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Abstract 31 

 32 

The performance of the Meteorological Research Institute-Atmospheric General 33 

Circulation model version 3.2 (MRI-AGCM3.2) in simulating precipitation is compared 34 

with that of global atmospheric models registered to the sixth phase of the Coupled Model 35 

Intercomparison Project (CMIP6). The Atmospheric Model Intercomparison Project 36 

(AMIP) experiments simulated by 36 Atmospheric General Circulation Model (AGCM)s 37 

and the High Resolution Model Intercomparison Project (HighResMIP) highresSST-38 

present experiments simulated by 23 AGCMs were analyzed. Simulations by MRI-39 

AGCM3.2S (20-km grid size) and MRI-AGCM3.2H (60-km grid size) are included as a 40 

part of the HighResMIP highresSST-present experiments. MRI-AGCM3.2S has the 41 

highest horizontal resolution of all 59 AGCMs. As for the global distribution of seasonal  42 

and annual average precipitation, monthly precipitation over East Asia and the seasonal 43 

march of rainy zone over Japan, MRI-AGCM3.2 models perform better than or equal to 44 

CMIP6 AMIP AGCMs and HighResMIP AGCMs. HighResMIP AGCMs (average grid size 45 

78 km) perform better than CMIP6 AMIP AGCMs (180 km) in simulating seasonal and 46 

annual precipitation over the globe, and summer (June to August) precipitation over East 47 

Asia. MRI-AGCM3.2 models perform better than or equal to CMIP6 AMIP AGCMs and 48 

HighResMIP AGCMs in simulating extreme precipitation events over the globe. 49 
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Correlation analysis between grid size and model performance using all 59 models 50 

revealed that higher horizontal resolution models are better than lower resolution models 51 

in simulating the global distribution of seasonal and annual precipitation and the global 52 

distribution of intense precipitation, and the local distribution of summer precipitation over 53 

East Asia.  54 

(243 words, Limited to 300 words) 55 

 56 

Keywords  Precipitation; Global atmospheric model; High horizontal resolution model; 57 

CMIP6 58 
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1.  Introduction 60 

The performance to simulate present-day climatology by Atmospheric General Circulation 61 

Models (AGCMs) is usually assessed by specifying the observed sea surface temperature 62 

(SST) as a underlying boundary condition. This kind of simulation is called the Atmosphere 63 

Model Intercomparison (AMIP) experiment. Lau et al. (1996),  Lau and Yang (1996), Liang 64 

et al. (2001), Kusunoki et al. (2001) and Kusunoki (2018a) analyzed AMIP experiments by 65 

AGCMs and reported that simulated precipitation in summer is smaller than observations 66 

over East Asia based. Also, Kang et al. (2002) and Kusunoki (2018a) indicated that most 67 

AGCMs do not reproduce the northward marching of summertime rainy zone over East Asia.  68 

However, Kusunoki et al. (2006), Kitoh and Kusunoki (2008) and Kusunoki (2018a) 69 

revealed that AGCMs with higher horizontal resolution perform better than those with lower 70 

horizontal resolution with respect to summer precipitation over East Asia. In the case of 71 

simulating heavy rainfall events, Kusunoki et al. (2006), Randall et al. (2007) and Endo et 72 

al. (2012) indicated the advantage of AGCMs with higher horizontal resolution over those 73 

with lower horizontal resolution. 74 

We have been developing a high horizontal resolution global atmospheric model called 75 

the Meteorological Research Institute – Atmospheric General Circulation Model (MRI-76 

AGCM) since year 2002. In view of the advantages of higher horizontal resolution models 77 

over lower ones in simulating precipitation over East Asia, a series of global warming 78 
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projections such as Kusunoki et al. (2006, 2011), Kusunoki and Mizuta (2008, 2012, 2013), 79 

Endo et al. (2012), Okada et al. (2017), Kusunoki (2017, 2018b, c), Chen et al. (2019), Lui 80 

et al. (2019) and Kusunoki and Mizuta (2021) utilized the 20-km and 60-km grid spacing 81 

versions of MRI-AGCM. The details of these studies are summarized in the Table 1 of 82 

Kusunoki and Mizuta (2021).  83 

Furthermore, future change in extreme precipitation events are projected by the 20-km 84 

and 60-km grid versions of MRI-AGCM over the globe (Kamiguchi et al. 2006; Kitoh and 85 

Endo 2016), over East Asia (Kitoh et al. 2009; Endo et al. 2012; Kusunoki 2018b; Lui et al. 86 

2019) and over Japan in rainy season (Kusunoki et al. 2006; Kusunoki and Mizuta 2008).     87 

Focusing the tropical region, future climate changes are projected with the 20-km and 60-88 

km grid versions of MRI-AGCM over Central America and the Caribbean region (Nakaegawa 89 

et al. 2014a, b, c) and over Panama (Pinzón et al. 2017; Kusunoki et al. 2019). The impact 90 

of future climate change over Panama are also investigated with the 20-km and 60-km grid 91 

versions of MRI-AGCM for river discharge (Fábrega et al. 2013) and crop yield (Martínez et 92 

al. 2020). 93 

Kusunoki (2018a) compares the performance of the 20-km and 60-km grid versions of 94 

MRI-AGCM with those of AGCMs participated in the fifth phase of the Coupled Model 95 

Intercomparison Project (CMIP5; Taylor et al. 2012). The 20-km and 60-km grid versions of 96 

MRI-AGCM performs better than CMIP5 AGCMs in simulating precipitation over East Asia 97 
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(Kusunoki 2018a). As for the global distribution of precipitation, Kusunoki (2017) reported 98 

that the 60-km grid version of MRI-AGCM performs better than CMIP5 AGCMs.  99 

The ability of simulating global distribution of meteorological variables such as annual 100 

average surface air temperature and annual precipitation by Atmosphere-Ocean General 101 

Circulation Model (AOGCM)s participated in the sixth phase of the Coupled Model 102 

Intercomparison Project (CMIP6; Eyring et al. 2016) has improved compared to CMIP5 103 

AOGCMs (Fig. TS.2c in Arias et al. 2021; Fig. 3.43 and FAQ 3.3 Figure 1 in Eyring et al. 104 

2021). The horizontal resolution of atmospheric part of AOGCM registered for CMIP5 is 105 

about 170 km (Fig. 1.19a in Chen et al. 2021a), while that for CMIP6 is about 130 km (Fig. 106 

1.19b in Chen et al. 2021a). Higher performance of CMIP6 AOGCMs compared to CMIP5 107 

AOGCMs can be partly attributed to higher horizontal resolution of CMIP6 AOGCMs 108 

(Section 1.5.3.1.1 in Chen et al. 2021a).  109 

As for extreme precipitation event, CMIP5 AOGCMs perform better than CMIP3 AOGCMs 110 

(Sillmann et al. 2013). Also, CMIP6 AOGCMs is better than CMIP5 AOGCMs in simulating 111 

extreme precipitation over North America (Srivastava et al. 2020) and East Asia (Chen et al. 112 

2021b). These improvements of model performance are partly attributed to the increase of 113 

horizontal resolution of CMIP AOGCMs. However, higher horizontal resolution CMIP6 114 

AOGCMs do not always perform better than lower horizontal resolution CMIP6 AOGCMs in 115 

simulating extreme precipitation event over North America (Akinsanola et al. 2020). 116 
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The High Resolution Model Intercomparison Project (HighResMIP) is designed to 117 

investigate the dependence of horizontal resolution of models on the performance of 118 

simulating climate (Haarsma et al. 2016). Dong and Dong (2021) revealed that precipitation 119 

biases over Asia by CMIP6 AOGCMs and HighResMIP AOGCMs are smaller than those by 120 

CMIP5 AOGCMs. Higher resolution HighResMIP AGCMs perform better than lower 121 

resolution HighResMIP AGCMs in simulating global precipitation over land (Bador et al. 122 

2020) and the seasonal march of rainy season and extreme precipitation event over 123 

Malaysia (Liang et al. 2021). Since the impact studies of global warming often requires high 124 

horizontal resolution precipitation as external forcing to, for example, river discharge model, 125 

precipitation projected by HighResMIP AGCMs are utilized to evaluate future change of river 126 

flow over Malaysia (Tan et al. 2021).  127 

However, systematic and comprehensive comparison between the performance of 128 

CMIP6 and HighResMIP AGCMs for global precipitation have not yet fully investigated. Also, 129 

it is indispensable to evaluate the performance of the 20-km and 60-km grids versions of 130 

MRI-AGCM in comparison with CMIP6 and HighResMIP AGCMs. Furthermore, it is 131 

informative to evaluate how uncertainty in observations affects the variability of model 132 

performance (Sperber et al. 2013; Bador et al. 2020b). 133 

The purpose of this study is to examine whether HighResMIP AGCMs perform better than 134 

CMIP6 AGCMs in simulating global distribution of precipitation. We also aim to investigate 135 
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whether MRI-AGCMs perform better than CMIP6 and HighResMIP AGCMs in simulating the 136 

global distribution of precipitation. Since MRI-AGCM has been developed to enhance higher 137 

reproducibility of precipitation distribution and seasonal march of rainy season over East 138 

Asia as well as the distribution and seasonality of global precipitation, we intend to compare 139 

the performance of MRI-AGCMs with those of CMIP6 AGCMs and HighResMIP AGCMs in 140 

simulating precipitation over East Asia. Moreover, we aim to evaluate how the performance 141 

of AGCMs depends on horizonal resolution and region. Finally, we examine how the 142 

uncertainty of verifying observation affects model performance. 143 

 144 

2.  Models and Experiments  145 

2.1  The MRI-AGCM3.2 models  146 

The MRI-AGCM version 3.2 (MRI-AGCM3.2) has been developed for climate simulations 147 

with high horizontal resolution (Mizuta et al. 2012). In this study, we used the 20-km grid 148 

spacing version MRI-AGCM3.2S (hereafter referred to as M20) and the 60-km grid spacing 149 

version MRI-AGCM3.2H (M60). Both version consist of 60 vertical levels. The top level is 150 

0.01 hPa equivalent to a altitude of about 80 km. We adopted the cumulus convection 151 

scheme called the “YS scheme” (Yoshimura et al. 2015) which is developed based on the 152 

method of Tiedtke (1989). M20 was used to investigate future precipitation changes in the 153 

Asian region as to extreme precipitation events (Endo et al. 2012) and Japanese rainy 154 
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season (Kusunoki et al. 2016; Kusunoki 2018b, c; Okada et al. 2017). In the case of the 155 

tropics, Kusunoki et al. (2019) utilized M20 to project future precipitation changes over 156 

Panama. 157 

Because M20 requires enormous supercomputer resources, large ensemble simulations 158 

is not easily feasible with M20. In contrast, the calculation speed by M60 is 5 times higher 159 

than that of M20. Ensemble simulations with M60 enable us to evaluate the uncertainty of 160 

future precipitation changes over Asian regions (Endo et al. 2012; Kusunoki and Mizuta 161 

2013; Kusunoki 2018b, c; Kusunoki and Mizuta 2021), over the globe (Kusunoki 2017) and 162 

in the tropics (Kusunoki et al. 2019). Moreover, M60 is used in the massive ensemble global 163 

warming simulations of about 100 members called the Database for Policy Decision-Making 164 

for Future Climate Change (d4PDF; Mizuta et al. 2017; Ishii and Mori 2020; Kusunoki and 165 

Mizuta 2021). 166 

 167 

2.2  The CMIP6 AMIP experiments  168 

We used 36 global atmospheric models (Table 1) which participated in the CMIP6 AMIP 169 

experiments coordinated for the sixth assessment report of Intergovermental Panel on 170 

Climate Change (IPCC AR6; IPCC 2021). The AMIP simulation is one of the primary base 171 

line experiments designated by the Diagnostic, Evaluation and Characterization of Klima 172 

(DECK ; Eyring et al. 2016) framework. “klima” is Greek word for climate. We selected 173 
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models that archived daily precipitation and used the Gregorian calendar. Nineteen models 174 

used a realistic Gregorian calendar that included a leap year, but other 17 models did not 175 

include a leap year. The grid spacing of models ranges from 56 to 313 km with the average 176 

of 180 km (Table 1, the last column). Models are forced by observed sea surface 177 

temperature (SST) and the sea ice concentration (SIC) of the Hadley Centre Sea Ice and 178 

Sea Surface Temperature data set 2 (HadISST 2; Rayner et al. 2003). Time resolution is 179 

monthly and horizontal resolution is 1 degree in longitude and latitude. The target period of 180 

CMIP6 AMIP experiments is 36 years from 1979 to 2014, but in this study we evaluated 181 

model performance for 20 years from year 1995 to 2014. Hereafter, we call the CMIP6 AMIP 182 

experiments as CMIP6 experiments for short. 183 

 184 

2.3  The HighResMIP experiments  185 

We also used 23 higher horizontal resolution global atmospheric models (Table 2) which 186 

participated in the High Resolution Model Intercomparison Project (HighResMIP ; Haarsma 187 

et al. 2016) as a part of CMIP6 framework. We selected models that archived daily 188 

precipitation and used the Gregorian calendar. Eighteen models used a realistic Gregorian 189 

calendar that included a leap year, but other 5 models did not include a leap year. The grid 190 

spacing of models ranges from 21 to 278 km with the average of 78 km (Table 2, the last 191 

column). The average grid size of HighResMIP models (78km) is higher than that of CMIP6 192 
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models (180km). The observational dataset of SST and SIC are almost the same as CMIP6 193 

experiments, but higher time resolution of daily and higher horizontal resolution of 0.25 194 

degree. The target period is 65 years from 1950 to 2014, but in this study we evaluated 195 

model performance for 20 years from year 1995 to 2014. This experiment is named as 196 

‘HighResMIP Tier 1 highresSST-present’ (Haarsma et al. 2016). The details of other external 197 

forcing such as aerosol and ozone for CMIP6 experiments and HighResMIP Tier 1 198 

highresSST-present experiments are summarized and compared in Table 1 of Haarsma et 199 

al. (2016). Here after, we call ‘HighResMIP Tier 1 highresSST-present experiments’ as 200 

HighResMIP experiments for short. 201 

 202 

2.4  Experiments by MRI-AGCM3.2 models 203 

According to the protocol of HighResMIP experiments, we have conducted one simulation 204 

by M20 (simulation name SPD) and four simulations by M60 (simulation name HPD, 205 

HPD_m01, HPD_m02, HPD_m03) starting from four different atmospheric initial conditions. 206 

The first character in simulation name indicates horizontal resolution of model (S; 20-km, H; 207 

60-km). The second character 'P' denotes present-day or historical simulation. The third 208 

character 'D' indicates the simulation code for HighResMIP. The SPD run is identical to 209 

experiment by the MRI-AGCM3.2S (Table 2, No. 21, label u) and the HPD run is identical to 210 

the experiment by MRI-AGCM3.2H (Table 2, No. 20, label t). In this study, we evaluated all 211 
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the four simulations by M60 (HPD, HPD_m01, HPD_m02, HPD_m03). 212 

 213 

3.  Observational data of precipitation  214 

Observational data of precipitation have difference and uncertainty especially for extreme 215 

precipitation event (Alexander et al. 2019; Masunaga et al. 2019; Bador et al. 2020a).  216 

Therefore, we used the multiple set of precipitation data to evaluate uncertainty of 217 

observation, because model performance depends on the selection of observational data 218 

(Sperber et al. 2013; Kusunoki and Arakawa 2015; Kusunoki 2018a; Bador et al. 2020b; 219 

Srivastava et al. 2020; Akinsanola et al. 2020; Chen et al. 2021; Dong and Dong 2021). 220 

 221 

3.1  The GPCP Version 3.2 Daily Precipitation Data Set (GPCPDAY)  222 

We verified model performance against the Global Precipitation Climatology Project 223 

(GPCP) Version 3.2 Daily Precipitation Data Set (GPCPDAY; Huffman et al. 2022). This data  224 

cover the whole globe region and the time period for 20 years from 2001 to 2020. Horizontal 225 

grid size is 0.5 degree in longitude and latitude corresponding to a longitudinal interval of 226 

about 56 km at the equator (Table 3). The GPCPDAY is based on the Integrated Multi-227 

satellitE Retrievals for GPM (IMERG; Huffman et al. 2015) which combines information from 228 

the Global Precipitation Measurement (GPM; Skofronick-Jackson et al. 2017) satellite 229 

constellation to estimate precipitation. Since the metrics of extreme precipitation events are 230 
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derived from daily precipitation data, the GPCPDAY is the highest horizontal resolution  231 

observational data to verify simulated extreme precipitation events over the whole globe 232 

(90°S-90°N). However, the GPCPDAY do not cover the part of simulated target period by 233 

models from 1995 to 2000. Pentad, monthly, seasonal and annual data are derived from 234 

daily precipitation data. For the evaluation of model skills, all model data were two 235 

dimensionally bi-linearly interpolated in longitude and latitude onto the 0.5-degree grid of the 236 

GPCPDAY.  237 

 238 

3.2  The GPCP 1ddv1.3 data  239 

To evaluate the uncertainty of observation, we also used the One-Degree Daily data (1dd) 240 

of GPCP v1.3 provided by Huffman et al. (2001) for 22 years from 1997 to 2018 (GPCP 241 

1ddv1.3). Horizontal grid size is 1.0 degree in longitude and latitude corresponding to a 242 

longitudinal interval of about 111 km at the equator (Table 3). This data also cover the whole 243 

globe, but the data do not cover the part of simulated period by models from 1995 to 1996. 244 

 245 

3.3. The TRMM data 246 

Some of the CMIP6 models and most of the HighResMIP models have higher horizontal 247 

resolution than the GPCPDAY (56 km). Thus, we also used higher horizontal resolution 248 

precipitation data of daily mean dataset of the Tropical Rainfall Measuring Mission (TRMM) 249 
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3B42 V7 (1998-2015, 18 years) and monthly mean dataset of the TRMM 3B43 V7 (1998-250 

2013, 16 years) provided by Huffman et al. (2007). The grid size is 0.25 degree which is 251 

equal to a spacing of about 28 km at the equator. However, the TRMM data only cover 50°S-252 

50°N. Pentad data are derived from daily data of TRMM 3B42 V7, while monthly, seasonal 253 

and annual data are derived from monthly data of TRMM 3B43 V7. Both the TRMM 3B42 254 

and 3B43 data do not cover the whole period of target simulated period (1995-2014).  255 

 256 

3.4  The APHRODITE data 257 

Furthermore, we also used precipitation data of the Asian Precipitation Highly Resolved 258 

Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE) 259 

V1901 MA (Monsoon Asia: 60.125-149.875°E, 14.875°S-54.875°N) compiled by Yatagai et 260 

al. (2009, 2012). Since this dataset is based on rain gauge observation, data coverage is 261 

limited to land only. The grid size is 0.25 degree which is equal to a spacing of about 28 km 262 

at the equator. The period of APHRODITE data is 18 years from 1998 to 2015 which do not 263 

cover the whole period of target simulated period (1995-2014). 264 

Table 3 summarizes the characteristics of observational precipitation data to verify 265 

simulated precipitation. Figure 1 compares horizontal resolution of CMIP6 models (Table 1), 266 

HighResMIP models (Table 2) and MRI-AGCM3.2 (Table 2, No. 20, 21) with that of 267 

observations (Table 3). Obviously, 1 degree resolution of the GPCP 1dd is too coarse to 268 
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verify higher resolution models, although the GPCP 1dd covers the whole globe. The 0.25 269 

degree resolution of the TRMM and the APHRODITE seem to be appropriate to verify higher 270 

resolution models, but those dataset have limitations in regional coverage. Therefore, 271 

models skill scores are calculated against the GPCPDAY data (0.50 degree). 272 

 273 

4.  Global precipitation  274 

4.1  Geographical distribution  275 

The global distributions of annal average precipitation (PAV, Table 4) are compared in Fig. 276 

2. In the GPCPDAY observation (Fig. 2a), precipitation is large over the Indian Ocean, the 277 

tropical area of the Pacific Ocean, the tropical area of the Atlantic Ocean and the Amazon. 278 

Similar feature also appears in the GPCP 1dd observation (Figs. 2b). Precipitation by the 279 

the TRMM observation (Fig. 2c) is larger than other observations (Figs. 2a, b) over the Indian 280 

Ocean and the Maritime continent. 281 

The multi-model ensemble (MME) average of CMIP6 models (Fig. 2d) generally well 282 

reproduces observed distribution (Figs. 2a-c). Focusing on the Maritime continent, although 283 

the CMIP6 MME average (Fig. 2d) overestimates GPCP observations (Figs. 2a-b), it is 284 

comparable to the TRMM observation (Fig. 2c). The bias of the CMIP6 MME average (Fig. 285 

2g) against the GPCPDAY (Fig. 2a) shows large positive (dark blue color) over the Maritime 286 

continent and the South Pacific Convergence Zone (SPCZ). In the case of the best-287 
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performing CMIP6 model (Fig. 2e) selected by root mean square error (RMSE) of global 288 

distribution against the GPCPDAY (Fig. 2a), positive bias (Fig. 2h) over the Maritime 289 

continent and the SPCZ is smaller than those of the CMIP6 MME average (Fig. 2g). In 290 

contrast, in the case of the worst-performing CMIP6 model (Fig. 2f), positive bias (Fig. 2i) 291 

over the Maritime continent and the SPCZ is larger than those of the CMIP6 MME average 292 

(Fig. 2g). 293 

HighResMIP models (Figs. 2j-l) also overestimate precipitation over the Maritime 294 

continent and the SPCZ (Figs. 2m-o). Similar biases also appear in MRI-AGCM3.2H (HPD; 295 

Figs. S1d, f) and MRI-AGCM3.2S (SPD; Figs. S1e, g). HPD shows larger precipitation 296 

(green) over the Maritime continent than SPD, while HPD shows smaller precipitation 297 

(purple) over the SPCZ than SPD (Fig. S1h). 298 

 299 

4.2. Skill evaluation 300 

In Fig. 3, the performances of CMIP6 and HighResMIP models for PAV are quantitatively 301 

evaluated by objective skill measures against the GPCPDAY (green circle). The perfect 302 

simulation coincides with the location of green circle. To evaluate the uncertainty of 303 

observation, the GPCP 1dd (green square) is also plotted. Figure 3a shows the bias and 304 

RMSE of simulations. Crosses (X) show individual models. In terms of bias (horizontal axis 305 

in Fig. 3a), the precipitation amount of the GPCP 1dd (green square) tends to be smaller 306 
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than the GPCPDAY (green circle), but difference among observation is smaller than the 307 

spread of models (crosses). In the case of linear skill measures such as bias (horizontal axis 308 

in Fig. 3a), the MME average (circle) is identical to the average of skill scores of all models 309 

(AVM; square). Since RMSE (vertical axis in Fig. 3a) is a nonlinear skill measure, the MME 310 

average (circle) differs from the AVM (square). 311 

 All CMIP6 models (Fig. 3a, black crosses) show positive bias mainly due to the 312 

overestimation of precipitation over the Maritime continent and the SPCZ (Figs. 2g-i). In 313 

terms of RMSE (vertical axis in Fig. 3a), the error of the MME average of CMIP6 models 314 

(black circle) is almost smaller than those of all individual CMIP6 modes (black crosses). 315 

This advantage of MME average over individual models is consistent with previous studies 316 

such as Lambert and Boer (2001), Gleckler et al. (2008), Reichler and Kim (2008), Kusunoki 317 

and Arakawa (2015), Kusunoki (2018a) and Akinsanola et al. (2020).  318 

All HighResMIP models (Fig. 3a, blue crosses) also show positive bias mainly due to the 319 

overestimation of precipitation over the Maritime continent and the SPCZ (Figs. 2m-o).  In 320 

Fig. 3a, the AVM of CMIP6 models (black square) is almost overlapped with the AVM of 321 

HighResMIP models (blue square), indicating that the AVM of the HighResMIP models is 322 

comparable to that of CMIP6 models in terms of bias and RMSE. This suggests that 323 

increasing horizontal resolution is not effective to reduce bias and RMSE for global 324 

distribution of PAV. The RMSE (vertical axis in Fig. 3a) of SPD (red cross) and HPDs (purple 325 
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crosses) are relatively smaller than or equal to those of CMIP6 models (black crosses) and 326 

HighResMIP models (blue crosses). The dependence of performance on horizontal 327 

resolution of model is precisely investigated in the later section 6. 328 

Figure 3b is the Taylor diagram (Taylor 2001) which demonstrates spatial correlation 329 

coefficient (SCC) between observation and model simulations as well as spatial variability. 330 

The distance from the origin point means the standard deviation of  simulated spatial 331 

distribution normalized by the ratio to the observed standard deviation. The radial distance 332 

of one means perfect simulation of spatial variability in magnitude. The angle from the y-axis 333 

implies SCC. The perfect simulation coincides with the location of green circle. Figure 3b 334 

indicates that the performance of HighResMIP models are almost comparable to that of 335 

CMIP6 models in terms of individual models (crosses), MME average (circles) and AVM 336 

(squares). SCCs of SPD (red cross) and HPD (purple crosses) are relatively larger than 337 

those of CMIP6 models (black crosses) and HighResMIP models (blue crosses). 338 

In the both panel of Fig. 3a and 3b, the positions of HPD (purple crosses) are nearer to 339 

the verifying observation (green circle) than that of SPD (red cross), indicating that lower 340 

resolution model perform better than higher resolution model in the case of MRI-AGCM3.2. 341 

Similar results is obtained for summer precipitation and heavy rainfall event over East Asia 342 

in the study using the 20-km, 60-km, 180-km grid size versions of the MRI-AGCM3.2 343 

(Kusunoki 2018a). Higher horizontal resolution models do not always perform better than 344 
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lower resolution model. Same issue is already indicated by previous studies on the Indian 345 

Monsoon rainfall simulated by AGCMs of 1990’s (Sperber and Palmer 1996), on extreme 346 

precipitation over North America simulated by CMIP6 AOGCMs (Akinsanola et al. 2020) and 347 

on global extreme precipitation over land simulated by HighResMIP AGCMs (Bador et al. 348 

2020b). 349 

It is by no means easy to identify the reason why M60 performs better than M20. One 350 

possibility is that the horizontal resolution (56 km) of the GPCPDAY still do not capture the 351 

small scale structure of precipitation represented in M20 and give rise to ostensible bias. 352 

We will discuss this issue later in the section 7 using higher horizontal resolution observation. 353 

Another possibility is that the only one simulation of M20 underestimates the estimated 354 

range of M20’s skill. 355 

 356 

4.3  Seasonality 357 

Model performance to simulate the global distribution of seasonal mean precipitation are 358 

further investigated. The biases of CMIP6 models (black) and HighResMIP models (blue) 359 

are generally larger in summer (June-August) than other seasons and annual mean (Fig. 360 

S2). The biases of SPD (red line) and HPD (purple line) are relatively larger than those of 361 

CMIP6 individual models (black short lines) and HighResMIP individual models (blue short 362 

lines) for all four seasons and annual mean (Fig. S2). 363 
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The RMSEs of models are generally larger in summer than other seasons and annual 364 

mean in terms of AVM (black and blue long thick lines), but the AVM of HighResMIP models 365 

(blue long thick line) is smaller than that of CMIP6 models (black long thick line) in summer 366 

(Fig. S3). The RMSEs of SPD (red line) and HPD (purple line) are smaller than or equal to 367 

those of CMIP6 individual models (black short lines) and HighResMIP individual models 368 

(blue short lines) for all four seasons and annual mean (Fig. S3). 369 

In the case of SCC, performances of models are almost similar for all four season and 370 

annual mean (Fig. S4). The AVM of HighResMIP models (blue long thick line) is larger than 371 

that of CMIP6 models (black long thick line) for all four seasons and annual mean (Fig. S4), 372 

This suggests the advantage of higher horizontal resolution models over lower resolution 373 

models in simulating global distribution of seasonal and annual precipitation. The SCCs of 374 

SPD (red line) and HPD (purple line) are larger than most of CMIP6 individual models (black 375 

short lines) and most of HighResMIP individual models (blue short lines) for all four seasons 376 

and annual mean (Fig. S4).  377 

Although the biases of M20 and M60 models tend to be slightly larger than those of CMIP6 378 

and HighResMIP models (Fig. S2), the advantage of M20 and M60 models over other 379 

models is evident in the case of RMSE (Fig, S3) and SCC (Fig. S4) for global distribution of 380 

seasonal and annual precipitation. This indicates the advantage of very high horizontal 381 

resolution models over lower resolution models in simulating seasonal averaged global 382 
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scale precipitation. 383 

 384 

4.4. Extreme precipitation events 385 

Table 4 shows the definition of extreme precipitation indices used for verification based 386 

on Frich et al. (2002). The maximum 5-day precipitation (R5d) is often used to define heavy 387 

precipitation events leading to water related disaster such as inundation and landslide. The 388 

maximum 1-day precipitation (R1d) is widely used to define the most extreme precipitation 389 

events happening once a year. On the other hand, consecutive dry days (CDD) is an index 390 

estimating the possibility of dry condition and drought. PAV is also included in Table 4 for 391 

comparison.  392 

Figure 4 compares the SCC of global distribution of extreme precipitation simulated by 393 

CMIP6 models, HighResMIP models and MRI-AGCM models. As for PAV, the AVM of 394 

HighResMIP models (blue long thick line) is slightly larger than that of the CMIP6 models 395 

(black long thick line). The SCC of MRI-AGCM models (red and purple lines) are larger than 396 

most of CMIP6 models (black short line) and most of HighResMIP models (blue short line).  397 

As for R5d, the SCC of models are generally smaller than that of PAV. The AVM of 398 

HighResMIP models (blue long thick line) is slightly larger than that of the CMIP6 models 399 

(black long thick line). The SCC of MRI-AGCM models are comparable to or larger than that 400 

of CMIP6 models and HighResMIP models. 401 
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In the case of R1d, the SCC of models are generally smaller than that of PAV and R5d, 402 

suggesting the difficulty to simulate highly heavy rainfall. The AVM of HighResMIP models 403 

(blue long thick line) is larger than that of the CMIP6 models (black long thick line). The SCC 404 

of MRI-AGCM models are comparable to or larger than that of CMIP6 models and 405 

HighResMIP models.  406 

As for CDD, The AVM of HighResMIP models (blue long thick line) is slightly larger than 407 

that of the CMIP6 models (black long thick line). The SCC of MRI-AGCM models (red and 408 

purple lines) are larger than most of CMIP6 models (black short line) and most of 409 

HighResMIP models (blue short line) . 410 

In summary, the AVM of HighResMIP models (blue long thick line) is larger than that of 411 

the CMIP6 models (black long thick line) for all four precipitation extreme indices. This 412 

suggests the advantage of higher horizontal resolution model over lower resolution model 413 

in simulating global scale precipitation extreme events. MRI-AGCM models (red and purple 414 

lines) perform better than most of other individual models (black and blue short lines) for 415 

PAV, R5d and CDD. This indicates the advantage of very high horizontal resolution models 416 

(MRI-AGCM3.2) over lower resolution models in simulating global scale precipitation 417 

extreme events. 418 

 419 

5.  Precipitation over East Asia 420 
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MRI-AGCM models has been developed to simulate properly all sorts of meteorological 421 

present-day climatology especially over East Asia which is characterized by large 422 

precipitation and distinctive rainy season. We have conducted many downscaling studies 423 

using MRI-AGCM models as outer boundary conditions of regional climate models over East 424 

Asia (Kitoh et al. 2009; Mizuta et al. 2017; Ishii and Mori 2020; Nosaka et al. 2020). Therefore, 425 

it is indispensable to validate the ability of MRI-AGCM to simulate precipitation climatology 426 

over East Asia. 427 

 428 

5.1  Geographical distribution  429 

The rainy season over Japan (the Baiu) starts in the middle of May and terminates in the 430 

end of July. Figure 5 compares observed precipitations with simulated precipitations in June. 431 

In the GPCPDAY observation (Fig. 5a), precipitation is larger over the Taiwan island, the 432 

southern part of China, the East China Sea and to the south of Japan, which corresponds 433 

to the Baiu rain band. This rainy zone is also presented in other observations with some 434 

differences (Figs. 5b, c). In the APHRODITE observation which is based on rain gauge data 435 

over land (Fig. 5d), large precipitation over the southern part of China and the western part 436 

of Japan is also presented as a part of the Baiu rain band.  437 

 The MME of the CMIP6 models simulates the Baiu rain band, but precipitation is 438 

severely underestimated (Fig. 5e). Even the best-performing CMIP6 model also 439 
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underestimate precipitation of the Baiu rain band (Fig. 5f). The worst-performing CMIP6 440 

model simulates erroneous excessive precipitation to the south of 25°N (Fig. 5g). The 441 

underestimation of precipitation over the Baiu rain band (brown color) is obviously 442 

recognized in bias distribution (Figs. 5h-j). HighResMIP models also underestimated the 443 

precipitation over the Baiu rain band (Figs. 5k-p). MRI-AGCM3.2H (HPD) is selected as the 444 

best-performing model of HighResMIP models (Fig. 5l) based on RMSE, but it still 445 

underestimates precipitation over the East China Sea and to the south of Japan. MRI-446 

AGCM3.2S (SPD; Figs. S5f, h) also shows similar distribution to HPD but with less 447 

precipitation as compared to HPD to the south of Japan (Figs. S5i; green color). 448 

 449 

5.2. Seasonality 450 

Figure 6 shows the seasonality of RMSE over East Asia for all models. In general, RMSEs 451 

are larger in summer (June to August) than other seasons. This is due to small SCC in 452 

summer (Fig. S6) and negative bias in June (Fig. S7). Also, the low performance of 453 

simulating tropical cyclone by models due to insufficient horizontal resolution might lead to 454 

large RMSE in summer. The AVMs of the HighResMIP models (blue long thick lines) are 455 

equal to or smaller than those of the CMIP6 models (black long thick lines) for all months 456 

(Fig. 6). The RMSEs of MRI-AGCM3.2 models (red and purple lines) are equal to or smaller 457 

than the AVMs of CMIP6 models (black long thick lines) and HighResMIP models (blue long 458 



25 

 

thick lines) for all months. This suggests the advantage of MRI-AGCM3.2 models over other 459 

models in simulating monthly precipitation over East Asia for all months, especially in 460 

summer. 461 

 462 

5.3. Seasonal march of the rainy season over Japan 463 

Figure 7 depicts the seasonal march of the Japanese rainy season (the Baiu) based on 464 

longitudinal averaged pentad precipitation over Japan. In the GPCPDAY observation (Fig. 465 

7a), the Baiu starts in the middle of May at latitude around 25°N. The Baiu migrates 466 

northward till the middle of July at latitude around 37°N. Other observations show similar 467 

northward migration of the Baiu (Figs. 7b, c). The MME average of CMIP6 models slightly 468 

simulates the Baiu (Fig. 7d), but precipitation amount is severely underestimated (Fig. 7g). 469 

Although the best-performing CMIP6 model well simulates northward migration of the Baiu 470 

(Fig. 7e), precipitation amount is still underestimated (Fig. 7h). The location of the Baiu in 471 

the worst-performing CMIP6 model is erroneously shifted to the north of observation (Fig. 472 

7f), resulting in the shortage of precipitation (Fig. 7i). The underestimation of precipitation 473 

during the Baiu period by HighResMIP models (Figs. 7j-o) is nearly similar to that by CMIP6 474 

models.  475 

Both HPD (Fig. S8d) and SPD (Fig. S8e) properly simulate northward migration of the 476 

Baiu, but they still underestimate precipitation during the Baiu period (Figs. S8f, g). HPD 477 
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simulates larger precipitation than SPD during the Baiu period (Fig. S8h; green color).    478 

In terms of objective skill scores (Fig. 8), many models show negative bias indicating 479 

underestimation of precipitation (horizontal axis in Fig. 8a). The RMSE (vertical axis in Fig. 480 

8a) of the AVM by HighResMIP models (blue square) is slightly smaller than that of CMIP6 481 

models (black square). Also, the magnitude of bias (horizontal axis in Fig. 8a) of the AVM by 482 

HighResMIP models (blue square) is slightly smaller than that of the CMIP6 models (black 483 

square). MRI-AGCM3.2 models (red and purple crosses) show smaller bias and RMSE than 484 

most of other models.   485 

In the Taylor diagram (Fig. 8b), the AVM of HighResMIP models (blue square) is nearer 486 

to the observation (green circle) than that of CMIP6 models (black square), indicating the 487 

advantage of the HighResMIP models over the CMIP6 models. The performance of MRI-488 

AGCM3.2 models are relatively higher than most of other models, especially as to SCC.  489 

In summary, the MRI-AGCM3.2 models have advantage over other models in simulating 490 

seasonal march of rainy season over Japan, although precipitation amount is still 491 

underestimated. 492 

 493 

5.4. Comparison with other regions 494 

Figure 9 compares the ability to simulate summer (June-August) precipitation over each 495 

square domain with the size of 30 degrees in longitude and latitude. Since spatial standard 496 
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deviation is generally larger in the tropics than in middle latitude and high latitude, RMSE 497 

tends to be larger in the tropics in most cases. In order to evaluate regional difference of 498 

model performance fairly, the RMSE of individual model is normalized by the ratio to spatial 499 

standard deviation at each domain. Then, all normalized RMSEs are averaged. Figure 9a 500 

shows the average of normalized RMSEs by CMIP6 models over each domain. Since 501 

models are forced with observed SST, model performance is generally higher (purple color) 502 

over sea than over land. However, normalized RMSEs are relatively large over East Asia. 503 

This means the difficulty of simulating summer precipitation over East Asia. The distribution 504 

of the average of normalized RMSEs by HighResMIP models (Fig. 9b) are qualitatively 505 

similar to CMIP6 models (Fig. 9a). Over East Asia, normalized RMSEs by HighResMIP 506 

models are smaller than those by CMIP6 models (Fig. 9c; blue color). This indicates that 507 

higher horizontal resolution models perform better in simulating summer precipitation over 508 

East Asia than lower horizontal resolution models. This advantage is also evident if model 509 

performance is evaluated by SCC for each domain (Fig. S9c). However, this advantage over 510 

East Asia is not clear in other seasonal and annual average precipitation (Figure not shown).    511 

 512 

6.  Skill dependence on horizontal resolution 513 

6.1  Global distribution 514 

Figure 10 shows the relation between the grid size of all 59 models (36 CMIP6 models 515 
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and 23 HighResMIP models) and model performance. Skill measure is SCC between 516 

observed global distribution of PAV and that simulated by models. Models of smaller grid 517 

size (higher horizontal resolution) tend to show higher SCC, therefore grid size and skill is 518 

negatively correlated. Note that the vertical axis is reversed in Fig. 10. The correlation 519 

coefficient between grid spacing and SCC is −0.441 which is greater than the 99 % 520 

significance level. This indicates the advantage of higher horizontal resolution in simulating 521 

global distribution of PAV. The similar advantage of higher horizontal resolution is found for  522 

seasonal average precipitation with above the 99% significance level (Fig. S10; black lines). 523 

As for skill measure of RMSE (Fig. S10; blue lines), the advantage of higher horizontal 524 

resolution is smaller than for skill measure of SCC (Fig. S10; black lines), but correlation 525 

between grid size and RMSE are still above the 95 % significance level for all seasons and 526 

annual mean. Although Fig. 3 suggests that the advantage of higher resolution of models 527 

(HighResMIP models) over lower resolution models (CMIP6 models) is not clear in terms of 528 

AVM (square mark) and MME average (circle mark), correlation statistics between grid size 529 

of model and model skill in Fig. 10 has directly revealed the advantage of higher resolution 530 

of models. 531 

The similar advantage of higher horizontal resolution model over lower resolution models 532 

is also found for simulating extreme precipitation event of R5d and R1d with the skill 533 

measure of SCC (Fig. S11). 534 
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In the case of Fig. 10, the highest SCC of 0.947 is attained by the ECMWF-IFS-HR with 535 

56 km grid size (Table 2, No. 8, label h), not by the highest horizontal model of MRI-536 

AGCM3.2S (SPD, 21 km, red cross; Table 2, No. 21, label u). This is consistent with previous 537 

findings that higher resolution models do not always perform better than lower resolution 538 

models (Sperber and Palmer 1996; Kusunoki 2018a; Akinsanola et al. 2020; Bador et al. 539 

2020). The model performance depends on horizontal resolution, but also on implemented 540 

physical process such as deep convection scheme (Sperber and Palmer 1996; Kusunoki 541 

2018a). Increasing spatial resolution alone is not sufficient to reduce model errors, and other 542 

improvements in physical processes and tuning should be explored (Bador et al. 2020). We 543 

will discuss this topic further in the later subsection of 6.4. 544 

 545 

6.2. Regionality 546 

The regional dependence of model skill on horizontal resolution is investigated. Figure 11 547 

illustrates whether higher horizontal resolution model perform better than lower resolution 548 

model in simulating summer (June-August) precipitation over each domain with the size of 549 

30 degrees in longitude and 30 degrees in latitude. Skill measure is SCC over each domain. 550 

Correlation coefficients between grid size and model skill are calculated for all 59 models 551 

over each domain. The advantage of higher resolution model is evident over the tropical and 552 

northern Pacific Ocean, the Atlantic Ocean, the southern Indian Ocean and East Asia. 553 
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Similar tendency is also evident for other seasonal and annual average precipitation with 554 

some differences (figure not shown). In terms of RMSE, the result is almost similar with 555 

weaker relationship between grid size and model skill (figure not shown). 556 

 557 

6.3. Seasonality over Japan 558 

The advantage of higher resolution model over lower resolution model around Japan 559 

domain (120-150°N, 30-60°N; black box in Fig. S14a) is larger for summer precipitation than 560 

for other seasonal and annual average precipitation (Figure S12). As for simulating the 561 

seasonal march of rainy season over Japan in summer (Figs. 7-8), higher resolution models 562 

tend to perform better than lower resolution model (Fig. S13). These results indicated that 563 

higher resolution model is required for better simulation of summer precipitation over Japan. 564 

 565 

6.4. Comparison between low resolution and high resolution models in the same institute 566 

In the previous subsections of 6.1-6.3, all 59 models are used to evaluate dependence of 567 

model skill on horizontal resolution. However, physical processes implemented in models 568 

have large difference among institutions. This implies that the effect of difference in physical 569 

processes and the effect of difference in horizontal resolution are mixed and are not 570 

separated if we use all 59 models in skill-resolution correlation statistics. In HighResMIP, ten 571 

institutions submitted simulations conducted with low horizontal model and high resolution 572 
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model which share the same physical processes and vertical levels. Ten pairs of model 573 

names are listed in the left hand side of Table S1. With this ten pairs of models, relation 574 

between skill and horizontal resolution can be purely evaluated without any contamination 575 

caused by the effect of difference in physical processes. Table S1 compares the skill of low 576 

horizontal model and high resolution model in the same institute for seasonal and annual 577 

precipitation over Japan domain. In the case of skill measure of SCC, seven high resolution 578 

models perform better than corresponding low resolution models in the same institute for 579 

summer precipitation over Japan domain. The advantage of high resolution model over low 580 

resolution model is not found in other seasonal and annal average precipitation. In the case 581 

of RMSE, the advantage of high resolution model is found for summer (80%) and autumn 582 

(70%).   583 

Fig. S14 shows the geographical distribution of the percentage of high resolution model 584 

which outperforms corresponding low resolution models in the same institute. Target 585 

variable is summer precipitation. The advantage of high resolution model is evident over 586 

Asia region, especially over East Asia.  587 

As for the global distribution of seasonal and annual average precipitation, the advantage 588 

of higher resolution model over lower resolution model is not clear. 589 

 590 

7. Uncertainty of observational data 591 
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Observational data which has horizontal resolution higher than 1 degree in longitude and 592 

latitude have large difference and uncertainties in representing intense precipitation events 593 

(Herold et al. 2017; Kitoh and Endo 2019). To evaluate the uncertainty of observational data, 594 

we have verified the performance of models against additional precipitation observation 595 

dataset of the TRMM and APHRODITE data with the horizontal resolution of 0.25 degree.   596 

 597 

7.1  The TRMM data 598 

Fig. S15 compares the distribution of extreme precipitation R1d by the TRMM 599 

3B42V7data (0.25 degree), the GPCPDAY V3.2 data (0.50 degree) and the GPCP 1ddV1.3 600 

data (1.0 degree). Because the TRMM data only covers 50°S-50°N, target region is limited 601 

to 50°S-50°N in Fig. S15. The distribution of R1d by the GPCPDAY data (global average 602 

77.8 mm) is almost similar to the TRMM data (75.2 mm) with the spatial correlation 603 

coefficient of 0.916. In contrast, The GPCP 1dd data severely underestimates R1d 604 

precipitation especially over the tropics as compared to higher resolution observations of 605 

TRMM data and GPCPDAY data. 606 

Figure 12 compares SCCs verified against the GPCPDAY data and the TRMM data as to 607 

the distribution of R1d over 50°S-50°N. In the case of CMIP6 (black) and HighResMIP (blue) 608 

models, model performance verified against the TRMM data is almost comparable to or 609 

slightly better than that by the GPCPDAY data. In the case of MRI-AGCM (red and purple) , 610 
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model performance verified against the TRMM data is almost comparable to that by the 611 

GPCPDAY data. Small differences of model performance verified against the GPCPDAY 612 

data and the TRMM data implies the robustness of verification using the GPCPDAY data.  613 

 614 

7.2  The APHRODITE data 615 

We have verified model performance for precipitation over East Asia (110-150°N, 20-616 

60°N) using the APHRODITE V1901 MA (Monsoon Asia) data which has a high resolution 617 

of 0.25 degree (28 km; Table 3), but it covers only land area. RMSE against the APHRODITE 618 

MA data (Fig. S16) is qualitatively similar to RMSE against the GPCPDAY data (Fig. 6) in 619 

that RMSEs are larger in warmer season, although direct comparison between two kinds of 620 

RMSE is not appropriate because the APHRODITE MA data is limited to land only. Note that 621 

vertical axis range in Fig. S16 is smaller than Fig. 6. In Fig. S16, the RMSEs of HighResMIP 622 

models in terms of the AVM (blue long line) in warmer season are smaller than that of CMIP6 623 

models (black long line), which is qualitatively similar to Fig. 6. Also, the RMSEs of MRI-624 

AGCM models (red and purple) are smaller or equal to those of CMIP6 models and 625 

HighResMIP models in warmer season (Fig. S16), which is also qualitatively similar to Fig. 626 

6.  627 

SCCs by the APHRODITE MA data (Fig. S17) basically represent the similar 628 

characteristics as that by the GPCPDAY data (Fig S6) regarding smaller skills in warmer 629 
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seasons, the advantage of HighResMIP models over CMIP6 models and large advantage 630 

of MRI-AGCMs. 631 

Biases by the APHRODITE MA data (Fig. S18) tend to show positive value from January 632 

to October in contrast to negative biases by the GPCPDAY data from May to December (Fig. 633 

S7). In Fig. S18, biases of HighResMIP models in terms of the AVM (blue long line) is smaller 634 

than or equal to those of CMIP6 models (black long line) for all months. This advantage of 635 

HighResMIP models over CMIP6 models are not so evident in the case of the GPCPDAY 636 

data (Fig. S7). The biases of MRI-AGCM3.2 models are nearly comparable to those of 637 

CMIP6 models and HighResMIP models in most months (Fig. S18).  638 

In summary, large similarity between model performance verified against the 639 

APHRODITE MA data and the GPCPDAY data for the skill measures of RMSE and SCC 640 

enhances the robustness of verification by the GPCPDAY data over Monsoon Asia region. 641 

 642 

7.3. Skill dependence on horizontal resolution 643 

We have evaluated skill dependence on horizontal resolution using the TRMM 3B42V7 644 

data. Figure 13 compares correlation coefficient between grid size and the SCC of extreme 645 

precipitation indices verified against the TRMM data and the GPCPDAY data over 50°S-646 

50°N region. The correlations coefficient between grid size and the SCC verified against the 647 

TRMM data (red) are almost comparable to that by the GPCPDAY data (black) as for PAV, 648 
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R5d and R1d. This gives robustness of relationship between model grid size and model 649 

performance verified against the GPCPDAY data for moderate and intense precipitation.  650 

As for CDD, relation between grid size and skill is very weak. This is reasonable because 651 

CDD often appears as a result of extreme dry condition over large scale region which can 652 

be well reproduced even by low resolution models. 653 

 654 

8.  Conclusions 655 

We have compared the performance of CMIP6 AGCMs, HighResMIP AGCMs, MRI-656 

AGCM3.2s in simulating precipitation. The performance of HighResMIP models is equal to 657 

or slightly better than CMIP6 models in simulating global distribution of seasonal and annual 658 

precipitation. In terms with RMSE and SCC, MRI-AGCMs perform better than CMIP6 models 659 

and HighResMIP models in simulating global distribution of seasonal and annual  660 

precipitation. Although most of CMIP6 models and most of HighResMIP models 661 

underestimate monthly precipitation in warmer season (May to August) over East Asia, 662 

HighResMIP models perform better than CMIP6 models. The performance of MRI-AGCMs 663 

is equal to or better than CMIP6 and HighResMIP models in simulating monthly precipitation 664 

over East Asia for all 12 months. Most of CMIP6 and HighResMIP models fail to simulate 665 

northward migration of rainy zone over Japan resulting in underestimation of precipitation 666 

during rainy season over Japan. However, MRI-AGCMs perform better than any other 667 
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models. The advantage of HighResMIP models over CMIP6 models in simulating spatial 668 

distribution of summer (June to August) precipitation is more evident over East Asia than 669 

any other regions in the globe.  670 

Based on correlation analysis between grid size and model performance using all 59 671 

models, higher horizontal resolution models perform better than lower resolution models in 672 

simulating global distribution of seasonal and annual precipitation. The advantage of higher 673 

resolution models over lower resolution model is evident in simulating seasonal march of 674 

rainy zone over Japan. The advantage of higher resolution model over lower resolution is 675 

remarkable over East Asia in simulating summer precipitation compared to other seasons.  676 

Verifications against the TRMM (0.25 degree) data and the APHRODITE MA data (0.25 677 

degree) are basically similar to and consistent to those by the GPCPDAY (0.50 degree). This 678 

gives robustness of the results obtained in this paper. 679 

 680 

Data Availability Statement 681 
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 983 

Fig. 1. The grid sizes (km) of CMIP6 AMIP AGCMs (Table 1), HighResMIP AGCMs (Table 984 

2) , MRI-AGCMs (Table 2; t, u) and observations (Table 3). Dots denote individual models. 985 

Black long line denotes the average of CMIP6 models (180km). Blue long line denotes 986 

the average of HighResMIP models (78km). Plots of MRI-AGCMs are also included in 987 

HighResMIP models.  988 

 989 

 990 
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 992 

Fig. 2. The global distributions of climatological annual precipitation PAV (mm day-1). (a-c) 993 

Observations (Table 3). (d) CMIP6 multi-model ensemble (MME) average for the period 994 

of 20 years from 1995 to 2014. (e) The best-performing CMIP6 model based on the root-995 

mean square error (RMSE, Fig. 3a) against GPCPDAY V3.2 observation (a). R : RMSE 996 

(mm day-1, Fig. 3a). B: Bias (mm day-1, Fig. 3a). C : Spatial correlation coefficient (SCC; 997 

non-dimension, Fig. 3b). (f) Same as (e) but for the worst-performing CMIP6 model. (g) 998 

Bias of the CMIP6 MME average. (h) Bias of the best-performing CMIP6 model. (i) Bias 999 

of the worst-performing CMIP6 model. (j-l) Same as (d-f) but for HighResMIP models. (m-1000 

o) Same as (g-i) but for HighResMIP models. 1001 

  1002 
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 1003 

Fig. 3. Model skills. (a) A scatter diagram between bias and RMSE for simulated annual 1004 

precipitation over the globe. Models are verified against the GPCPDAY data (green circle). 1005 

The GPCP 1ddv1.3 data is also shown by green square. Black crosses denote individual 1006 

CMIP6 models. Black circle denotes the CMIP6 MME average. Black square denotes the 1007 

average of skill scores (AVM) of all CMIP6 models. Blue marks denote HighResMIP 1008 

models. Red cross shows MRI-AGCM3.2S (the 20-km model; SPD). Purple crosses show 1009 

all four members of MRI-AGCM3.2H (the 60-km model; HPD, HPD_m01, HPD_m02, 1010 

HPD_M03) simulations. Units are mm day-1. The domain average of observation is 1011 

displayed above the panel. (b) The Taylor diagram (Taylor 2001). Distance from the origin 1012 

denotes the spatial standard deviation of a simulated pattern which is normalized by the 1013 

ratio to the observed spatial standard deviation. Angle from the vertical axis means spatial 1014 

correlation coefficient (SCC). The spatial standard deviation of the observation in the 1015 

domain is displayed above the panel.   1016 
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 1017 

 1018 

 1019 

Fig. 4. The SCC (non-dimension) of model simulations against the GPCPDAY observation 1020 

as for the global distribution of extreme precipitation indices (Table 3). Black short lines 1021 

denote individual CMIP6 models. Black circles denote the CMIP6 MME average. Black 1022 

long thick lines denote the AVM of all CMIP6 models. Blue marks denote HighResMIP 1023 

models. Red lines denote SPD. Purple lines denote all four members of HPD, HPD_m01, 1024 

HPD_m02 and HPD_m03. SPD and HPD (the first member only) are also plotted by blue 1025 

short lines as a part of HighResMIP models. 1026 

  1027 
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 1028 

Fig. 5. June precipitation over East Asia (110-150°E, 20-50°N). (a-d) Observations (Table 3). 1029 

(e) The CMIP6 MME average. (f) The best-performing CMIP6 model based on RMSE 1030 

(Fig. 6) against the GPCPDAY observation (a). R : RMSE (mm day-1). B: Bias (mm day-1031 

1). C : SCC (non-dimension). (g) Same as (f) but for the worst-performing CMIP6 model. 1032 

(h) Bias of the CMIP6 MME average. (i) Bias of the best-performing CMIP6 model. (j) 1033 

Bias of the worst-performing CMIP6 model. (k-m) Same as (e-g) but for HighResMIP 1034 

models. (n-p) Same as (h-j) but for HighResMIP models. The black box in (a) defines the 1035 

target domain (125-142°E, 20-45°N) for Figs. 7-8.  1036 
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 1037 

Fig. 6. Dependence of RMSE (mm day-1) of simulated precipitation over East Asia (110-1038 

150°E, 20-50°N; Fig. 5) on each month. Figure format is similar to Fig. 4. 1039 

  1040 
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 1041 

Fig. 7. Time-latitude cross section of pentad mean precipitation averaged for longitudes 1042 

125–142°E. Figure format is similar to Fig. 2. The target region (125–142°E, 20–45°N) is 1043 

displayed by the black box in Fig. 5a. Plotted time period is from pentad 25 (1–5 May) to 1044 

43 (30 July - 3 August). Unit is mm day−1. Black contour of 8 mm day−1 defines the 1045 

Japanese rainy season based on the GPCPDAY observation (a). 1046 
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 1047 

Fig. 8. Same as Fig. 3 but for the seasonal march of the Japanese rainy season (Fig. 7).  1048 
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 1050 

Fig. 9. Regional dependence of reproducibility of simulated summer (June-August) 1051 

precipitation. For each model, RMSE normalized by the ratio to spatial standard deviation 1052 

is calculated over each square domains with the size of 30 degrees in longitude and 30 1053 

degrees in latitude. The GPCPDAY data is used for skill evaluation. (a) The average of 1054 

normalized RMSEs by CMIP6 models. (b) The average of normalized RMSEs by 1055 

HighResMIP models. (c) HighResMIP minus CMIP6. Black circles indicate differences 1056 

above the 90% significance level. 1057 

 1058 
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 1062 

 1063 

Fig. 10.  Dependence of model skill on grid spacing (Tables 1 and 2, the last column). Black 1064 

crosses denote 36 CMIP6 models. Blue crosses denote 23 HighResMIP models. Red 1065 

cross shows SPD. Purple cross shows the first member of HPD. The skill measure is 1066 

SCC for the global distribution of annual precipitation. Vertical axis is reversed. The 1067 

correlation coefficient between SCC and grid spacing is −0.441 which is greater than the 1068 

99 % significance level. The GPCPDAY data is used for skill evaluation. 1069 
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 1071 

Fig. 11. Skill dependence on grid size for simulated summer (June-August) precipitation. 1072 

Correlation coefficients between grid size and model skill for all 59 models (36 CMIP6 1073 

models and 23 HighResMIP models) are calculated over each square domains with the 1074 

size of 30 degrees in longitude and 30 degrees in latitude. Model skill measure is SCC 1075 

(sign is reversed). The size of black circle shows statistical significance level. The 1076 

GPCPDAY data is used for skill evaluation. 1077 
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 1081 

Fig. 12.  Comparison of model skill verified against the GPCPDAY and the TRMM 3B42V7. 1082 

Skill measure is SCC between observed and simulated R1d (Table 4) for the region 50°S-1083 

50°N. Definitions of marks are the same as Fig.4. 1084 

  1085 



59 

 

 1086 

Fig. 13. Correlation coefficients between grid size and model skill verified against the 1087 

GPCPDAY (black line) and the TRMM 3B42V7 (red line). Skill measure is SCC between 1088 

observation and simulations for four extreme precipitation indices (Table 4) over the 1089 

region 50°S-50°N. Green lines show statistical significance levels. Vertical axis is 1090 

reversed.   1091 
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Table 1.  Features of 36 AGCMs executed CMIP6 AMIP experiments used in this study.

1 a ACCESS-CM2 G064L85 192 144 208
2 b ACCESS-ESM1-5 G064L38 192 145 208
3 c BCC-CSM2-MR T106L46 320 160 125
4 d BCC-ESM1 T042L26 128 64 313 +
5 e CAMS-CSM1-0 T106L31 320 160 125
6 f CanESM5 T042L49 128 64 313 +
7 g CESM2 G096L32 288 192 139
8 h CESM2-FV2 G048L32 144 96 278
9 i CESM2-WACCM G096L70 288 192 139

10 j CMCC-CM2-SR5 G096L30 288 192 139
11 k CNRM-CM6-1 T085L91 256 128 156
12 l CNRM-CM6-1-HR T240L91 720 360 56 -
13 m CNRM-ESM2-1 T085L91 256 128 156
14 n EC-Earth3 T170L91 512 256 78
15 o EC-Earth3-AerChem T170L91 512 256 78
16 p EC-Earth3-CC T170L91 512 256 78
17 q EC-Earth3-Veg T170L91 512 256 78
18 r FGOALS-f3-L G096L32 288 180 139
19 s FGOALS-g3 T060L26 180 80 222
20 t GFDL-CM4 G096L33 288 180 139
21 u GFDL-ESM4 G096L33 288 180 139
22 v IITM-ESM T064L64 192 94 208
23 w INM-CM4-8 G060L21 180 120 222
24 x INM-CM5-0 G060L21 180 120 222
25 y IPSL-CM6A-LR G048L79 144 143 278
26 z KIOST-ESM G064L32 192 96 208
27 A MIROC6 T085L81 256 128 156
28 B MIROC-ES2L T042L40 128 64 313 +
29 C MPI-ESM1-2-HAM T063L47 192 96 208
30 D MPI-ESM1-2-HR T128L95 384 192 104
31 E MPI-ESM1-2-LR T063L47 192 96 208
32 F MRI-ESM2-0 T106L80 320 160 125
33 G NESM3 T063L47 192 96 208
34 H NorCPM1 G048L26 144 96 278
35 J NorESM2-LM G048L32 144 96 278
36 K SAM0-UNICON G096L30 288 192 139

Average 180
Median 156
Maximum 313 +
Minimum 56 -

AGCM : Atmospheric General Circulation Model
CMIP6 : The sixth phase of the Coupled Model Intercomparison Project
AMIP : Atmospheric Model Intercomparison Project
IPCC : Intergovermental Panel on Climate Change

a 
T means spectral model. Digits after T indicate triangular runcation spectral wavenumber. G

means grid model. Digits after G indicate corresponding triangular runcation spectral
wavenumber.Two digits after L indicate the number of vertical levels.

Longitudinal grid
spacing (km) at the
equator

No. Label Name in Table AII.5 of
IPCC (2021)

Horizontal
resolution and

vertial levels
a

Number of grids

Longitude Latitude
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Table 2.  Features of 23 AGCMs executed HighResMIP Tier 1 highresSST-present experiments.

1 a CAMS-CSM1-0 T256L31 768 384 52
2 b CMCC-CM2-HR4 G096L26 288 192 139
3 c CMCC-CM2-VHR4 G384L26 1152 768 35
4 d CNRM-CM6-1 T085L91 256 128 156
5 e CNRM-CM6-1-HR T240L91 720 360 56
6 f EC-Earth3P T170L91 512 256 78
7 g EC-Earth3P-HR T341L91 1024 512 39
8 h ECMWF-IFS-HR G240L91 720 361 56
9 i ECMWF-IFS-LR G120L91 360 181 111

10 j FGOALS-f3-H G480L32 1440 720 28
11 k FGOALS-f3-L G096L32 288 180 139
12 l GFDL-CM4C192 G192L33 576 360 69
13 m HiRAM-SIT-HR G512L32 1536 768 26
14 n HiRAM-SIT-LR G240L32 720 360 56
15 o INM-CM5-H G180L73 540 360 74
16 p IPSL-CM6A-ATM-HR G170L79 512 361 78
17 q IPSL-CM6A-LR G048L79 144 143 278 +
18 r MPI-ESM1-2-HR T128L95 384 192 104
19 s MPI-ESM1-2-XR T256L95 768 384 52
20 t MRI-AGCM3-2-H

a T213L64 640 320 63
21 u MRI-AGCM3-2-S

b T640L64 1920 960 21 -
22 v NICAM16-7S G213L38 640 320 63
23 w NICAM16-8S G426L38 1280 640 31

Average 78
Median 63
Maximum 278 +
Minimum 21 -

a
 Official name used in the Meteorological Research Institute (MRI) of Japan is MRI-AGCM3.2H.

b
 Official name used in the Meteorological Research Institute (MRI) of Japan is MRI-AGCM3.2S.

HighResMIP : High Resolution Model Intercomparison Project 
IPCC : Intergovermental Panel on Climate Change

Longitudinal grid
spacing (km) at the
equator

No. Label Name in Table AII.10 of
 IPCC (2021)

Horizontal
resolution and
vertial levels

Number of grids

Longitude Latitude
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Name Time
resolution

Temporal
coverage

Spatial
coverage

Reference

GPCPDAY V3.2 Day 0.50 56 2001-2020, 20years Globe Huffman et al. (2022)

GPCP 1ddv1.3 Day 1.00 111 1997-2018, 22years Globe Huffman et al. (2001)
TRMM 3B42V7 Day 0.25 28 1998-2015, 18years 50°S-50°N Huffman et al. (2007)
APHRODITE
    V1901 MA

Day 0.25 28 1998-2015, 18years (60.125-149.875°E,
14.875°S-54.875°N)
land only

Yatagai et al.
(2009, 2012)

TRMM 3B43V7 Month 0.25 28 1998-2013, 16years 50°S-50°N Huffman et al. (2007)

a
 Longitudinal grid spacing at the equator

GPCP 1dd :  Global Precipitation Climatology Project  One-Degree Daily data
TRMM : Tropical Rainfall Measuring Mission
APHRODITE:　Asian Precipitation Highly Resolved Observational Data Integration
　　　　　　　　　　Towards the Evaluation of Water Resources
MA: Monsoon Asia

Table 3.  Observations of precipitation used for verification.

degree km
a

Spatial resolution

Index Name Definition Unit

PAV Annual  precipitation Annual average precipitation mm day
-1

R5d Maximum 5-day  precipitation Annual maximum of consecutive 5-day precipitation mm

R1d Maximum 1-day precipitation Annual maximum of daily precipitation mm

CDD Consecutive dry days Annual maximum number of consecutive dry days
(precipitation  < 1 mm)

day

Table 4.  Indices of extreme precipitation events.


