröder et al. 2016, 2018, 2019). G-VAP is a framework for comprehensively 99 

comparing water vapor datasets, including satellite and reanalysis data. It was reported that the 100 

differences in water vapor trends among datasets are caused primarily by different breakpoints in the 101 

data, which often coincide with changes in the observation systems or the data used for assimilation 102 

(Schröder et al. 2016, 2019). Therefore, more accurate and consistent long-term datasets from single 103 

or series satellites are needed for more accurate estimates of water vapor trend values. 104 

 105 

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a Japanese conical scanning 106 

passive microwave radiometer on board the Global Change Observation Mission—Water (GCOM-107 

W) satellite, or SHIZUKU. GCOM-W was launched from the Tanegashima Space Center on May 18, 108 

2012 (Imaoka et al. 2010). The GCOM-W satellite moved into the orbit on June 29, 2012 as one of 109 

the A-train satellites for synergistic observations around 1:30 PM local solar time by multiple Earth 110 

observation satellites, such as Aqua. GCOM-W/AMSR2 has been making observations for more than 111 

10 years, since June 2012, as the successor to Aqua/AMSR-E (2002–2011) (Kawanishi et al. 2003). 112 

In addition, GCOM-W/AMSR2 is almost independent of weather conditions and has a wide 113 

observation swath of 1450 km, making it possible to observe more than 99% of the Earth every two 114 
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days. The TPW over the ocean can be retrieved from AMSR2 observation data (Kazumori et al. 2012; 115 

Wentz 2000). Therefore, the global and long-term observations of GCOM-W/AMSR2 are important 116 

for studying the water vapor trend. 117 

 118 

This study aims to compare and validate the AMSR2 TPW product of the Japan Aerospace 119 

Exploration Agency (JAXA) and the Remote Sensing Systems (RSS) with each other. The TPW 120 

products by the RSS were also used in the IPCC report to evaluate reanalysis data and models (Wentz 121 

et al. 2007). We investigated the TPW differences between JAXA and RSS for time series, location, 122 

and seasonal dependence. The study also investigated meteorological conditions that could cause 123 

these TPW differences using data from radiosondes, objective analysis, and observations of visible 124 

and infrared imagers onboard the A-train satellite. Section 2 describes the data used in this study and 125 

the matching process with radiosonde observations. Section 3 describes the seasonal and regional 126 

dependence of TPW differences between RSS and JAXA. Section 3 also describes the TPW anomaly 127 

trend from JAXA and RSS products. Section 4 describes the causes of the principal TPW differences. 128 

Section 5 summarizes this paper and describes the direction for our planned research. 129 

 130 

2. Data 131 

2.1 JAXA AMSR2 product 132 

The AMSR2 is carried by the GCOM-W satellite (Imaoka et al. 2010). The diameter of the main 133 

reflector of AMSR2 is 2 m, the largest of all conical scanning microwave radiometers currently on 134 
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board satellites. This large reflector allows AMSR2 to make high-resolution observations (the 135 

footprint is 7 × 12 km at 36.5 GHz). In addition, AMSR2 covers a wide range of frequencies (6,925, 136 

7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) and V/H polarization (14 channels). Thus, AMSR2 can 137 

estimate various geophysical parameters such as water vapor, cloud liquid water, precipitation, sea 138 

surface temperature, surface wind speed, sea ice concentration, snow depth, and soil moisture (see 139 

Descriptions of GCOM-W1 AMSR2 Level 1R and Level 2 Algorithms, 140 

https://suzaku.eorc.jaxa.jp/GCOM_W/data/doc/NDX-120015A.pdf.). 141 

 142 

This study used JAXA’s daily product (AMSR2 Standard Product Level 3 ver. 2, 0.25º grid) for 143 

data between July 2012 and December 2020 in the long-term analysis and comparison of TPW 144 

products. The daily product contains daily averaged data for the ascending orbit observed at 13:30 145 

local time and the descending orbit observed at 1:30 local time; both data were used in this study. As 146 

described below, JAXA AMSR2 Standard Product Level 2 ver. 2 was used in the matchup process 147 

with the radiosonde data. The Level 2 data is swath data that is not gridded and has location 148 

information associated with each observation point. 149 

The JAXA AMSR2 TPW algorithm is outlined as follows. The JAXA algorithm estimates the TPW 150 

by an iterative process (Kazumori et al. 2012), using the MGDSST (see Section 2.5), sea surface wind 151 

speed (SSW), and 850 hPa air temperature of GANAL (see Section 2.4) interpolated to the same 152 

location and time as the AMSR2 observations. The sea surface emissivity is estimated with the first 153 

Look Up Table (LUT) using GANAL SSW and MGDSST as ancillary data for each observation 154 
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frequency. The atmospheric transmittance is estimated with the second LUT using the 850 hPa air 155 

temperature and brightness temperatures of 18.7, 23.8, and 36.5 GHz. The TPW and cloud liquid 156 

water (CLW) can be estimated from the atmospheric transmittance in the third LUT. The above LUTs 157 

are created by a dataset of the radiosonde observations, MGDSST, and GANAL SSW in advance. 158 

 159 

2.2 RSS AMSR2 product 160 

RSS’s AMSR2 TPW products were compared to JAXA's AMSR2 TPW products. The RSS TPW 161 

was estimated using an algorithm developed independently by RSS (Wentz 2000, 2007). RSS is a 162 

private U.S. company that collects, processes, and analyzes data from spaceborne microwave 163 

radiometers. The RSS products used in this study were the Level 3 ver. 8.2 (0.25º grid) Daily Products 164 

from July 2012 to December 2020. The RSS Daily Products also contain daily averaged data for 165 

ascending and descending orbits, respectively. 166 

The RSS AMSR2 TPW algorithm, the Ocean algorithm, uses regression equations for retrieval and 167 

can estimate SST, SSW, and CLW simultaneously (Wentz 2000, 2007). The regression coefficients 168 

that connect the geophysical parameters and brightness temperatures were derived from the 169 

brightness temperature dataset calculated in advance. This dataset is calculated from the radiosonde 170 

atmospheric profiles, assumed sea surface parameters, and cloud layers by the radiative transfer 171 

model. SSW, CLW, and cloud altitude are randomly varied within realistic value ranges, and SST is 172 

randomly varied based on Reynolds SST around island site of radiosonde. 173 

 174 
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2.3 Radiosonde observations 175 

Radiosonde observations are a meteorological observation network that is routinely conducted by 176 

meteorological agencies around the world. Radiosonde observation networks are used internationally 177 

by the Global Telecommunication System (GTS). Radiosondes can directly measure meteorological 178 

parameters such as atmospheric pressure, air temperature, and relative humidity at various altitudes 179 

using balloons. Since TPW is vertically integrated water vapor, it can be calculated from the 180 

integrated observation data at each altitude. In this study, radiosonde data for 2013–2020 were used 181 

for validation. 182 

 183 

Radiosonde and AMSR2 data used for verification were selected based on observation time, the 184 

distance between observation points, quality, and uniformity. The selection method is as follows. First, 185 

AMSR2 Level 2 TPW data with observation time differences of less than 1 h and distance of less than 186 

30 km from radiosonde observations were collocated. Next, the radiosonde and AMSR2 data were 187 

left as candidates for matching up data only when the AMSR2 Level 2 TPW data collocated around 188 

radiosonde data contain at least five good-quality data samples (Quality Control is 0), and the 189 

maximum difference of AMSR2 data was less than 5 kg m-2. This is the same validation method 190 

routinely employed by JAXA (see the JAXA homepage: https://suzaku.eorc.jaxa.jp/cgi-191 

bin/gcomw/validation/gcomw_validation_tpwi2.cgi). We used the JAXA Level 2 data in the above 192 

process because JAXA Level 2 TPW products are available, but RSS are not. Last, the nearest JAXA 193 

and RSS Level 3 TPW data from the radiosonde observations selected in the above procedure were 194 
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searched within 60 km. Because observation paths cross during the day, especially at high latitudes, 195 

the data observed at different times were averaged on the same grid when generating the L3 daily 196 

product from the L2 data. Here, we excluded the grid where different time observations were averaged. 197 

 198 

2.4 GANAL 199 

Global ANALysis data (GANAL) is the global objective analysis data of the Japan Meteorological 200 

Agency (JMA). GANAL data are produced every 6 hours on a 0.5º equirectangular grid (see Outline 201 

of the Operational Numerical Weather Prediction at the Japan Meteorological Agency: 202 

https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2023-nwp/index.htm). In this study, we 203 

used daily mean SSW data (averaged 00, 06, 12, and 18 UTC data), relative humidity at various 204 

altitudes, and temperature at various altitudes from GANAL for 2018. 205 

 206 

2.5 MGDSST 207 

Merged satellite and in-situ data Global Daily Sea Surface Temperature (MGDSST) (Sakurai et al. 208 

2005) is a global daily SST product of JMA. MGDSST is a global 0.25º equirectangular grid of SST 209 

estimated from multiple satellite data, such as infrared sensors and microwave radiometers, and in-210 

situ observations by buoys and ships. In this study, we used data for 2018. 211 

 212 

2.6 NASA MODIS product 213 

The Aqua MODerate resolution Imaging Spectroradiometer (MODIS) is a visible and infrared 214 
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imaging radiometer on board the Aqua satellite in A-train orbit. The A-Train satellites, including 215 

GCOM-W and Aqua satellites, provide almost simultaneous observations of the same location, 216 

facilitating studies using multiple sensors. This study used Surface Reflectance and Cloud Properties 217 

products from Daily Level-3 products for July and August 2018. The resolution is a 0.05º grid for 218 

Surface Reflectance and a 1º grid for Cloud Properties. 219 

 220 

3. Comparison of JAXA and RSS TPW products 221 

3.1 Differences in temporal and horizontal distributions of TPW 222 

This section compares temporal and horizontal distributions of JAXA and RSS AMSR2 TPW 223 

products. Figure 1 shows the time series of the global monthly mean of AMSR2 TPW for JAXA (red) 224 

and RSS (blue) over the ocean from July 2012 to December 2020. The global monthly mean of JAXA 225 

TPW is smaller than that of RSS over the entire period. 226 

 227 

We analyzed the latitudinal zonal mean differences to investigate the differences between JAXA 228 

and RSS products found in Fig. 1. Figure 2 shows the time series of TPW product differences between 229 

RSS and JAXA, classified by the Northern Hemisphere (NH) mid-latitudes, the low latitudes, and the 230 

Southern Hemisphere (SH) mid-latitudes. It can be found that the latitudinal zonal mean of the TPW 231 

differences (RSS - JAXA) for the NH mid-latitudes (red) have large value of over 2 kg m-2 every 232 

boreal summer. That of the low latitudes and the SH mid-latitudes (green and blue) show smaller 233 

seasonal variations than NH mid-latitudes (red). In these regions (green and blue), the magnitude of 234 
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the mean of TPW differences is about 1 kg m-2. 235 

 236 

To further examine the seasonal and regional dependences of the TPW differences, we investigated 237 

the seasonal variation of the horizontal distribution of the TPW differences. Figure 3 shows the 238 

regional dependences of TPW differences averaged over January, April, July, and October for 2013–239 

2020. We used only the grid points estimated by both the JAXA and RSS Daily products in averaging. 240 

It can be found that only the data in July have large TPW differences of nearly 5 kg m-2 in the 241 

northwest Pacific and northwest Atlantic at 30º–60°N. A similar tendency was observed for the TPW 242 

differences in other boreal summer months, such as June and August (not shown). In other regions 243 

and seasons, the seasonal variation of the horizontal distribution of the TPW differences is relatively 244 

small, and the magnitude of TPW differences is about 1 kg m-2. Therefore, we separately discuss the 245 

large TPW differences seen in boreal summer in the NH mid-latitudes and the small TPW difference, 246 

which is season- and location-independent. 247 

 248 

3.2 Validation with radiosonde observations 249 

We compared and verified the accuracy of the JAXA and RSS TPW products using radiosonde 250 

observations. The comparisons were performed in the following two cases of seasons and regions. 251 

The first is a global comparison during all seasons of 2012–2020 (case A), and the second is a 252 

comparison of the NH mid-latitudes (30º–60º N, 120º E–30º W) during the boreal summer (July and 253 

August) of 2012–2020 (case B). The season and region of case B are those for which large TPW 254 
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differences are seen in Fig. 3. Figure 4 shows the distribution of the matched data collocated using 255 

the method of Section 2.3. For case A, there are 390 matched radiosonde sites and 4430 matched 256 

radiosonde observations. However, for case B, the number of matched radiosonde sites and the 257 

number of matched radiosonde observations are 23 and 252, respectively. The size of the plotted 258 

points in Fig. 4 indicates the number of observations at the same site. 259 

 260 

Figure 5 compares radiosonde and AMSR2 L3 TPW products of JAXA and RSS for case A. The 261 

value of the color bar indicates the number of matchup data that fall into the same bin. The mean bias 262 

and RMSE against the radiosonde TPW observation values are shown in Table 1. Bias=-0.369, 263 

RMSE=2.907 kg m-2 for the JAXA TPW product and bias=0.448, RMSE=2.770 kg m-2 for the RSS 264 

TPW product were obtained. The absolute values of mean bias and RMSE for the JAXA and RSS 265 

products are almost equal (almost the same accuracy), but the signs of the mean bias are opposite. 266 

The TPW difference is 0.448-(-0.369)=0.817, taking the difference in mean bias from the radiosonde. 267 

This value is consistent with the season- and location-independent difference of about 1 kg m-2 268 

between RSS and JAXA TPW products, as shown in Figs. 2 and 3. Therefore, this season- and 269 

location-independent TPW difference of about 1 kg m-2 is likely due to a combination of small 270 

systematic errors of less than 0.5 kg m-2 in both JAXA and RSS products. As shown in Section 2, the 271 

JAXA algorithm estimates the TPW based on LUTs, which are created from the radiosonde 272 

observations, MGDSST and GANAL SSW. The RSS algorithm estimates the TPW based on 273 

regression equations created from the radiosonde atmospheric profiles, randomly assumed sea surface 274 
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parameters and cloud layers. The causes of the systematic errors may be due to the differences in the 275 

methods (LUTs or regression) used in the two algorithms and the difference in the location and period 276 

of the in-situ observation data used to develop the TPW algorithm. 277 

 278 

The result of comparing radiosonde and AMSR2 L3 TPW products for case B is shown in Fig. 6. 279 

The mean bias and RMSE against radiosonde TPW observations are bias=-0.605, RMSE=2.312 kg 280 

m-2 for the JAXA TPW products and bias=1.498, RMSE=2.678 kg m-2 for the RSS TPW products. 281 

For both JAXA and RSS TPW products, the absolute value of mean bias is larger than the result for 282 

case A shown in Fig. 5. The mean bias of the JAXA TPW product is slightly smaller than that of the 283 

RSS TPW product. However, it should be noted that the number of matched data in the boreal summer 284 

of the NH mid-latitudes is much smaller than in global and all seasons, and the number of matched 285 

radiosonde sites is limited (shown in Fig. 4). The difference in mean bias between RSS and JAXA is 286 

1.498-(-0.605)=2.103, corresponding to the large TPW differences of over 2 kg m-2 found in Figs. 2 287 

and 3. We discuss a probable reason for this large TPW difference in Section 4. 288 

 289 

3.3 Long-term trends of TPW anomalies for JAXA and RSS products 290 

In the previous subsection, we discussed the differences in absolute values of JAXA and RSS TPW 291 

products that change within a year. In this subsection, we investigate whether there are differences in 292 

the long-term trends of water vapor anomalies. The results from the investigation are important for 293 

climate studies using JAXA or RSS TPW products. 294 
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 295 

Figure 7 shows the time series of the anomalies of the TPW global mean for JAXA and RSS 296 

products. To exclude seasonal variations of TPW, the anomalies were calculated by subtracting the 297 

monthly climate value from the monthly mean value for each product (JAXA and RSS). JAXA and 298 

RSS TPW products showed little difference in long-term anomaly trends, although the absolute values 299 

of TPW were different (shown in Fig. 1). The linear regression lines and their slopes (kg m-2 decade-300 

1) are shown for each time series observation in Fig. 7. The values of the water vapor trend for JAXA 301 

and RSS products are JAXA ascending, 0.38 ± 0.14 kg m-2 decade-1; RSS ascending, 0.44 ± 0.13 kg 302 

m-2 decade-1; JAXA descending, 0.41 ± 0.14 kg m-2 decade-1; and RSS descending, 0.43 ± 0.13 kg m-303 

2 decade-1. The method for calculating slope and error values was based on Chen and Liu (2016). 304 

TPW trend values for microwave satellites in previous studies analyzed over a period that partially 305 

overlapped the AMSR2 observation period were reported to be 0.436 kg m-2 decade-1 (Mears et al. 306 

2018) and 0.34 ± 0.10 kg m-2 decade-1 (Chen and Liu 2016). These are close to or within the error 307 

range of the value obtained by this study. In addition, the large anomaly values seen during 2015 and 308 

2016 are likely due to the El Niño that occurred from the boreal summer of 2014 to the spring of 2016 309 

(see JMA homepage: 310 

https://www.data.jma.go.jp/gmd/cpd/data/elnino/learning/faq/elnino_table.html). Positive water 311 

vapor anomalies corresponding to El Niño have been reported in other periods (Mieruch et al. 2008). 312 

 313 

Figure 8 shows the horizontal distribution of water vapor trends of JAXA and RSS TPW products 314 

https://www.data.jma.go.jp/gmd/cpd/data/elnino/learning/faq/elnino_table.html
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calculated for each 1º grid to examine the regional dependence of the water vapor trend. The dotted 315 

regions indicate significant trends at the 95% confidence level calculated by the t-test (Chen and Liu 316 

2016). Although only the ascending data is shown in the figure, the descending data indicate almost 317 

the same results (not shown). The regional dependences of the long-term anomaly trends for JAXA 318 

and RSS TPW products also show negligible differences. Compared to previous studies, the patterns 319 

of water vapor trends are not perfectly consistent because of the different analysis periods. However, 320 

trends such as alternating positive and negative zonal patterns symmetric to the equator are common 321 

(Wang et al. 2016; Mears et al. 2018; IPCC 2013). 322 

 323 

 324 

4. Discussion 325 

This section discusses the possible reasons for the large TPW differences (RSS - JAXA) observed 326 

in the northwest Pacific and northwest Atlantic Oceans during the boreal summer. Based on the 327 

principle of microwave radiative transfer, the primary error factors in TPW retrieval by passive 328 

microwave radiometers are sea surface physical quantities (sea surface temperature and sea surface 329 

wind speed), atmospheric physical quantities (cloud water, air temperature, and humidity), or a 330 

combination of these quantities. The sea surface quantities serve as background radiation, and the 331 

atmospheric quantities affect microwave radiation transmission. In previous research, significant 332 

warm air advection was known as the characteristic meteorological field in the northwest Pacific and 333 

northwest Atlantic Oceans during the boreal summer (Kubar et al. 2012). In the northwest Pacific, 334 
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during the boreal summer, the southwest winds are dominated by the Pacific High, resulting in warm 335 

and moist air being transported to a much colder sea surface across the SST front near the Kuroshio 336 

Current (Norris and Leovy 1994; Kubar et al. 2012). This warm air advection is known to cause fog 337 

which frequently occurs at north of the SST front (Klein and Hartmann 1993; Norris and Iacobellis 338 

2005). These warm air advection and fog make it possible to affect microwave observations and TPW 339 

retrievals. 340 

 341 

With this background in mind, we investigated the relationship between the TPW difference and 342 

the atmospheric and oceanic physical parameters, including the physical quantities related to 343 

atmospheric stability above the sea surface. In this study, we used MGDSST, GANAL SSW (2 m 344 

above the sea surface), and JAXA’s CLW products, which are used as input or output data in the 345 

JAXA TPW algorithm (Kazumori et al. 2012). The RSS AMSR2 SST, SSW, and CLW products, 346 

which are retrieved together with TPW by RSS Ocean Algorithms (Wentz 2000), were also used. The 347 

atmospheric profile data (temperature and humidity) were obtained from GANAL. We also focused 348 

on the difference between sea surface temperature (MGDSST) and GANAL air temperature at 1000 349 

hPa (T1000) as an indicator of atmospheric stability. Relative humidity at 1000 hPa (RH1000) was used 350 

as an indicator of the near-surface moistening. 351 

 352 

4.1 Correlation analysis 353 

Spatial correlations between TPW differences and other physical quantities related to microwave 354 
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radiation were investigated. Table 2 shows the pattern correlation coefficients between TPW 355 

differences and the other physical quantities for the global and 30º–60° N ranges, respectively. The 356 

pattern correlation coefficients were calculated by comparing the two-month average horizontal 357 

distributions of each geophysical quantity for July and August 2018. The values in Table 2 show that 358 

the differences between GANAL T1000 and MGDSST (T1000-SST) and GANAL RH1000 correlate 359 

strongly with the TPW differences; the absolute value of the pattern correlation coefficient is above 360 

0.5 for the global and about 0.7 for the 30º–60°N ranges. The horizontal distributions of TPW 361 

difference (a), T1000-SST (b), and RH1000 (c) are shown in Fig. 9. The horizontal distributions of T1000-362 

SST and RH1000 show a characteristic pattern in NH mid-latitudes. This pattern is similar to TPW 363 

differences in Fig. 9a. The spatial distributions of other physical quantities in Table 2 are not shown 364 

in Fig. 9. These have a characteristic pattern not only for the NH mid-latitudes but also for tropics 365 

and SH. Therefore, in Table 2, CLW, MGDSST, and SSW differences also have high correlation 366 

coefficients at 30º-60°N (above 0.5) but low correlation coefficients at the global level (below 0.5). 367 

Here we focus on T1000-SST and RH1000, which have high correlation coefficients (above 0.5) for both 368 

globally and at 30º-60°N. Focusing on these regions with large TPW differences, Fig. 10 shows scatter 369 

plots of the relationship (a) between TPW difference and T1000-SST and (b) between TPW difference 370 

and RH1000, respectively, using only the 30º–60°N region data for July and August 2018. Figures 9b 371 

and 10a show that the TPW difference tends to be large in the T1000-SST > 0 region. Figures 9c and 372 

10b show that the TPW differences tend to increase as RH1000 increases. These meteorological 373 

conditions, where T1000 is warmer than SST and RH1000 is very high, are consistent with the 374 
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characteristic warm air advection and sea fog in the northwest Pacific in boreal summer shown by 375 

previous studies (Norris and Leovy 1994; Kubar et al. 2012). 376 

 377 

The seasonal and regional dependences of the frequency of the above characteristic cases 378 

(T1000>SST and RH1000~100%) were investigated. For the detail, the number of occurrences that 379 

satisfy T1000-SST > 2°C and RH1000>95% was counted for each grid point in January, April, July, and 380 

October of 2018. The results for each month are shown in Fig. 11. The frequency of the cases that 381 

satisfy T1000 -SST>2°C and RH1000>95% occur most frequently in July in the northwest Pacific and 382 

northwest Atlantic. It is also found that the regional and seasonal dependences of the frequency in 383 

Fig. 11 are similar to those of the TPW differences in Fig. 3. 384 

 385 

4.2 Investigation of atmospheric vertical profile 386 

Previous studies have reported that when subtropical warm moist air is advected to the cold sea on 387 

the polar side, the lower atmosphere becomes more stable, which suppresses cumulus development 388 

and allows fog and lower-level clouds to form and persist at lower altitudes (Norris and Iacobellis 389 

2005; Klein and Hartmann 1993). The averages of the atmospheric vertical profiles were calculated 390 

to investigate the atmospheric stability in regions with large TPW differences. Figure 12 shows the 391 

averages of the atmospheric vertical profiles in the 30º–60° N region for July and August 2018, 392 

classified by TPW difference values. Here, the daily mean atmospheric profiles of GANAL are 393 

averaged over two months of data. The TPW difference ΔV kg m-2 is divided into ΔV>5 (red), 394 
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4<ΔV<5 (yellow), 3<ΔV<4 (green), 2<ΔV<3 (light blue), 1<ΔV<2 (blue) and ΔV<1 (black). From 395 

Fig. 12a, the humidity profile for a larger TPW difference has the greater relative humidity in the 396 

lower atmosphere, which is close to 100%, indicating meteorological conditions suitable for fog 397 

formation. Focusing on the air temperature profile (Fig. 12b), the temperature lapse rate in the lower 398 

atmosphere becomes smaller as the TPW difference increases. In particular, the temperature lapse 399 

rate between 925 and 1000 hPa is negative for ΔV>5. To discuss the atmospheric stability, the 400 

equivalent potential temperature profile was also calculated from the relative humidity and 401 

temperature profiles (Fig. 12c). The equivalent potential temperature profile indicates that the more 402 

stable inversion layer is formed in the lower atmosphere at the large TPW difference region. When 403 

fog is present over the ocean, this inversion layer helps to maintain fog in the lower atmosphere. To 404 

clear up the dependence of the atmospheric profiles on the TPW difference, this analysis was limited 405 

to the range of typical TPW values (30–50 kg m-2) in the mid-latitude range. The results for all TPW 406 

values are not shown, but the tendencies described above remain the same. Whether fog occurs over 407 

the ocean is discussed in Section 4.3. 408 

 409 

The same analysis as above was performed using matched radiosonde atmospheric profile data. 410 

The matching details are given in Sections 2.3 and 3.2. Although the number of comparison data of 411 

radiosonde is less than that of GANAL data, radiosonde data have advantages that they are actual 412 

observations and have higher vertical resolution than GANAL. Four examples of atmospheric profiles 413 

observed by radiosonde on different days in July and August at Shemya Island, located at 52.72° N 414 



 22 

and 174.10° E, are shown in Fig. 13(a). In the examples shown in blue and green solid lines, the 415 

radiosonde-matched AMSR2 TPW difference (RSS- JAXA) is small (ΔV = 1.16 and 1.45 kg m-2, 416 

respectively), while in the examples shown in yellow and red solid lines, the TPW difference is large 417 

(ΔV = 4.73 and 6.30 kg m-2). In the cases with larger TPW differences (yellow and red), there is a 418 

temperature inversion layer in the lower atmosphere, and the lower atmosphere has 100% relative 419 

humidity. In comparison, there is no such trend for smaller TPW differences (blue and green) cases. 420 

Figure 13(b) shows the average radiosonde atmospheric profiles classified by the TPW difference. 421 

Here, the data were averaged and plotted every 20 hPa. As in Section 3.2, the period of data is the 422 

boreal summer (July and August) of 2012–2020 for the NH mid-latitudes (30º–60 º N, 120 º E–30 º 423 

W). Although some of the data have a large noise, the atmospheric profiles of radiosondes show that 424 

the relative humidity is very high in the lower atmosphere and that an inversion layer is formed in the 425 

large TPW difference cases. These results for radiosonde have the same tendency as the results for 426 

GANAL (shown in Fig. 12). 427 

 428 

4.3 Evidence of fog occurrence 429 

The analyses in the previous sections have shown that the meteorological conditions are favorable 430 

for the development and maintenance of fog in the region where the TPW differences are large. In 431 

this subsection, we use MODIS data to examine the relationship between cloud characteristics and 432 

TPW differences. The local time of observation of MODIS is almost the same as that of AMSR2 433 

because both are in A-train orbit. Figure 14 shows the AMSR2 TPW difference (a) and MODIS visible 434 
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(b) and infrared (c) images (merged daily) on August 2, 2018. In general, fog and lower clouds are 435 

optically thicker in the visible region and, therefore, brighter (whiter) in the visible image. On the 436 

other hand, fog and lower clouds have higher cloud-top temperatures due to their lower cloud tops 437 

and thus appear warmer (blacker) in the infrared image. In the region where the TPW differences are 438 

large (Fig. 14a), some convective cloud areas are bright in both visible and infrared images (Figs. 14 439 

b and c), but the fog and lower cloud areas that are bright in the visible image and dark in the infrared 440 

image also widely spread. 441 

 442 

Statistical analyses were performed using MODIS cloud products to clarify the relationship. Figure 443 

15 shows histograms of the MODIS cloud-top height data, classified by TPW differences. Here, the 444 

frequencies on the vertical axis were normalized, and the analysis period is July and August 2018. In 445 

the region with the TPW difference ΔV ≤ 2 kg m−2 (Fig. 15a), clouds with a cloud top of 1–2 km 446 

are the most frequent, while in the region with 2 kg m−2 < ΔV < 4 kg m−2  (Fig. 15b), the 447 

percentage of lower clouds near the sea surface increases compared to Fig. 13a. Furthermore, in the 448 

region with the TPW difference ΔV ≥ 4 kg m−2  (Fig. 15c), near-surface clouds or fog are most 449 

frequent, indicating that fog appears more frequently as the TPW differences increase. 450 

 451 

Thus, we discussed the possible reason for the large TPW differences in the northwestern Pacific 452 

and northwestern Atlantic boreal summer. It was found that the TPW differences are large when the 453 

relative humidity in the lower atmosphere is close to 100% and the T1000 is higher than the SST. It 454 
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was also found that a temperature inversion layer is likely to form in the lower atmosphere in a large 455 

TPW difference region. These meteorological conditions were observed most frequently in the boreal 456 

summer of the northwestern Pacific and northwestern Atlantic. These meteorological conditions are 457 

favorable for the development and maintenance of fog. The analyses and comparisons with MODIS 458 

data showed that the cloud or fog near the sea surface was more frequent in regions with larger TPW 459 

differences. 460 

 461 

4.4 Influence of inversion layer and fog on the TPW algorithm 462 

This section discusses the influence of inversion layers and sea fog on the JAXA and RSS TPW 463 

retrieval algorithm using a Radiative Transfer Model (RTM). 464 

 465 

Correct information about the temperature profile is required to estimate TPW from the microwave 466 

brightness temperature observations precisely. However, temperature information cannot be obtained 467 

from AMSR2 observations. Thus, both TPW algorithms need to represent temperature profiles 468 

through LUTs or regression coefficients. As described in Section 2, the LUTs in the JAXA algorithm 469 

and the regression coefficients in the RSS algorithm are statistically determined using in-situ data, 470 

such as radiosonde observations, so they strongly reflect information from temperature profiles 471 

frequently observed by radiosonde. These temperature profiles are considered to have standard 472 

temperature lapse rates. That is, neither JAXA nor RSS algorithms can correctly represent a 473 

characteristic temperature lapse rate in an inversion layer. 474 
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 475 

As described in Section 2, the JAXA algorithm uses GANAL 850 hPa temperature data as auxiliary 476 

data, whereas the RSS algorithm does not use any auxiliary data and estimates SST simultaneously. 477 

For simplicity, we can approximate that the JAXA TPW algorithm assumes a temperature profile with 478 

a standard temperature lapse rate based on the GANAL 850 hPa air temperature and that the RSS 479 

TPW algorithm assumes a temperature profile with a standard temperature lapse rate based on surface 480 

air temperature consistent with the SST estimated simultaneously. 481 

 482 

Based on the above approximation, sensitivity experiments were conducted with a simple 483 

atmospheric model including an inversion layer and fog. The green line in Fig. 16 represents the 484 

temperature profile with an inversion layer below 850 hPa (case I), similar to the temperature profiles 485 

of the reanalysis (Fig.12) and radiosonde (Fig.13). The temperature profile of case I has a standard 486 

temperature lapse rate of 6.5 K km-1 in the higher levels above 850 hPa. Here, we consider case I as 487 

the actual temperature profile with an inversion layer. In contrast to case I, the red line (case J) in Fig. 488 

16 is a temperature profile with a lapse rate of 6.5 K km-1 and the same 850 hPa temperature values 489 

as case I. The blue line (case R) is a temperature profile with a lapse rate of 6.5 K km-1 and the same 490 

surface temperature values as case I. It can be considered that the temperature profile represented in 491 

the JAXA TPW algorithm is close to case J, and the temperature profile represented in the RSS TPW 492 

algorithm is close to case R. It should be noted that cases J and R were idealized to investigate the 493 

effect of the inversion layer, and we cannot know the actual temperature profiles assumed in the 494 
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JAXA and RSS algorithms. Figure 16 indicates that case J overestimates temperatures compared to 495 

case I in the lower atmosphere, while case R underestimates temperatures compared to case I for all 496 

altitudes. Figure 16 also shows profiles of water vapor and cloud water content. Water vapor has a 497 

simple profile that decreases exponentially in the upper layers, and the TPW value is 22.1 kg m-2. In 498 

later sensitive experiments, the radiative transfer calculations were repeated, varying this water vapor 499 

profile by a constant factor. For cloud water, we assumed a uniform fog with a cloud particle size of 500 

18 μm and a thickness of 1 km from the ground. 501 

 502 

First, the brightness temperatures (TB) were calculated for the three temperature profiles (cases I, 503 

J, and R) by RTM. The TB differences from case I were examined for cases J and R, respectively. We 504 

used the Joint Simulator for Satellite Sensors (Hashino et al. 2013, 2016) as the RTM. The observation 505 

frequency and zenith angle of AMSR2 were assumed, and sea surface conditions such as SST and 506 

SSW are common. Here, we focused on the vertical polarization of TB at the three frequencies (18.7, 507 

23.8, and 36.5 GHz) that were used mainly for the TPW retrieval algorithm (Kazumori et al. 2012). 508 

The TB for case I (TBi) calculated from the case I air temperature, water vapor, and cloud water 509 

profiles shown in Fig. 16 can be considered as the TB observed by satellite under the actual 510 

atmospheric profile with an inversion layer. The TB for cases J (TBj) and R (TBr) were calculated 511 

from the temperature profiles of cases J and R, respectively. These first calculations used the same 512 

water vapor and cloud water profiles as in case I. The broken lines in Figs. 17a and b show the TB 513 

differences from TBi for cases J (TBj - TBi) and R (TBr - TBi), respectively. Figure 17 shows that the 514 
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TB difference of 23.8 GHz is positively large in case J (Fig. 17a) and negatively large in case R (Fig. 515 

17b). This can be interpreted that the overestimation of the lower-level temperature in case J leads to 516 

the overestimation of the radiative signal from the lower-level water vapor while the underestimation 517 

of the temperature in case R leads to the underestimation of the radiative signal from the water vapor. 518 

 519 

In general, the TPW algorithm retrieves the TPW to be consistent with the observed TB (TBi in 520 

this case), so the TPW value when the TB errors from TBi is the smallest can be considered to be the 521 

optimal estimation of TPW under the assumption of temperature profiles for cases J and R, 522 

respectively. Therefore, the TB calculations for cases J (TBj) and R (TBr) were repeated, varying the 523 

water vapor profiles to minimize the TB errors from TBi. The errors were evaluated using the Root 524 

Mean Square of TB difference (𝑅𝑀𝑆𝑇𝐵 = √
1

3
 ∑ (𝑇𝐵𝑗 𝑜𝑟 𝑟,𝑓 − 𝑇𝐵𝑖,𝑓)2 3

𝑓=1 ) from TBi at 18.7, 23.8, and 525 

36.5 GHz. The water vapor profiles shown in Fig. 16 were increased or decreased by the same factor 526 

for all altitudes, and TPW was varied with an increment of 0.05 kg m-2. Figures 17a and b show the 527 

TB differences (TBj or r - TBi) at the minimum RMSTB for cases J and R, respectively. The RMSTB 528 

was minimized with a TPW of 21.9 kg m-2 for case J (solid red line) and 23.2 kg m-2 for case R (solid 529 

blue line). In the estimation of TPW (true value is 22.1 kg m-2) from TBi, the TPW is underestimated 530 

by the algorithm that assumes the case J temperature profile and is overestimated by the algorithm 531 

that assumes the case R temperature profile. Also, the absolute value of the TPW estimation error is 532 

larger in case R than in case J. This may be because case J overestimates the temperature only in the 533 

lower atmosphere, while case R underestimates the temperature over the entire altitude. 534 
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 535 

The above analysis was performed for idealized atmospheric profiles to investigate the effect of 536 

the inversion layer and sea fog. The TPW was underestimated in case J and was overestimated in case 537 

R. In addition, the TPW error estimation in case R was larger than that in case J. These results may 538 

explain why the JAXA products have a negative bias and the RSS products have a positive one from 539 

the radiosonde TPW (Fig. 6) and also why the absolute value of the bias for RSS was larger than that 540 

for the JAXA. 541 

 542 

5. Summary 543 

This study focused on comparisons and validations of the long-term AMSR2 total precipitable 544 

water (TPW) products estimated independently by the Japan Aerospace Exploration Agency (JAXA) 545 

and Remote Sensing Systems (RSS). 546 

 547 

It was found that the TPW differences (RSS-JAXA) could be classified into two types: a small 548 

TPW difference independent of season and location, and a large TPW difference found in the boreal 549 

summer of the northwestern Pacific and northwestern Atlantic. We also compared JAXA and RSS 550 

TPW products with radiosonde water vapor observations for the global ocean and all seasons (case 551 

A) and the northwest Pacific and northwest Atlantic in boreal summer (case B). The JAXA and RSS 552 

TPW products had the opposite sign of biases for radiosonde observations. JAXA and RSS products 553 

have lower accuracy in case B than in case A. The differences in mean bias from radiosonde between 554 
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JAXA and RSS products were about 0.8 kg m-2 for case A and more than 2 kg m-2 for case B, 555 

consistent with the TPW difference in the time series analysis. 556 

 557 

In addition to comparing the absolute values of the JAXA and RSS TPW products described above, 558 

we also compared the anomalies. The trend of TPW anomalies was calculated by subtracting the 559 

respective monthly mean values from both products. The results showed no significant differences in 560 

the global mean time series, water vapor trend values, or a regional dependence on water vapor trend. 561 

 562 

The TPW differences in the northwest Pacific and northwest Atlantic for the boreal summer were 563 

more than 5 kg m-2 in some areas. This study investigated the meteorological conditions that caused 564 

these large TPW differences. The results were that the TPW differences were more likely to appear 565 

when the relative humidity in the lower atmosphere was close to 100%, the T1000 was higher than SST, 566 

and a surface inversion layer occurred in the lower atmosphere. It was found that such meteorological 567 

conditions occurred most frequently in the northwest Pacific and northwest Atlantic during the boreal 568 

summer. These conditions were also favorable to the development and maintenance of fog. Analysis 569 

of MODIS data showed that lower clouds or fog with the cloud tops near the sea surface were more 570 

frequent in regions with larger TPW differences. 571 

 572 

Last, we discussed the influence of the inversion layer and sea fog on the JAXA and RSS TPW 573 

algorithms. Forward calculations of the RTM were performed with the simple atmospheric model 574 
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including an inversion layer and fog while varying the TPW. This analysis suggested that the inversion 575 

layer was associated with the underestimation of TPW for the JAXA algorithm and the overestimation 576 

of TPW for the RSS algorithm. These results would explain the biases of opposite signs from 577 

radiosonde observations of the JAXA and RSS TPW products. Improving the JAXA TPW algorithm 578 

while considering the influence of an inversion layer is a subject for future study. 579 

 580 

This study has focused only on AMSR2 data. AMSR2 has almost the same orbit and frequencies 581 

as AMSR-E, although the spatial resolution of AMSR2 is higher. AMSR-E observations are thus 582 

consistent with AMSR2 observations. However, the accurate evaluation of AMSR-E TPW still has 583 

issues related to the bias of brightness temperature (Geer et al. 2010), which will be addressed in the 584 

future. In addition, the GOSAT-GW satellite equipped with AMSR3 (the successor to AMSR2)  585 

(Kasahara et al. 2020) is currently scheduled for launch in FY2024. Consequently, the AMSR-E and 586 

the AMSR2 water vapor long-term dataset, combining AMSR3 observations, will become 587 

increasingly important. We will continue to validate the accuracy of AMSR-E and AMSR3 data to 588 

create a consistent long-term TPW dataset. 589 

 590 

 591 

Data Availability Statement 592 

JAXA AMSR2 Standard Product Level 2 ver. 2 and Level 3 ver. 2 data used in this study are 593 

available from the JAXA Satellite Data Distribution Site (G-Portal) (https://gportal.jaxa.jp/gpr/). 594 

https://gportal.jaxa.jp/gpr/
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The RSS AMSR2 Daily products used in this study are available from their website 595 

(www.remss.com/missions/amsr.). 596 

The radiosonde observations, objective analysis (GANAL), and MGDSST data used in this study 597 

are available from JMA. Restrictions apply to the availability of these data, which were used under 598 

an agreement between JAXA and JMA and are not publicly available. The data are available from 599 

the authors upon reasonable request, subject to permission from JMA. 600 

The MODIS data used in this study are available from the Level-1 and Atmosphere Archive & 601 

Distribution System Distributed Active Archive Center (LAADS DAAC) 602 

(https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/). 603 

The Joint Simulator for Satellite Sensors is described at https://www.eorc.jaxa.jp/theme/Joint-604 

Simulator/userform/js_userform.html. 605 

 606 
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Meteorological Agency provided the radiosonde observations, objective analysis (GANAL), and 615 

MGDSST data. MODIS data were obtained from the Level-1 and Atmosphere Archive & Distribution 616 

System Distributed Active Archive Center (LAADS DAAC) 617 

(https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/). The Joint Simulator for Satellite Sensors 618 

is described at https://www.eorc.jaxa.jp/theme/Joint-Simulator/userform/js_userform.html. 619 
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 1 

Fig. 1 Time series of the global monthly mean of AMSR2 TPW for JAXA and RSS over the ocean 2 

from July 2012 to December 2020. The solid lines represent the ascending orbit data (13:30 local 3 

time), and the broken lines represent the descending orbit data (01:30 local time). 4 

 5 

 6 

 7 

Fig. 2 Time series of the difference of the latitudinal zonal mean of TPW between RSS and JAXA. 8 



 1 

The latitudinal zonal means are classified by the northern hemisphere's mid-high latitudes (30º–9 

60° N), the tropics (30° S–30° N), and the southern hemisphere's mid-high latitudes (30-60°S).  10 

 11 

 12 

Fig. 3 Horizontal distribution of TPW differences averaged over January, April, July, and October 13 

for 2013–2020. 14 

 15 

 16 



 2 

 17 

Fig. 4 Distribution of the matched data between AMSR2 TPW (JAXA and RSS) and radiosonde 18 

observation for (a) global comparison during all seasons of 2012–2020 and (b) the northwest 19 

Pacific and northwest Atlantic (30º-60º N, 120º E-30º W) Oceans during the summer (July and 20 

August) of 2012–2020. 21 

 22 

 23 

 24 

Fig. 5 Global comparison of radiosonde and AMSR2 L3 TPW products of (a) JAXA and (b) RSS 25 

for all seasons of 2012–2020. The value of the color bar indicates the number of matchup data 26 

that fall into the same bin. 27 



 3 

 28 

 29 

Fig. 6 Comparison of radiosonde and AMSR2 L3 TPW products of (a) JAXA and (b) RSS in the 30 

northwest Pacific and northwest Atlantic Oceans (30º–60º N, 120º E–30º W) during the summer 31 

(July and August) of 2012–2020. 32 

 33 

 34 

Fig. 7 Time series of the anomalies of the TPW global mean for JAXA and RSS products. The 35 

linear regression lines and their slopes [kg m-2 decade-1] are also shown. 36 



 4 

 37 

 38 

 39 

Fig. 8 Horizontal distribution of water vapor trends of JAXA and RSS TPW products. The dotted 40 

regions indicate significant trends at the 95% confidence level calculated by the t-test. 41 

 42 

 43 

Fig. 9 Horizontal distributions of (a) TPW difference, (b) T1000-SST, and (c) RH1000 for July and 44 

August 2018. 45 

 46 

 47 
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 48 

Fig. 10 Scatter plots of the relationship (a) between TPW difference and T1000-SST and (b) between 49 

TPW difference and RH1000, using the 30º–60° N region data for July and August 2018. The 50 

value of the color bar indicates the number of data that fall into the same bin.  51 

 52 

 53 
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 54 

Fig. 11 The seasonal and regional dependences of the frequency of the cases which satisfy T1000-55 

SST > 2°C and RH1000>95% in January, April, July, and October 2018. The value of the color 56 

bar indicates the number of occurrences for each grid. 57 

 58 
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 59 

Fig. 12 Averaged atmospheric vertical profiles in the 30º–60° N region for July and August 2018. 60 

The atmospheric vertical profiles are classified by TPW difference values: ΔV>5 (red), 4<ΔV<5 61 

(yellow), 3<ΔV<4 (green), 2<ΔV<3 (light blue), 1<ΔV<2 (blue) and ΔV<1 (black). 62 

 63 



 8 

 64 

Fig. 13 (a) Example of the radiosonde atmospheric profiles. The observation date and TPW 65 

difference ΔV are shown in the legend. (b) Average of the radiosonde atmospheric profiles in the 66 

summer (July and August) of 2012–2020 for the Northwest Pacific and Northwest Atlantic (30º–67 

60 N, 120º E–30º W). The atmospheric vertical profiles are classified by the TPW difference: 68 

ΔV>5 (red), 3<ΔV<5 (yellow), 1<ΔV<3 (green), and ΔV<1 (blue).  69 

 70 
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 71 

Fig. 14 Daily merged images of (a) AMSR2 TPW difference (RSS-JAXA) and (b) MODIS visible 72 

(0.62–0.67 μm) and (c) infrared (10.78–11.28 μm) on August 2, 2018. 73 
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 74 

 75 

Fig. 15 Histograms of the cloud top height (CLTH) obtained by MODIS products in July and August 76 



 11 

2018, classified by TPW differences (RSS-JAXA) ΔV [kg m-2]: (a) ΔV<2, (b) 2<ΔV<4, (c) 77 

ΔV>4. 78 

 79 

 80 

Fig. 16 Atmospheric vertical profiles for the radiative transfer calculations by the Joint Simulator 81 

for Satellite Sensors. 82 

 83 
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 84 

Fig. 17 Results of sensitivity analysis. TPW dependences of the TB difference for (a) TB in case J – 85 

TB in case I and (b) TB in case R- TB in case I at three frequencies (18.7, 23.8, and 36.5 GHz).  86 

 87 
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Table 1.  Comparison of radiosonde observations with AMSR2 TPW (JAXA and RSS) 

 Bias 
[kg/m2] 

RMSE 
[kg/m2] 

RMSE (bias removed) 
[kg/m2] 

No. of data 

JAXA 
(Global, All period) 

-0. 369 2.907 2.883 4430 

RSS 
(Global, All period) 

0. 448 2.770 2.733 4430 

JAXA 
(30º–60ºN JA) 

-0.605 2.312 2.231 252 

RSS 
(30º–60ºN JA) 

1.498 2.678 2.220 252 

 

Table 2.  Pattern correlation coefficient with TPW difference (RSS-JAXA) and other geophysical parameters 

Data CLW 
(JAXA) 

CLW 
difference 

(RSS-JAXA) 

MGD
SST 

SST 
difference 

(MGDSST-
RSS SST) 

GANAL 
SSW 

SSW 
difference 
(GANAL - 
RSS SSW) 

GANAL 
T1000- 

MGDSST 

 GANAL 
RH1000 

Pattern 
Correlation 
Coefficient 
(Global) 

0.15 0.04 -0.25 0.18 -0.13 -0.43 0.53 0.74 

Pattern 
Correlation 
Coefficient 
(30–60º N) 

0.55 0.26 -0.61 -0.27 0.41 -0.61 0.71 0.69 

 


