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 30 

Abstract 31 

 32 

Four-dimensional variational data assimilation (4DVar) has been used as widely as 33 

ensemble Kalman filters (EnKFs) in meteorology and oceanography. Unlike EnKFs, 34 

4DVar can be applied to strongly nonlinear regimes in data assimilation. A problem with 35 

4DVar is that the cost function may have multiple minima, and that it can be difficult to 36 

find the global minimum using a gradient descent method. Quantum annealing can find 37 

the global minimum via quadratic unconstrained binary optimization (QUBO). This study 38 

proposes a method of searching for the global minimum of the 4DVar cost function by 39 

combining a second-order incremental approach and quantum annealing, in which the 40 

latter provides guidance on where to explore in state space by minimizing an 41 

approximated cost function. This approximated cost function is constructed in low-42 

dimensional space by expanding state variables up to the second order around a basic 43 

state. If the global minimum cannot be reached after a couple of updates of the basic 44 

state, the 4DVar analysis is replaced by an EnKF analysis in assimilation cycles. Data 45 

assimilation experiments using the Lorenz-63 model were conducted as a proof of 46 

concept of the proposed method. The results revealed that the proposed method 47 

significantly reduced the frequency of falling into local minima, and that the benefit of 48 

extending the length of the assimilation window was realized even in strongly nonlinear 49 



 2 

regimes. Data assimilation experiments in which simulated annealing was adopted 50 

instead of quantum annealing showed that quantum annealing exhibited comparable or 51 

better performance compared to simulated annealing. 52 

Keywords  four-dimensional variational data assimilation; second-order incremental 53 

approach; quantum annealing; simulated annealing; quadratic unconstrained binary 54 

optimization 55 

  56 
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1. Introduction 57 

Data assimilation is a methodology of estimating the state of a dynamical system by 58 

assimilating observational data into a system model using an observation model. Since state 59 

variables of the system model cannot always be observed directly, the observation model is 60 

introduced to relate observational data to state variables. Four-dimensional variational data 61 

assimilation (4DVar, Le Dimet and Talagrand 1986; Talagrand and Courtier 1987) has been 62 

used as widely as ensemble Kalman filters (EnKFs, Evensen 1994) for operational forecasts 63 

and research in meteorology and oceanography. Unlike EnKFs, 4DVar can be applied to 64 

strongly nonlinear regimes in data assimilation. The analysis state of 4DVar is the mode of 65 

a posterior probability density function (PDF). Let the governing equation of a dynamical 66 

system be written as 67 

𝑑𝒙

𝑑𝑡
= 𝑭(𝒙, 𝑡),                                                                                                                                         (1)  68 

where 𝒙(𝑡)  is an 𝑛 -dimensional vector consisting of state variables. The PDF of state 69 

variables 𝑝(𝒙, 𝑡) evolves according to the Liouville equation (e.g., Ehrendorfer, 1994): 70 

𝜕𝑝

𝜕𝑡
+
𝜕

𝜕𝒙
∙ (𝑝𝑭) = 0 .                                                                                                                             (2) 71 

Let us assume that the governing equation satisfies the following condition: 72 

𝜕

𝜕𝒙
tr [
𝜕𝑭

𝜕𝒙
] = 𝟎,                                                                                                                                     (3) 73 

which means that the divergence of flow is uniform in the state space spanned by the state 74 

variables. This condition is satisfied by Hamiltonian dynamical systems, in which the 75 

divergence of flow vanishes according to Liouville’s theorem (e.g., Goldstein et al. 2001). It 76 
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is also satisfied by the Lorenz-63 model (Lorenz 1963) and the Lorenz-96 model (Lorenz 77 

1996), for example. Then we can prove that if the initial condition 𝒙(0)  is the mode of 78 

𝑝(𝒙, 0) , 𝒙(𝑡)  remains the mode of 𝑝(𝒙, 𝑡) . ee can also prove that in assimilating 79 

observational data 4DVar implicitly uses a non-Gaussian prior PDF that evolves according 80 

to the Liouville equation from a Gaussian prior PDF given at the beginning of the assimilation 81 

window (Tsuyuki 2014). The latter property is a nonlinear extension of one of the well-known 82 

properties of 4DVar in linear Gaussian systems (e.g., Thépaut et al. 1993; Tsuyuki and 83 

Miyoshi 2007). 84 

If a numerical model of the dynamical system is perfect, then 4DVar analysis becomes 85 

more accurate as the length of the assimilation window increases, because more 86 

observational data are assimilated and the influence of the Gaussian assumption on the 87 

prior PDF at the beginning of the assimilation window becomes weaker. However, a problem 88 

with long-window 4DVar is that the cost function may have multiple secondary minima due 89 

to strong nonlinearity, and it can be difficult to find the global minimum using a gradient 90 

descent method. A similar difficulty arises when the system model or observation model is 91 

strongly nonlinear. In 4DVar experiments with the Lorenz-63 model, Gauthier (1992) showed 92 

that a significant secondary minimum could not be found in a regular regime of the model, 93 

whereas this was not the case in a transition regime, and that the point of convergence was 94 

highly dependent on the first guess, a starting point of gradient descent. Pires et al. (1996) 95 

revealed theoretically that, in the limit of an infinitely long assimilation window, the landscape 96 
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of the cost function in state space is singular; it folds into deep, narrow valleys parallel to 97 

sheets of unstable manifolds in dynamical systems, and an unbounded number of 98 

secondary minima appear. These authors also proposed the quasi-static variational 99 

assimilation algorithm to determine the global minimum of 4DVar. In this algorithm, the 100 

analysis at the beginning of the assimilation window is updated with successive small 101 

increments of the length of the assimilation window; however, this algorithm is costly and 102 

cannot guarantee success with every attempt. On the other hand, Andersson et al. (2005) 103 

discussed issues involved in extending the 4D-Var algorithm to a longer assimilation window 104 

in the presence of nonlinearity, and concluded that a long-window weak-constraint 4D-Var 105 

has exciting prospects.  106 

Quantum annealing is aimed at finding the ground state of a generic Ising model (Finnila 107 

et al. 1994; Kadowaki and Nishimori 1998; Farhi et al. 2001) through quantum tunneling; 108 

many combinatorial optimization problems have been shown to reduce to this problem. 109 

Since the release of the quantum annealer 2000Q from D-eave Systems in 2011 (Johnson 110 

et al. 2011), quantum annealing research has progressed rapidly, with applications in graph 111 

partitioning (Ushijima-Mwesigwa et al. 2017), clustering (O’Malley et al. 2018), machine 112 

learning (eillsch et al. 2020), and model predictive control (Inoue et al. 2020). Kotsuki et al. 113 

(2024) proposed quantum data assimilation, a novel data assimilation strategy that solves 114 

the 4DVar optimization problem using quantum annealing. These authors reported a 115 

significant reduction of execution time with comparable accuracy to a gradient descent 116 
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method. 117 

This study proposes a method of searching for the global minimum in 4DVar in strongly 118 

nonlinear regimes through combining a second-order incremental approach and quantum 119 

annealing, in which quantum annealing provides guidance on where to explore in state 120 

space by minimizing an approximated cost function. This approximated cost function is 121 

constructed in low-dimensional space by expanding state variables up to the second order 122 

around a basic state. If the global minimum cannot be reached after a couple of updates of 123 

the basic state, then 4DVar analysis is replaced by an EnKF analysis. Data assimilation 124 

experiments using the Lorenz 63 model were conducted as a proof of concept. Additionally, 125 

a comparative analysis was conducted in which quantum annealing was replaced by 126 

simulated annealing (Kirkpatrick et al. 1983) in the proposed mehod. 127 

The remainder of this article is organized as follows. Section 2 introduces the proposed 128 

method of searching for the global minimum in 4DVar, including approximation methods in 129 

low-dimensional space and the physical concept of quantum annealing. Section 3 describes 130 

the design of data assimilation experiments using the Lorenz-63 model, and Section 4 131 

presents the experimental results. A summary and discussion are provided in Section 5. 132 

 133 

2. Methods 134 

2.1 Overview 135 

The basic concept of the proposed method of searching for the global minimum of the 136 
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4DVar cost function is that when a gradient descent method fails to reach the global 137 

minimum, quantum annealing can provide guidance on where to explore in state space. 138 

Figure 1 shows a cost function plotted against a control variable in one-dimensional space. 139 

The control variable is a deviation from the background state, which is the predicted state 140 

from the latest analysis. The cost function is assumed to have two minimum points and the 141 

background state is taken as the starting point of the gradient descent method. In Fig. 1, the 142 

gradient descent method is directly applied to the original cost function, but the conventional 143 

incremental 4DVar (Courtier et al 1994) can also be used to search for a minimum. Although 144 

the latter approach is usually adopted in operational 4DVar systems, we do not use this 145 

approach in this study to avoid confusion. 146 

Quantum annealing is a method of quadratic unconstrained binary optimization (QUBO); 147 

therefore, we need to approximate the cost function using a polynomial for the control 148 

variables and to transform higher than second-order terms into linear or quadratic terms 149 

using a property of binary variables. ee adopt the background state as a basic state and 150 

approximate the cost function around the basic state using a quartic polynomial, which is 151 

the lowest-order polynomial with multiple minima. For this purpose, we extend the 152 

conventional incremental 4DVar to the second-order incremental approach. Because 153 

quantum annealing is a discrete-variable optimization method, he control variable for 154 

quantum annealing is assumed to take integer values only. Then, quantum annealing is used 155 

to find the global minimum of this approximated cost function (dashed line) in discrete control 156 

Fig. 1 
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space. Although this minimum point is generally different from the global minimum of the 157 

approximated cost function, it may lie in the domain of attraction of a possible global 158 

minimum of the original cost function, which can be found using the gradient descent method 159 

starting from the minimum point obtained by quantum annealing. Thus, the minimum point 160 

obtained by quantum annealing plays a guiding role in determining which region of the 161 

control space to explore.  162 

If the minimum point thus obtained is not the global minimum of the original cost function, 163 

this process can be repeated by updating the basic state around which the cost function is 164 

approximated. ee adopt the minimum point obtained by quantum annealing as the updated 165 

basic state. The process of updating the basic state and approximating the cost function 166 

around this basic state is conducted as an outer loop of minimization of the cost function. 167 

Note that this is a local search method exploring a neighborhood of the background state. 168 

As long as the background state is close to the true state, we can expect that this method 169 

will work. Thus, the proposed method is expected to broaden the applicability of 4DVar in 170 

strongly nonlinear data assimilation, although it depends on the future development of 171 

quantum annealers. 172 

Figure 2a shows the workflow of the proposed method. Hybrid 4DVar (e.g., Bonavita et 173 

al. 2016) is adopted as a basic data assimilation method, in which the background error 174 

covariance matrix is provided by an EnKF to make the background error covariance flow-175 

dependent. The outer loop in the figure represents the iterative computation described in the 176 

Fig. 2 
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previous paragraph. If the global minimum cannot be reached after a certain number of outer 177 

loop iterations, then an EnKF analysis is adopted as an output. ehen the cost function has 178 

multiple minima, it is generally difficult to determine whether the global minimum has been 179 

reached. In this study, when the convergence value of the cost function 𝐽∗ exceeds a given 180 

threshold value 𝐽𝑐, the gradient descent method is assumed to have failed to reach the 181 

global minimum. The procedure of replacing the 4DVar analysis by an EnKF analysis when 182 

𝐽∗ > 𝐽𝑐 is hereafter referred to as “EnKF replacement”. The analysis error variance of EnKFs 183 

is smaller than forecast error variance; therefore, EnKF replacement almost always 184 

improves analysis accuracy, as will be shown in Section 4.1. This procedure can also be 185 

implemented in hybrid 4DVar. Figure 2b shows the workflow of hybrid 4DVar with EnKF 186 

replacement. ee compared the two methods in Fig. 2 to evaluate the performance of the 187 

proposed method.  188 

 189 

2.2 Second-order incremental approach 190 

a. Cost function 191 

The 4DVar analysis is obtained by minimizing a cost function that measures differences 192 

between the background state and observational data (e.g., Kalnay 2003). Let 𝒙0, 𝒙0
𝑏, and 193 

𝑩 denote the state variables, background state, and background error covariance matrix, 194 

respectively, at the beginning of the assimilation window of 4DVar at time 𝑡0. Let 𝒙𝑘, 𝒚𝑘
𝑜, 195 

and 𝑹𝑘 denote the state variables, observations, and observation error covariance matrix, 196 
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respectively, at time 𝑡𝑘 (𝑘 = 1,⋯ ,𝐾) in the assimilation window. The time interval between 197 

observations need not to be equal, such that missing data are allowed. Background error 198 

and observation error are assumed to have Gaussian distributions, and the observation 199 

model is assumed to be linear for simplicity. Then the cost function of 4DVar is written as 200 

𝐽(𝒙0) =  
1

2
(𝒙0 − 𝒙0

𝑏)
T
𝑩−1(𝒙0 − 𝒙0

𝑏) +
1

2
∑(𝑯𝑘𝒙𝑘 − 𝒚𝑘

𝑜)T𝑹𝑘
−1

𝐾

𝑘=1

(𝑯𝑘𝒙𝑘 − 𝒚𝑘
𝑜),             (4) 201 

where the superscript T denotes the transpose of a vector or matrix, 𝑯𝑘  is the linear 202 

observation operator at time 𝑡𝑘, and 𝒙𝑘 is obtained by integrating Eq. (1) with the initial 203 

condition 𝒙0. The time steps used for this integration and the time between observations 204 

generally differ. The analysis at the beginning of the assimilation window, 𝒙0
𝑎, is obtained as 205 

the minimum point of 𝐽(𝒙0), and the analysis at the end of the assimilation window, 𝒙𝐾
𝑎 , is 206 

computed by integrating Eq. (1) with the initial condition 𝒙0
𝑎. In assimilation cycles of 4DVar, 207 

the latter analysis is used as the background state at the beginning of the next assimilation 208 

window.  209 

ee transform the cost function Eq. (4) to an incremental form to introduce the quartic 210 

polynomial approximation. The cost function of incremental 4DVar for the 𝑙th outer loop, of 211 

which the basic state is denoted by 𝒙𝑘
(𝑙)

, is given by 212 

𝐽(𝑙)(𝛿𝒙0
(𝑙)
) =  

1

2
(𝛿𝒙0

(𝑙)
+ ∆𝒙0

(𝑙)
)
T

𝑩−1(𝛿𝒙0
(𝑙)
+ ∆𝒙0

(𝑙)
)213 

+
1

2
∑(𝑯𝑘𝛿𝒙𝑘

(𝑙) − 𝒅𝑘
(𝑙))

T

𝑹𝑘
−1

𝐾

𝑘=1

(𝑯𝑘𝛿𝒙𝑘
(𝑙) − 𝒅𝑘

(𝑙)),                                          (5) 214 

where  215 
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𝛿𝒙𝑘
(𝑙) ≔ 𝒙𝑘 − 𝒙𝑘

(𝑙),       ∆𝒙0
(𝑙) ≔ 𝒙0

(𝑙) − 𝒙0
𝑏 ,       𝒅𝑘

(𝑙) ≔ 𝒚𝑘
𝑜 −𝑯𝑘𝒙𝑘

(𝑙).                                         (6) 216 

The basic state of the first outer loop at time 𝑡0 is 𝒙0
𝑏, and those of the other outer loops 217 

are set to the minimum points obtained by the last quantum annealing. The basic state 𝒙𝑘
(𝑙)

 218 

is obtained by integrating Eq. (1) with the initial condition 𝒙0
(𝑙)

 . In the conventional 219 

incremental approach, a low-resolution model is used to minimize Eq. (5) in which 𝛿𝒙𝑘
(𝑙)

 is 220 

approximated by a linear function of 𝛿𝒙0
(𝑙)

, and the basic state of the next outer loop 𝒙0
(𝑙+1)

 221 

is obtained by adding the convergence value of 𝛿𝒙0
(𝑙)

 to 𝒙0
(𝑙)

 in the original resolution. In 222 

the remainder of Section 2, Eq. (5) is regarded as the cost function of a low-resolution 223 

version of Eq. (1), and 𝑛  denotes the number of state variables in the low-dimensional 224 

model. 225 

ee introduce an 𝑛-dimensional control variable 𝒖 defined by  226 

𝛿𝒙0
(𝑙)
= 𝑳𝒖,                                                                                                                                           (7) 227 

where 𝑳 is the Cholesky decomposition matrix of 𝑩 satisfying 𝑩 = 𝑳𝑳T. This is a standard 228 

pre-conditioning method for accelerating the convergence of 4DVar. Note that we can apply 229 

the eigenvalue decomposition to 𝑩 instead of the Cholesky decomposition to introduce the 230 

control variable. In this case, we can reduce the dimension of 𝒖 by neglecting eigenvectors 231 

with small eigenvalues as follows: 232 

𝛿𝒙0
(𝑙)
≈ 𝑽𝑁𝒖 ≔ (√𝜆1𝒗1, ⋯ ,√𝜆𝑁𝒗𝑁 )𝒖,           (𝑁 < 𝑛)                                                            (8) 233 

where 𝜆𝑖  is the 𝑖 th eigenvalue of 𝑩  in descending order and 𝒗𝑖  is the corresponding 234 

normalized eigenvector. The 𝑁 largest eigenvalues and corresponding eigenvectors of 𝑩  235 
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can be computed by using the Lanczos method (e.g., Golub and Van Loan 2012), but this 236 

approach is more expensive than the Cholesky decomposition. 237 

In linear Gaussian systems, the convergence value of the cost function 𝐽∗ multiplied by 238 

2 follows a 𝜒2  distribution with degrees of freedom equal to the number of assimilated 239 

observations 𝑚 (e.g., Michel 2014). Thus, the mean and variance of 𝐽∗ are both equal to 240 

𝑚/2. ee set the threshold 𝐽𝑐 to the upper 0.01% point of the 𝜒2 distribution with degrees 241 

of freedom 𝑚, based on results of preliminary data assimilation experiments using hybrid 242 

4DVar. Although the these properties do not hold in nonlinear systems, this threshold value 243 

is useful for determining whether the minimization in 4DVar fails to reach the global minimum, 244 

as will be shown in Section 4.1. 245 

In the conventional incremental approach, the increment of the 𝑙th outer loop 𝛿𝒙𝑘
(𝑙)

 is 246 

approximated by a linear function of 𝛿𝒙0
(𝑙)

, whereas in this study it is approximated by a 247 

quadratic function of 𝛿𝒙0
(𝑙)

: 248 

𝛿𝒙𝑘
(𝑙)
≈ 𝑴𝑘

(𝑙)𝛿𝒙0
(𝑙) +

1

2
(𝛿𝒙0

(𝑙))
T
(
𝑵𝑘 1
(𝑙)

⋮

𝑵𝑘 𝑛
(𝑙)
)  𝛿𝒙0

(𝑙),                                                                             (9) 249 

where 𝑴𝑘
(𝑙)

  is the Jacobian matrix evaluated at 𝒙0
(𝑙)

 , and {𝑵𝒌 𝒊
(𝒍)}

𝒊=𝟏

𝒏

  are the coefficient 250 

matrices of the second-order terms of the Tayler expansion of 𝛿𝒙𝑘
(𝑙)

 in 𝛿𝒙0
(𝑙)

. Substitution of 251 

Eq. (9) into Eq. (5) yields a quartic polynomial approximation of the cost function, which may 252 

have multiple minima. Note that {𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

 are symmetric, and that 𝑴𝑘
(𝑙)

 and {𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

may 253 

be sparse in a high-dimensional system, because the contributions of initial conditions at 254 



 13 

sufficiently distant grid points are negligible. These matrices can be computed approximately 255 

in state space or ensemble space. 256 

 257 

b. Approximation in state space 258 

The matrices 𝑴𝑘
(𝑙)

 and {𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

 can be obtained using perturbation equations of Eq. 259 

(1). Let 𝛿𝒙(𝑡)  be the deviation of 𝒙(𝑡)  from the basic state �̅�(𝑡)  and be expanded in 260 

perturbation variables as 261 

𝛿𝒙(𝑡) ≈ 𝛿𝒙1(𝑡) + 𝛿𝒙2(𝑡) + ⋯,                                                                                                    (10) 262 

where 𝛿𝒙𝑘(𝑡)  is the 𝑘 th-order perturbation. Note that 𝛿𝒙(𝑡𝑘)  and �̅�(𝑡𝑘)  correspond to 263 

𝛿𝒙𝑘
(𝑙)

 and 𝒙𝑘
(𝑙)

, respectively, in Section 2.2.a. The first two perturbation equations are given 264 

by 265 

𝑑

𝑑𝑡
𝛿𝒙1 =

𝜕𝑭

𝜕𝒙
|
�̅�
𝛿𝒙1(𝑡),                                                                                                                     (11) 266 

𝑑

𝑑𝑡
𝛿𝒙2 =

𝜕𝑭

𝜕𝒙
|
�̅�
𝛿𝒙2(𝑡) +

1

2
(𝛿𝒙1(𝑡))T

𝜕2𝑭

𝜕𝒙𝜕𝒙
|
�̅�

𝛿𝒙1(𝑡),                                                             (12) 267 

with the initial conditions of 268 

𝛿𝒙1(0) = 𝛿𝒙(0),    𝛿𝒙2(0) = 𝟎.                                                                                         (13) 269 

The matrices 𝑴𝑘
(𝑙)

 and {𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

 are computed by integrating Eqs. (11) and (12) starting 270 

from two sets of simple initial conditions. The first set consists of 𝑛  unit vectors in 𝑛 -271 

dimensional space, and the second set consists of 𝑛(𝑛 − 1)/2 sums of all pairs of the unit 272 

vectors. The first set of initial conditions yields 𝑴𝑘
(𝑙)

  and the diagonal components of 273 

{𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

, and the second set yields the sum of diagonal and off-diagonal components of 274 
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{𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

, from which we can compute the off-diagonal components of {𝑵𝑘 𝑖
(𝑙)}

𝑖=1

𝑛

 using the 275 

symmetric property of the matrices. 276 

Equations (11) and (12) must be integrated starting from 𝑛(𝑛 + 1)/2  different initial 277 

conditions; therefore, this procedure appears unfeasible for a high-dimensional system. ee 278 

can reduce the dimension of 𝒖 by adopting Eq. (8) instead of Eq. (7). Substitution of Eq. 279 

(8) into Eq. (9) yields- 280 

𝛿𝒙𝑘
(𝑙)
≈ (𝑴𝑘

(𝑙)𝑽𝑁)𝒖 +
1

2
𝒖T(

𝑽𝑁
T𝑵𝑘 1

(𝑙)𝑽𝑁
⋮

𝑽𝑁
T𝑵𝑘 𝑛

(𝑙) 𝑽𝑁

)  𝒖,                                                                        (14) 281 

where the matrices in the parentheses on the right-hand side of Eq. (14) are computed as 282 

described in the previous paragraph except that the set of simple initial conditions is given 283 

by the product of 𝑽𝑁 and 𝑁 unit vectors in 𝑁-dimensional space and by the product of 𝑽𝑁 284 

and 𝑁(𝑁 − 1)/2 sums of all pairs of the unit vectors. The approximated cost function can 285 

be minimized by quantum annealing, and the resulting minimum point 𝒖min in control space 286 

can be converted into the minimum point in state space: 𝒙min = �̅�0 + 𝑽𝑁𝒖min. The latter 287 

minimum point may lie in the domain of attraction of a possible global minimum of the original 288 

cost function, and it can be found using a gradient descent method starting from 𝒙min. 289 

 290 

c. Approximation in ensemble space 291 

A more feasible method for a high-dimensional system is to compute the matrices in the 292 

ensemble space of a low-resolution version of Eq. (1). Let 𝑁′ be the ensemble size, and let 293 
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𝑿0
𝑓
  be the 𝑛 × 𝑁′  matrix of forecast ensemble perturbations at initial time 𝑡0 , which is 294 

defined by 295 

𝑿0
𝑓
≔ (𝛿𝒙0

𝑓(1)
, … , 𝛿𝒙0

𝑓(𝑁′)
),                                                                                                            (15) 296 

where {𝛿𝒙0
𝑓(𝑖)}

𝑖=1

𝑖=𝑁′

 are the ensemble members of initial perturbations with respect to the 297 

basic state �̅�0 . The superscript 𝑙 , which denotes the outer-loop number, is omitted to 298 

prevent confusion. The analysis ensemble perturbations generated by an EnKF can be used 299 

to construct 𝑿0
𝑓
.  300 

Let 𝑀𝑡(∙) be the time evolution operator of the low-resolution version of Eq. (1) for time 301 

𝑡 ≥ 𝑡0. ee can approximate the perturbations at time 𝑡 using 𝑿0
𝑓
 as follows: 302 

𝛿𝒙(𝑡) ≔ 𝑀𝑡(𝒙0) − 𝑀𝑡(𝒙0) ≈ 𝑀𝑡(�̅�0 + 𝑿0
𝑓
𝒖) −𝑀𝑡(�̅�0),                                                      (16) 303 

where 𝒖  is a vector of control variables in 𝑁′ -dimensional ensemble space. The Taylor 304 

expansion yields 305 

𝛿𝒙(𝑡) ≈ (
𝜕𝑀𝑡
𝜕𝒙
|
�̅�0

𝑿0
𝑓
)𝒖 +

1

2
𝒖T ((𝑿0

𝑓
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝑿0
𝑓)𝒖.                                                      (17) 306 

This equation corresponds to Eq. (9). Note that for 𝑖, 𝑗 = 1,⋯ ,𝑁′, 307 

[
𝜕𝑀𝑡
𝜕𝒙
|
�̅�0

𝑿0
𝑓
]
𝑖

=
𝜕𝑀𝑡
𝜕𝒙
|
�̅�0

𝛿𝒙0
𝑓(𝑖)
,                                                                                                     (18) 308 

[(𝑿0
𝑓
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝑿0
𝑓
]

𝑖𝑗

= (𝛿𝒙0
𝑓(𝑖)
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝛿𝒙0
𝑓(𝑗)
,                                                              (19) 309 

and 310 

𝑀𝑡 (�̅�0 ± 𝛿𝒙0
𝑓(𝑖)
) ≈ 𝑀𝑡(𝒙0) ±

𝜕𝑀𝑘
𝜕𝒙
|
�̅�0

𝛿𝒙0
𝑓(𝑖)

+
1

2
(𝛿𝒙0

𝑓(𝑖)
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝛿𝒙0
𝑓(𝑖)
,                  (20) 311 
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𝑀𝑡 (�̅�0 +
𝛿𝒙0

𝑓(𝑖)
+ 𝛿𝒙0

𝑓(𝑗)

√2
) ≈ 𝑀𝑡(�̅�0) +

1

√2

𝜕𝑀𝑡
𝜕𝒙
|
�̅�0

𝛿𝒙0
𝑓(𝑖)

+
1

√2

𝜕𝑀𝑡
𝜕𝒙
|
�̅�0

𝛿𝒙0
𝑓(𝑗)

 312 

+
1

4
(𝛿𝒙0

𝑓(𝑖)
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝛿𝒙0
𝑓(𝑖)

+
1

2
(𝛿𝒙0

𝑓(𝑖)
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝛿𝒙0
𝑓(𝑗)

+
1

4
(𝛿𝒙0

𝑓(𝑗)
)
T 𝜕2𝑀𝑡
𝜕𝒙𝜕𝒙

|
�̅�0

𝛿𝒙0
𝑓(𝑗)
, 313 

(21)      314 

where 𝑖 ≠ 𝑗 in Eq. (21). The factor 1/√2 on the left-hand side of Eq. (21) is introduced to 315 

normalize the magnitude of perturbations; if perturbations have the same variance and are 316 

uncorrelated with each other, the variance of (𝛿𝒙0
𝑓(𝑖)

+ 𝛿𝒙0
𝑓(𝑗)
) /√2 is equal to that of 𝛿𝒙0

𝑓(𝑖)
. 317 

The left-hand sides of Eqs. (20) and (21) can be computed by ensemble prediction; solving 318 

these equations for the vectors in Eqs. (18) and (19) yields the expansion coefficients in Eq. 319 

(17).  320 

An approximated cost function in ensemble space is obtained by substituting Eq. (17) 321 

into Eq. (5), changing from a continuous time framework to a discrete time framework. This 322 

cost function can be minimized by quantum annealing and the resulting minimum point 𝒖min 323 

can be converted into the minimum point in state space, as 𝒙min = �̅�0 + 𝑿0
𝑓
𝒖min. However, 324 

it is necessary to generate the 𝑁′(𝑁′ + 3)/2-member ensemble given on the left-hand sides 325 

of Eqs. (20) and (21)); this may be infeasible in a high-dimensional system even if a low-326 

dimensional numerical model is used. A feasible method would be to use an artificial 327 

intelligence (AI)-based surrogate model for ensemble prediction, which would be much 328 

faster than a physics-based numerical model, although there is still a problem of 329 

underestimation of ensemble spread (e.g., Selz and Craig 2023). 330 
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 331 

2.3 Quantum annealing 332 

a. Physical concept 333 

   Quantum annealing is a combinatorial optimization method based on quantum dynamics 334 

of the Ising model. The Hamiltonian operator of this model of an 𝐿-spin system is given as 335 

�̂�0 = −∑𝐽𝑗𝑘

𝐿

𝑗<𝑘

�̂�𝑗
𝑧�̂�𝑘

𝑧 −∑ℎ𝑗

𝐿

𝑗=1

�̂�𝑗
𝑧 ,                                                                                                 (22) 336 

where �̂�𝑗
𝑧 is the 𝑧 component of the Pauli operator of the 𝑗th spin, 𝐽𝑗𝑘 is the interaction 337 

coefficient between the 𝑗th and 𝑘th spins, and ℎ𝑗 is the magnetic field acting on the 𝑗th 338 

spin in the 𝑧 direction. The Pauli operator can be represented by the Pauli spin matrices. 339 

Let |↑⟩ and |↓⟩ represent the up and down spin state, respectively. The following equations 340 

hold. 341 

�̂�𝑧|↑⟩ = |↑⟩,         �̂�𝑧|↓⟩ = −|↓⟩ .                                                                                                     (23) 342 

ee can obtain the ground state of Hamiltonian Eq. (22) by quantum annealing. The total 343 

Hamiltonian of quantum annealing is given as  344 

�̂�(𝑡) ≔ 𝐴(𝑡)�̂�0 + 𝐵(𝑡)∑(−�̂�𝑗
𝑥)

𝐿

𝑗=1

,                                                                                             (24) 345 

where �̂�𝑗
𝑥 is the transverse component of the Pauli operator of the 𝑗th spin, which satisfies 346 

�̂�𝑥|±⟩ = ±|±⟩,   |±⟩ ≔
1

√2
(|↑⟩ ± |↓⟩),                                                                              (25)  347 

and 𝐵(𝑡) represents the transverse magnetic field. The negative sign in the second term of 348 

Eq. (24) ensures that |+⟩ has a lower energy. �̂�(𝑡) interpolates between 𝐵(𝑡𝑖)∑ (−�̂�𝑗
𝑥)𝐿

𝑗=1  349 
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at initial time 𝑡𝑖 and �̂�0 at final time 𝑡𝑓; 𝐴(𝑡) is an increasing nonnegative function with 350 

𝐴(𝑡𝑖) = 0 and 𝐴(𝑡𝑓) = 1; and 𝐵(𝑡) is a decreasing nonnegative function with 𝐵(𝑡𝑓) = 0. 351 

The initial state at 𝑡 = 𝑡𝑖 is set to the ground state of 𝐵(𝑡𝑖)∑ (−�̂�𝑗
𝑥)𝐿

𝑗=1 , which consists of a 352 

superposition of up and down spins |+⟩1|+⟩2⋯|+⟩𝐿, where the subscript denotes the index 353 

of transverse spins. If the change in �̂�(𝑡) with 𝑡 is sufficiently small, the spin state evolves 354 

adiabatically and arrives at the ground state of �̂�0  at 𝑡 = 𝑡𝑓  according to the adiabatic 355 

theorem of quantum dynamics (Born and Fochs, 1928); a physical system remains in its 356 

instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is 357 

a gap between the eigenvalue and the remainder of the Hamiltonian spectrum. Rajak et al. 358 

(2023) described the basic physical concept behind quantum annealing, provided an 359 

overview of recent theoretical findings, and reported experimental developments pointing to 360 

issues that are still debated. The spin state can be mapped to a binary variable 𝑏 ∈ {0, 1} 361 

and the Hamiltonian operator can be mapped to the cost function of which the global 362 

minimum is sought. Therefore, quantum annealing is used to solve QUBO problems.  363 

Simulated annealing is a combinatorial optimization method that represents a classical 364 

counterpart to quantum annealing. In this method, the Boltzmann distribution of the 365 

Hamiltonian 𝐻0 is prepared at a sufficiently high temperature using the Monte Carlo method 366 

and the system is slowly annealed down to a temperature of zero. If annealing is sufficiently 367 

slow, we can expect the system to arrive at the ground state of 𝐻0 with high probability. 368 

Thus, simulated annealing utilizes thermal fluctuations for optimization, which induces the 369 
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thermal jump across an energy barrier from one local minimum to another. By contrast, in 370 

quantum annealing, quantum tunneling induces an escape from a local minimum through 371 

an energy barrier. Therefore, if a local minimum in the landscape of 𝐻0 is surrounded by 372 

tall, and thin energy barrier, quantum tunneling has an advantage over thermal fluctuations 373 

in overcoming this energy barrier, which explains why quantum annealing outperforms 374 

simulated annealing in a system with a rugged energy landscape. 375 

 376 

b. Reduction to QUBO 377 

ehen quantum annealing is applied to solve a continuous-variable optimization problem 378 

such as the minimization of Eq. (5), the problem must be reduced to a QUBO problem. 379 

Chancellor (2019) proposed the domain-wall encoding to transform a continuous-variable 380 

optimization problem into a QUBO problem; this encoding method was used by Koh and 381 

Nishimori (2022), Abel et al. (2022), and Arai et al. (2023) to investigate the performance of 382 

quantum annealing in continuous-variable optimization in one and two dimensions. However, 383 

it is not suitable for the 4DVar optimization problem, because computation of the cost 384 

function is highly expensive. 385 

The first task is to encode control variables 𝒖 into binary variables 𝒃. Let 𝑍 denote the 386 

number of bits per real number. The following binary encoding is adopted in this study. 387 

𝒖 = 𝑟(2𝑬𝑍𝒃 − 𝟏𝑛),                                                                                                                         (26) 388 

where 𝑬𝑍 is an 𝑛 × 𝑛𝑍 matrix defined by 389 



 20 

𝑬𝑍 ≔ 𝑰𝑛⨂𝒆𝑍
T =

(

 

𝒆𝑍
T 0

0 𝒆𝑍
T

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0
0 𝒆𝑍

T)

 ,       𝒆𝑍
T ≔ (

1

2
,
1

22
, ⋯ ,

1

2𝑍
),                                      (27) 390 

The operator ⨂ is the Kronecker product, and 𝟏𝑛 and 𝑰𝑛 are the 𝑛-dimensional vector of 391 

which the components are all unity and the 𝑛-dimensional identity matrix, respectively. A 392 

similar binary coding was adopted by Inoue et al. (2020) and Kotsuki et al. (2024); however, 393 

we do not need a large 𝑍  value, because the minimum point obtained by quantum 394 

annealing is not used for the analysis itself, but solely to guide the selection of a control 395 

space region to explore. Because each component 𝑢𝑖 given by Eq. (26) satisfies −𝑟 ≤ 𝑢𝑖 <396 

𝑟, the parameter 𝑟 represents the search range of the control variables. Note that when the 397 

𝑍 value is fixed, the interval of neighboring values of the control variables increases with 𝑟. 398 

Substituting Eq. (26) into Eqs. (7) and (9), Eqs. (8) and (14), or Eq. (17) makes the cost 399 

function Eq. (5) a quartic polynomial in 𝒃, which is hereafter denoted by 𝐽2(𝒃).  400 

   Next, we transform 𝐽2(𝒃)  into a quadratic polynomial in binary variables. For this 401 

purpose, we transform Eq. (9), (14), or (17) expressed in 𝒃 into a linear function of binary 402 

variables by replacing a product of two binary variables 𝑏𝑖𝑏𝑗 by an auxiliary binary variable 403 

�̃�𝑖𝑗. Then, the cost function 𝐽2(𝒃) is transformed into a new cost function 𝐽2(𝒃, �̃�). To satisfy 404 

the constraint �̃�𝑖𝑗 = 𝑏𝑖𝑏𝑗, we introduce the following function (Nishimori and Ozeki 2018): 405 

𝐻(𝑏𝑖, 𝑏𝑗 , �̃�𝑖𝑗  ) ≔ 3�̃�𝑖𝑗 + 𝑏𝑖𝑏𝑗 − 2𝑏𝑖�̃�𝑖𝑗 − 2𝑏𝑗�̃�𝑖𝑗                                                                        (28)  406 

This quadratic function vanishes when �̃�𝑖𝑗 = 𝑏𝑖𝑏𝑗, and takes a positive integer value, 1 or 3, 407 

when �̃�𝑖𝑗 ≠ 𝑏𝑖𝑏𝑗. Then, 𝐻(𝑏𝑖, 𝑏𝑗 , �̃�𝑖𝑗  ) can be used as a penalty term, and the minimization 408 
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problem of Eq. (5) can be reduced to a QUBO problem with the following cost function:  409 

 𝐿(𝒃, �̃�) ≔ 𝜆 𝐽2(𝒃, �̃�) +∑𝐻(𝑏𝑖, 𝑏𝑗 , �̃�𝑖𝑗 )

𝑛𝑍

𝑖<𝑗

,                                                                                (29) 410 

where 𝜆 is a parameter controlling the relative strength of the penalty terms. ee minimize 411 

this cost function using quantum annealing to obtain guidance on where to explore in control 412 

space to find the global minimum of the original cost function. The total number of binary 413 

variables in Eq. (29) is 𝑛𝑍 + 𝑛𝑍(𝑛𝑍 − 1)/2. Because multiplying two real numbers doubles 414 

the number of bits, we can reduce the number of auxiliary binary variables. Let 𝑍1 and 𝑍2 415 

denote the numbers of bits in encoding 𝒖  in the linear and quadratic terms in Eq. (9), 416 

respectively. If 𝑍2 < 𝑍1 , the total number of binary variables is reduced to 𝑛𝑍1 +417 

𝑛𝑍2(𝑛𝑍2 − 1)/2. 418 

 419 

3. Experimental design 420 

ee conducted data assimilation experiments with the Lorenz-63 model as a proof of 421 

concept. Because the model has only three state variables, a low-resolution model is not 422 

needed and the matrices in Eq. (9) are computed directly without using the transformation 423 

in Eq. (8). For preliminary experiments and comparisons, we also conducted data 424 

assimilation experiments with the proposed method using simulated annealing instead of 425 

quantum annealing. For these comparison, the assimilation method based on simulated 426 

annealing is hereafter referred to as SA-4DVar, and the original method is called QA-4DVar.   427 

 428 
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3.1  Model 429 

The governing equations of the Lorenz 63 model are 430 

𝑑𝑥

𝑑𝑡
= −𝜎𝑥 + 𝜎𝑦,

𝑑𝑦

𝑑𝑡
= 𝜌𝑥 − 𝑦 − 𝑥𝑧,

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧,                                              (30) 431 

where the three parameters are set to the conventional values: 𝜎 = 10, 𝛽 = 8/3, and 𝜌 =432 

28. The Lyapunov exponents of the model, which characterize the rates of separation of 433 

infinitesimally close trajectories in state space, are 0.906, 0, and -14.572, and the Kaplan–434 

Yorke dimension of the attractor (Kaplan and Yorke 1979) is 2.062 (e.g., Sprott, 1997). In 435 

our experiments, the fourth-order Runge-Kutta scheme was used for time integration, with 436 

a time step of 0.01. The initial condition at t = 0 is set to Gaussian random numbers with a 437 

mean of 0 and variance of 1. Time integration of the model from t = 0 to t = 1100 was 438 

performed to generate the truth data for the experiments.  439 

The first- and second-order perturbation equations of the Lorenz 63 model are as follows: 440 

𝑑

𝑑𝑡
(
𝛿𝑥1

𝛿𝑦1

𝛿𝑧1
) = (

−𝜎 𝜎 0
𝜌 − 𝑧̅ −1 −�̅�
�̅� �̅� −𝛽

)(
𝛿𝑥1

𝛿𝑦1

𝛿𝑧1
),                                                                                  (31) 441 

𝑑

𝑑𝑡
(
𝛿𝑥2

𝛿𝑦2

𝛿𝑧2
) = (

−𝜎 𝜎 0
𝜌 − 𝑧̅ −1 −�̅�
�̅� �̅� −𝛽

)(
𝛿𝑥2

𝛿𝑦2

𝛿𝑧2
) + (

0
−𝛿𝑥1𝛿𝑧1

𝛿𝑥1𝛿𝑦1
)                                                      (32) 442 

with the initial conditions given by Eq. (13). 443 

 444 

3.2  Observations 445 

The state variables were directly observed at a time interval of unity, and observations 446 

were generated by adding random errors to the truth data. These errors were independent 447 
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random draws from a Gaussian distribution with a mean of 0 and variance of 1. Under these 448 

conditions, the observation operator 𝑯𝑘 and observation error covariance matrix 𝑹𝑘 are 449 

both given by the three-dimensional identity matrix 𝑰𝟑. The maximum Lyapunov exponent 450 

of the model was 0.906 and the time interval of observations was set to 1, such that the 451 

model evolution between adjacent observation times was strongly nonlinear. The quasi-452 

static variational assimilation proposed by Pires et al. (1996) does not work under these 453 

conditions due to the coarse temporal resolution of observational data.  454 

 455 

3.3  Data assimilation settings 456 

The cost function of incremental 4DVar for the 𝑙th outer loop, expressed in terms of the 457 

control variable 𝒖, is derived from Eqs. (5), (7), and (9) as 458 

𝐽(𝑙)(𝒖) =  
1

2
‖𝒖 + 𝑳−1∆𝒙0

(𝑙)
‖
2

+
1

2
∑‖𝛿𝒙𝑘

(𝑙)(𝒖) − 𝒅𝑘
(𝑙)‖

2
𝐾

𝑘=1

,                                                (33) 459 

where 𝑩 = 𝑳𝑳T and 𝑯𝑘 = 𝑹𝑘 = 𝑰3 are substituted. Matrices 𝑴𝑘
(𝑙)

 and {𝑵𝑘 𝑖
(𝑙)}

𝑖=1

3

 in Eq. (9) 460 

are computed by integrating Eqs. (31) and (32) from six initial conditions: 𝛿𝒙(0) =461 

(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (1, 1, 0)T, (0, 1, 1)T, and  (1, 0, 1)T. 462 

ee used the hybrid 4DVar in which the background error covariance matrix at the 463 

beginning of the assimilation window was set to the analysis error covariance matrix by the 464 

stochastic EnKF (Burgers et al. 1998; Houtekamer and Mitchell 1998), with an ensemble 465 

size of 100. Because EnKFs yield flow-dependent forecast and analysis error covariance 466 
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matrices by computing the time-evolution of a forecast ensemble, the background error 467 

covariance matrix becomes flow-dependent. The stochastic EnKF, which constructs an 468 

analysis ensemble by perturbing observational data, is more robust to nonlinearity than the 469 

deterministic EnKF, which constructs it by transforming a forecast ensemble (Lawson and 470 

Hansen 2004; Lei et al. 2010; Tsuyuki 2024). Therefore, the stochastic EnKF was more 471 

suitable for our experiments. The adaptive covariance inflation proposed by Li et al. (2009) 472 

based on innovation statistics (Desroziers et al. 2005) was used in the EnKF. The Broyden–473 

Fletcher–Goldfarb–Shanno (BFGS) method was adopted for gradient descent, and the 474 

control variable 𝒖 defined by Eq. (7) was introduced to accelerate the convergence.  475 

The length of the assimilation window was set to 1 or 3, such that 𝐾 =1 or 3 in Eq. (33). 476 

Data assimilation experiments with these window lengths are strongly nonlinear because 477 

observations are available only at a time interval of 1. Data assimilation experiments with a 478 

window length of 3 are more nonlinear than those with a window length of 1. In the former 479 

assimilation window, three independent data assimilation cycles were run starting from t = 480 

0, 1, and 2. The analysis at the end of the assimilation window is used to calculate the root 481 

mean square error (RMSE) of analysis against the truth. The assimilation period was set to 482 

1100, and the first 100 samples were discarded as spin-up. Thus, 1000 samples were used 483 

for verification for each assimilation window length. There were three and nine assimilated 484 

observations for window lengths of 1 and 3, respectively. As mentioned in Section 2.2.a, we 485 

set the threshold 𝐽𝑐 to the upper 0.01% point of the 𝜒2 distribution with degrees of freedom 486 
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given by the number of observations. Thus, the threshold values of the cost function 𝐽𝑐 were 487 

10.544 and 16.860 for window lengths of 1 and 3, respectively.  488 

 489 

3.4  Quantum and simulated annealing settings 490 

The QUBO problem of the cost function Eq. (29) was solved by changing the search 491 

range of control variables 𝑟 up to 10. The parameter 𝜆 in Eq. (29) was set to 0.01, based 492 

on results of a preliminary simulated annealing experiment where 𝜆 = 0.1, 0.01, and 0.001. 493 

The number of reads for quantum and simulated annealing was set to 10; i.e., we repeated 494 

the annealing process 10 times and adopted the best result as the minimum. ee examined 495 

the sensitivity of data assimilation experiments to this parameter for both quantum and 496 

simulated annealing, and found that there was no improvement tendency in the analysis 497 

RMSE and failure rate as the parameter increased, perhaps due to the small numbers of 498 

binary variables. 499 

For quantum annealing, we used D-eave Advantage v4.1, which consists of  5627 500 

physical qubits and 177 logical qubits (D-eave Systems 2022a, 2023). The 177 logical 501 

qubits were subsequently available for computation. The numbers of bits were set to 𝑍1 = 4 502 

and 𝑍2 = 2, then the number of binary variables was 27 (see the equation given at the end 503 

of Section 2). ee used the default settings except for the number of reads. The average 504 

execution time per annealing with 10 reads was about 18 ms for a window length of 3; this 505 

value remained almost constant with each computation, probably because a constant 506 
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annealing time was used. 507 

For simulated annealing, we use the Simulated Annealing Sampler (D-eave Systems 508 

2022b) with PyQUBO (Tanahashi et al. 2019; Recruit Communications) adopted as a 509 

supplementary software. PyQUBO allows better code readability, reduced compilation time, 510 

and automatic validation of the satisfaction of given constraints. ee used the default settings 511 

except for the number of reads and the seed of random number generation. For comparison, 512 

𝑍1 = 𝑍2 = 4 (with 78 binary variables) was adopted in addition to 𝑍1 = 4 and 𝑍2 = 2. For 513 

the case of 𝑍1 = 4 and 𝑍2 = 2, the average execution time per annealing with 10 reads is 514 

about 16 ms for a window length of 3 on a personal computer with an Intel® Core™ i5-515 

8250U central processing unit at 1.60 GHz. This value changed considerably with each 516 

computation, because annealing was terminated when a convergence condition was 517 

satisfied. 518 

 519 

4. Results 520 

ee first present the results of data assimilation experiments using hybrid 4DVar to show 521 

the difficulty of the conventional 4DVar under strong nonlinear conditions. Next, we provide 522 

examples of the landscape of the cost function in state space, including those of the first- 523 

and second-order approximated cost functions. These examples are useful interpreting the 524 

results of data assimilation experiments using the proposed method, which are presented 525 

after that part.  526 
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 527 

4.1  Performance of hybrid 4DVar 528 

Figure 3a shows a scatter diagram on a logarithmic scale between the convergence 529 

value of the cost function 𝐽∗  and the analysis RMSE of hybrid 4DVar without EnKF 530 

replacement for a window length of 1. There was almost no correlation between these values 531 

for 𝐽∗ ≤ 𝐽𝑐 =10.544, whereas a strong positive correlation was observed for 𝐽∗ > 𝐽𝑐, where 532 

in most cases the analysis RMSE of hybrid 4DVar without EnKF replacement was larger 533 

than the mean analysis RMSE of the stochastic EnKF, which was 0.813 (blue line). This 534 

result indicates that the criterion based on the upper 0.01 % point of the 𝜒2 distribution is 535 

useful for determining whether the global minimum has been reached. In this figure, we 536 

define success as 𝐽∗ ≤ 𝐽𝑐, with all other cases defined as failure. The failure rate is 4.8 % 537 

and the mean analysis RMSE only for successful cases is 0.630, which is much smaller than 538 

that of the EnKF. This is an expected result, because 4DVar, which does not assume linearity, 539 

is more accurate than the EnKF in strongly nonlinear regimes if the global minimum can be 540 

reached. 541 

The accuracy of hybrid 4DVar can be improved by adopting EnKF replacement. A 542 

positive feedback mechanism working in assimilation cycles further contributes to this 543 

improvement; if the analysis of a certain assimilation cycle is improved by EnKF replacement, 544 

then the background state of the next assimilation cycle is also improved; as a result, the 545 

possibility of falling into a local minimum is reduced. Figure 3b shows a scatter diagram of 546 

Fig. 3 
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hybrid 4DVar with EnKF replacement. The failure rate is decreased to 2.1 % and the mean 547 

analysis RMSE including the failure cases is  0.600, which is smaller than that of hybrid 548 

4DVar without EnKF replacement even when only successful cases were considered.  549 

Scatter diagrams for a window length of 3 are shown in Fig. 4. The threshold value 𝐽𝑐 is 550 

16.860. Compared to a window length of 1, the failure rates increased substantially to 39.6% 551 

and 66.7% with and without EnKF replacement, respectively. As mentioned in Section 1, we 552 

expect that adopting a longer assimilation window would improve accuracy of our results. 553 

The mean analysis RMSE of successful cases for hybrid 4DVar without EnKF replacement 554 

was 0.542 for a window length of 3; this value is clearly smaller than the corresponding value 555 

for a window length of 1 (0.630). However, the mean analysis RMSE for hybrid 4DVar with 556 

EnKF replacement is  0.667 for a window length of 3, which is larger than the corresponding 557 

value for a window length of 1 (0.600). Thus, our expectation is  not met even when EnKF 558 

replacement is adopted, due to many failures in the search for global minima for assimilation 559 

cycles with a window length of 3, and EnKF analysis is less accurate than 4DVar analysis 560 

when the global minimum is reached. 561 

 562 

4.2  Landscape of the cost function 563 

The performance of 4DVar strongly depends on the landscape of the cost function in 564 

state space. Figures 5-8 present example cross-sections of 𝐽(𝛿𝒙0)  and its first- and 565 

second-order approximations along 𝛿𝑥0 = 𝛿𝑦0, which are roughly parallel to the attractor of 566 

Fig. 4 
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the Lorenz-63 model. These cross-sections are obtained from data assimilation experiments 567 

by SA-4DVar with one outer loop and 𝑍1 = 𝑍2 = 4 . The search ranges of the control 568 

variables are set to 4.5 and 1.5 for window lengths of 1 and 3, respectively. The center of 569 

each cross-section indicated by “X” is the background state, which is the starting point of the 570 

gradient descent method. The isosurface of the first-order approximated cost function is a 571 

hyperellipsoid. Because the background error standard deviation, which is equal to the 572 

analysis error standard deviation of the EnKF, is about 0.9, the difference in magnitude 573 

between the state variable deviation 𝛿𝒙0 and control variable 𝒖 is small. 574 

The first example (Fig. 5) is for a window length of 1 at 𝑡 =159, which is the time at the 575 

end of the assimilation window. The convergence values of the cost function before and after 576 

invoking simulated annealing are 187.791 and 0.965, respectively, indicating that a failure 577 

to reach the global minimum can become a success through simulated annealing. The 578 

landscape of the cost function is characterized by a shell-like structure that appears as an 579 

arch in the cross-section, with a deep valley between the high ridges along the arch (Fig. 580 

5a). Because the background state is located at the outer foot of one of these ridges, it 581 

appears that the gradient descent method cannot reach into the deep valley. The first-order 582 

approximation of the cost function around the background state is shown in Fig. 5b, which 583 

shows only a shallow, straight valley; the direction of gradient vector at the background state 584 

is identical to that of the original cost function. However, the second-order approximation of 585 

the cost function partly reflects the shell-like structure (Fig. 5c). As the global minimum is 586 

Fig. 5 
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generally not located on this cross-section, it is difficult to guess how the global minimum is 587 

reached by simulated annealing. 588 

The second example (Fig. 6) is for a window length of 1 at 𝑡 =131. The convergence 589 

value of the cost function is 109.061 both before and after invoking simulated annealing, 590 

indicating a failure of SA-4DVar. A shell-like structure of the cost function is evident in Fig. 591 

6a, although it is weak compared to the first example. Unlike Fig. 5a, there is no deep valley 592 

within the arch in the cross-section, but a deep concave zone is visible on the opposite side 593 

of the arch when viewed from the background state. The global minimum may be located 594 

on the opposite side of the shell-like structure, and it may be difficult for the gradient descent 595 

method to reach it. The first-order approximation of the cost function represents a deep, 596 

wide valley (Fig. 6b), whereas the second-order approximation shows a more complex 597 

structure but fails to represent the deep concave zone on the opposite side (Fig. 6c). 598 

The third example (Fig. 7) is for a window length of 3 at 𝑡 =116. The convergence values 599 

of the cost function before and after invoking simulated annealing were 34.895 and 6.281, 600 

respectively, indicating that a failure in reaching the global minimum becomes successful 601 

through simulated annealing. The landscape of the cost function is much more complicated 602 

than that for a window length of 1; it can be interpreted as having multiple incomplete shell-603 

like structures, with a similar landscape to that described by Pires et al. (1992). The 604 

background state appears to be located in the deepest concave area (fig. 7a), which consists 605 

of fine double wells that could lead to failure in searching for the global minimum. The first-606 

Fig. 6 

Fig. 7 
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order approximation cannot represent these fine double wells, whereas the second-order 607 

approximation partly captures this structure and successfully identifies a possible global 608 

minimum (Fig. 7b, c). 609 

The last example (Fig. 8) is for a window length of 3 at 𝑡 =159. The convergence values 610 

of the cost function before and after invoking simulated annealing were 247.378 and 225.990, 611 

respectively, indicating a failure of SA-4DVar. The landscape of the cost function in this case 612 

is also complex with multiple shell-like structures, and the background state is located 613 

around the edge of one of these shells (Fig. 8a). Both the first- and the second-order 614 

approximations of the cost function represent narrow valleys; the latter valley is much 615 

narrower (Fig. 8b, c). The background state appearss far from the true state, which may 616 

have caused the failure. 617 

 618 

4.3  Performance of the proposed method 619 

To confirm the benefit of using the second-order approximation of the cost function over 620 

the first-order approximation, we conducted data assimilation experiments with SA-4DVar 621 

using the first- and second-order approximations, although SA-4DVar is supposed to use 622 

the latter approximation in the proposed method. For this analysis, the two SA-4DVar 623 

methods are referred to as first- and second-order SA-4DVar, respectively. In first-order SA-624 

4DVar, the second term on the right-hand side of Eq. (9) is neglected, and the numbers of 625 

bits are set to 𝑍1 = 𝑍2 = 4. Figure 9 compares the failure rate of hybrid 4DVar with EnKF 626 

Fig. 8 

Fig. 9 
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replacement (orange line) with those of the two SA-4DVars (other lines) for window lengths 627 

of 1 and 3, varying the number of outer loops and the search range 𝑟. For hybrid 4DVar with 628 

EnKF replacement, the number of cases where 𝐽∗ > 𝐽𝑐 is much smaller for a window length 629 

of 1 than for a window length of 3 (Figs. 3b and 4b). This result suggests that the number of 630 

operations of simulated annealing for a window length of 1 is also much smaller than that 631 

for a window length of 3. To obtain robust results, the average results for five experiments 632 

are plotted in Fig. 9a for a window length of 1, whereas those from only one experiment are 633 

plotted in Fig. 9b for a window length of 3. The standard deviations are at most 0.002 for 634 

both of the failure rate and mean analysis RMSE for a window length of 1. The numbers of 635 

operations of simulated annealing for second-order SA-4DVar with three outer loops are 636 

41.8 on average at 𝑟 =5 for a window length of 1, and 484 at 𝑟 =1 for a window length of 637 

3. The average numbers of iterations of the BFGS method per outer loop for the same SA-638 

4DVar are 15.4 at 𝑟 =5 for a window length of 1, and 20.6 at 𝑟 =1 for a window length of 3. 639 

For a window length of 1 (Fig. 9a), both SA-4DVars show better performance than hybrid 640 

4DVar with EnKF replacement in terms of the failure rate; as expected, second-order SA-641 

4DVar shows superior performance to first-order SA-4DVar. The failure rate decreases as 642 

the number of outer loops is increased. An unexpected result is that first-order SA-4DVar 643 

works well compared to hybrid 4DVar with EnKF replacement, because the searching 644 

method depicted in Fig. 1 does not work if the first-order approximation is used. However, if 645 

the global minimum is located to the left of the local minimum in Fig. 1, then there is a chance 646 
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that the cost function approximated around the background state up to the first order also 647 

includes the minimum point within the attraction of domain of the global minimum, as in a 648 

manner similar to the second-order approximation. Notably, hybrid 4DVar with EnKF 649 

replacement attempts the search process using the gradient descent method only once, 650 

whereas first- and second-order SA-4DVars attempt more than once and therefore have a 651 

greater chance of finding the global minimum. ee expect that the probability of success of 652 

first-order SA-4DVar decreases compared to that of second-order SA-4DVar as the problem 653 

size is increased, due to its poor accuracy of approximation. Another unexpected result for 654 

a window length of 1 is that the minimum failure rate of second-order SA-4DVar with two or 655 

three outer loops is obtained around 𝑟 =  5, because the second-order incremental 656 

approach is based on Taylor expansion and therefore its validity may be guaranteed for 𝑟 ≲ 657 

1. This phenomenon may be explained in terms of the landscape of the cost function for a 658 

window length of 1 (Figs. 5a and 6a). ehen the global minimum is located along the shell-659 

like structure of the landscape, a large search range is desirable. However, this result seems 660 

entirely accidental due to the particular landscape of the cost function, and is not a general 661 

result. 662 

For a window length of 3 (Fig. 9b), the improvement obtained by the two SA-4DVars 663 

becomes more significant compared to hybrid 4DVar with EnKF replacement, partly due to 664 

the positive feedback in assimilation cycles, as described in Section 4.1. Second-order SA-665 

4DVar is also superior to first-order SA-4DVar in terms of the failure rate when 𝑟 < 3 . 666 
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However, although the smallest failure rates are obtained by second-order SA-4DVar when 667 

𝑟 = 1, the opposite is true when 𝑟 > 4. This unexpected result may be explained in terms 668 

of the landscape of the original and approximated cost functions (Figs. 7 and 8). The original 669 

cost function for a window length of 3 has a rugged, complicated landscape compared to 670 

that for a window length of 1, and the first-order approximation tends to yield a smooth, flat 671 

landscape compared to the second-order approximation. As a result, when 𝑟 is large, the 672 

minimum point obtained by first-order SA-4DVar may be more likely to be found in the 673 

domain of attraction of a possible global minimum.  674 

Based on the results presented in Fig. 9, where the numbers of bits are set to 𝑍1 = 𝑍2 = 675 

4, we compare the performance of QA-4DVar and SA-4DVar for small 𝑟 values with the 676 

numbers of bits set to 𝑍1 = 4 and 𝑍2 = 2. Figure 10 shows the failure rates and mean 677 

analysis RMSEs of QA-4DVar (solid lines) and SA-4DVar (dotted line) for a window length 678 

of 1. SA-4DVar is identical to second-order SA-4DVar in Fig. 9 except for the numbers of 679 

bits. Averages over five experiments are presented for the reason mentioned in the first 680 

paragraph of this section. QA-4DVar and SA-4DVar show very similar minimum failure rates 681 

and RMSEs at 𝑟 = 4 for each window length, but QA-4DVar tends to perform better than 682 

SA-4DVar at other values of 𝑟 . These results demonstrate that QA-4DVar shows 683 

comparable or superior performance to SA-4DVar, possibly due to quantum tunneling, and 684 

that two outer loops are almost sufficient for a window length of 1. The smallest failure rate 685 

and mean analysis RMSE are obtained at 𝑟 = 4.5 using QA-4DVar with three outer loops.  686 

Fig. 10 
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Figure 11 shows the failure rates and mean analysis RMSEs of QA-4DVar (solid lines) 687 

and SA-4DVar (dotted line) for a window length of 3. The longer window benefits more from 688 

the 3rd outer loop because this is a more nonlinear problem. QA-4DVar and SA-4DVar 689 

showsimilar performance. A comparison between Figs. 10b and 11b reveals that increasing 690 

the length of the assimilation window reduces the accuracy of hybrid 4DVar with EnKF 691 

replacement, whereas the opposite trend is observed for both QA-4DVar and SA-4DVar. 692 

Thus, the proposed method derivess a benefit from increasing the window length. A 693 

comparison of Figs. 10 and 11 with Fig. 9 reveals little evidence of any adverse effect of 694 

reducing the 𝑍2 value. 695 

 Figure 12a is a scatter diagram of QA-4DVar results for a window length of 1 with three 696 

outer loops and 𝑟 =  4.5. This experiment has the smallest failure rate among the five 697 

experiments. Compared to hybrid 4DVar with EnKF replacement (Fig. 3b), the failure rate is 698 

reduced from 2.1% to 0.6% and the mean analysis RMSE is reduced from 0.600 to 0.586. 699 

Figure 12b shows a scatter diagram of QA-4DVar results for a window length of 3 with three 700 

outer loops and 𝑟 =1.5. The failure rate and mean analysis RMSE are significantly improved 701 

compared to hybrid 4DVar with EnKF replacement (Fig. 4b); the failure rate is reduced from 702 

39.6% to 8.1% and mean analysis RMSE is reduced from 0.667 to 0.547. Notably, this mean 703 

analysis RMSE value is almost equal to that of hybrid 4DVar without EnKF replacement for 704 

successful cases only (Fig. 4a). 705 

 706 

Fig. 11 

Fig. 12 
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5. Summary and Discussion 707 

This study proposes a method of searching for the global minimum in 4DVar by 708 

combining a second-order incremental approach and quantum annealing for QUBO, in 709 

which the latter provides guidance on where to explore in state space by minimizing an 710 

approximated cost function This approximated cost function is constructed in low-711 

dimensional space by expanding state variables up to the second order around the basic 712 

state of an outer loop, encoding the perturbation variables into binary variables, and 713 

transforming second-order terms into first-order terms according to a property of binary 714 

variables. ee also propose two approximation methods in state space and ensemble space 715 

to reduce the problem size. If the global minimum cannot be reached after a couple of 716 

iterations of the outer loop, the 4DVar analysis is replaced by an EnKF analysis in 717 

assimilation cycles.  718 

Data assimilation experiments using the Lorenz 63 model were conducted as a proof of 719 

concept of the proposed method. The results revealed that the proposed method can 720 

significantly reduce the frequency of falling into local minima, and that the benefit of 721 

extending the length of the assimilation window is realized even in strongly nonlinear 722 

regimes. Data assimilation experiments adopting simulated annealing instead of quantum 723 

annealing showed that the performance of quantum annealing is comparable to or better 724 

than that of simulated annealing, possibly due to quantum tunneling. Additional experiments 725 

to investigate further the performance of the proposed method and comparisons with other 726 
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methods are among the topics of future study. 727 

Since the data assimilation experiments were conducted using the Lorenz 63 model the 728 

performance of each approximation method described in Section 2.2 was not examined. 729 

However, it is important to clarify the effectiveness of using the minimum point obtained by 730 

quantum annealing in low-dimensional space as guidance for determining which regions of 731 

state space to explore. Therefore, subsequent research will focus on data assimilation 732 

experiments using a higher-dimensional model such as the Lorenz 96 model with the 733 

approximation methods described in this study. Only 177 logical qubits are available on D-734 

eave Advantage v4.1; therefore, SA-4DVar must be adopted as a data assimilation method 735 

instead of QA-4DVar. Simulated quantum annealing (e.g., Nishimori and Ozeki 2018), which 736 

simulates some aspects of quantum annealing on a classical computer, may also be applied. 737 
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Fig. 1.  Schematic of the search for the global minimum of a cost function (blue solid line) 888 

in a one-dimensional system. Quantum annealing (QA) provides guidance on where to 889 

explore by minimizing an approximated cost function (orange dashed line). Crosses 890 

indicate the starting points for minimization of the cost function by gradient descent; black 891 

circles indicate the minima of the cost function, and the white circle indicates the minimum 892 

of the approximated cost function obtained by QA in discrete space, where the control 893 

variable is assumed to take integer values only.  894 

 895 

Fig. 2.  eorkflows for (a) the proposed method of searching for the global minimum in 896 

4DVar and (b) hybrid 4DVar with EnKF replacement used for comparison. If the 897 

convergence value of the cost function 𝐽∗  exceeds the threshold, 𝐽𝑐 , then gradient 898 

descent (GD) is assumed to have failed to reach the global minimum, and either quantum 899 

annealing (QA) or EnKF replacement is conducted.  900 

 901 

Fig. 3.  Scatter diagrams of 𝐽∗ and analysis RMSE in assimilation cycles with a window 902 

length of 1 for (a) hybrid 4DVar without EnKF replacement and (b) hybrid 4DVar with EnKF 903 

replacement. Blue line indicates mean analysis RMSE of EnKF; dotted line indicates 𝐽𝑐. 904 

Mean analysis RMSEs and failure rates of hybrid 4DVars are shown in each panel, and 905 
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mean analysis RMSE only for cases where 𝐽∗ ≤ 𝐽𝑐 is also shown in (a). 906 

 907 

Fig. 4.  Same as Fig. 3 except for a window length of 3.  908 

 909 

Fig. 5.  Cross-sections of the cost function in state space along 𝛿𝑥0 = 𝛿𝑦0 at 𝑡 =159 in 910 

assimilation cycles of SA-4DVar for a window length of 1 with one outer loop for (a) the 911 

original cost function, (b) first-order approximation, and (c) second-order approximation. 912 

The origin (“X”) is the background state, and 𝛿𝑠0  is the coordinate along 𝛿𝑥0 = 𝛿𝑦0 , 913 

defined by sgn(𝛿𝑥0)√𝛿𝑥0
2 + 𝛿𝑦0

2
. The numbers of bits are 𝑍1 = 𝑍2 = 4. 914 
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Fig. 6.  Same as Fig. 5 except for 𝑡 =131. 916 

 917 

Fig. 7.  Same as Fig. 5 except for a window length of 3 and 𝑡 =116. 918 

 919 

Fig. 8.  Same as Fig. 5 except for a window length of 3 and 𝑡 =159. 920 

 921 

Fig. 9.  Failure rates of first-order SA-4DVar (dotted lines) and second-order SA-4DVar 922 

(solid lines) plotted against the search range 𝑟 for window lengths of (a) 1 and (b) 3. 923 

Averages over five experiments are presented in (a). Orange line indicates the failure rate 924 

of hybrid 4DVar with EnKF replacement. Green, blue, and cyan lines indicate one, two, 925 
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and three outer loops, respectively. The numbers of bits are 𝑍1 = 𝑍2 = 4. 926 

 927 

Fig. 10.  (a) Failure rates and (b) mean analysis RMSEs of QA-4DVar (solid lines) and SA-928 

4DVar (dotted lines) plotted against the search range 𝑟  for a window length of 1. 929 

Averages over five experiments are presented. Orange line indicates the failure rate of 930 

hybrid 4DVar with EnKF replacement. Green, blue, and cyan lines indicate one, two, and 931 

three outer loops, respectively. The numbers of bits are 𝑍1 = 4 and 𝑍2 = 2. SA-4DVar is 932 

the same as second-order SA-4DVar in Fig. 9 except for the numbers of bits. 933 

 934 

Fig. 11.  (a) Failure rates and (b) mean analysis RMSEs of QA-4DVar (solid lines) and SA-935 

4DVar (dotted lines) plotted against the search range 𝑟 for a window length of 3. Orange 936 

line indicates the failure rate of hybrid 4DVar with EnKF replacement. Green, blue, and 937 

cyan lines indicate one, two, and three outer loops, respectively. The numbers of bits are 938 

𝑍1 = 4 and 𝑍2 = 2. SA-4DVar is the same as second-order SA-4DVar in Fig. 9 except for 939 

the numbers of bits. 940 

 941 

Fig. 12.  Scatter diagrams of 𝐽∗ and analysis RMSE in assimilation cycles for QA-4DVar 942 

with three outer loops for  window lengths of (a) 1 and (b) 3 for optimal 𝑟 values of 4.5 943 

and 1.5, respectively. Blue line indicates mean analysis RMSE of EnKF; the dotted line 944 

indicates 𝐽𝑐. Mean analysis RMSEs and failure rates of QA-4DVar are shown in each 945 
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panel. The numbers of bits are 𝑍1 = 4 and 𝑍2 = 2. 946 
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Fig. 1.  Schematic of the search for the global minimum of a cost function (blue solid line) 949 

in a one-dimensional system. Quantum annealing (QA) provides guidance on where to 950 

explore by minimizing an approximated cost function (orange dashed line). Crosses 951 

indicate the starting points for minimization of the cost function by gradient descent; black 952 

circles indicate the minima of the cost function, and the white circle indicates the minimum 953 

of the approximated cost function obtained by QA in discrete space, where the control 954 

variable is assumed to take integer values only.  955 
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Fig. 2.  eorkflows for (a) the proposed method of searching for the global minimum in 961 

4DVar and (b) hybrid 4DVar with EnKF replacement used for comparison. If the 962 

convergence value of the cost function 𝐽∗  exceeds the threshold, 𝐽𝑐 , then gradient 963 

descent (GD) is assumed to have failed to reach the global minimum, and either quantum 964 

annealing (QA) or EnKF replacement is conducted.  965 
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 969 

Fig. 3.  Scatter diagrams of 𝐽∗ and analysis RMSE in assimilation cycles with a window 970 

length of 1 for (a) hybrid 4DVar without EnKF replacement and (b) hybrid 4DVar with 971 

EnKF replacement. Blue line indicates mean analysis RMSE of EnKF; dotted line 972 

indicates 𝐽𝑐. Mean analysis RMSEs and failure rates of hybrid 4DVars are shown in each 973 

panel, and mean analysis RMSE only for cases where 𝐽∗ ≤ 𝐽𝑐 is also shown in (a).  974 



 52 

(a) 975 

  (b) 976 

 977 

Fig. 4.  Same as Fig. 3 except for a window length of 3.  978 
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 983 

Fig. 5.  Cross-sections of the cost function in state space along 𝛿𝑥0 = 𝛿𝑦0 at 𝑡 =159 in 984 

assimilation cycles of SA-4DVar for a window length of 1 with one outer loop for (a) the 985 

original cost function, (b) first-order approximation, and (c) second-order approximation. 986 

The origin (“X”) is the background state, and 𝛿𝑠0  is the coordinate along 𝛿𝑥0 = 𝛿𝑦0 , 987 

defined by sgn(𝛿𝑥0)√𝛿𝑥0
2 + 𝛿𝑦0

2. The numbers of bits are 𝑍1 = 𝑍2 = 4. 988 
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 993 

Fig. 6.  Same as Fig. 5 except for 𝑡 =131. 994 

  995 
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(a) 996 

(b) 997 

(c) 998 

 999 

Fig. 7.  Same as Fig. 5 except for a window length of 3 and 𝑡 =116. 1000 

  1001 
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(a) 1002 

(b) 1003 

(c) 1004 

 1005 

Fig. 8.  Same as Fig. 5 except for a window length of 3 and 𝑡 =159. 1006 

  1007 
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(a) 1008 

(b) 1009 

 1010 

Fig. 9.  Failure rates of first-order SA-4DVar (dotted lines) and second-order SA-4DVar 1011 

(solid lines) plotted against the search range 𝑟 for window lengths of (a) 1 and (b) 3. 1012 

Averages over five experiments are presented in (a). Orange line indicates the failure 1013 

rate of hybrid 4DVar with EnKF replacement. Green, blue, and cyan lines indicate one, 1014 

two, and three outer loops, respectively. The numbers of bits are 𝑍1 = 𝑍2 = 4. 1015 
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(b) 1017 

 1018 

Fig. 10.  (a) Failure rates and (b) mean analysis RMSEs of QA-4DVar (solid lines) and SA-1019 

4DVar (dotted lines) plotted against the search range 𝑟  for a window length of 1. 1020 

Averages over five experiments are presented. Orange line indicates the failure rate of 1021 

hybrid 4DVar with EnKF replacement. Green, blue, and cyan lines indicate one, two, and 1022 

three outer loops, respectively. The numbers of bits are 𝑍1 = 4 and 𝑍2 = 2. SA-4DVar 1023 

is the same as second-order SA-4DVar in Fig. 9 except for the numbers of bits.  1024 
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 1027 

Fig. 11.  (a) Failure rates and (b) mean analysis RMSEs of QA-4DVar (solid lines) and SA-1028 

4DVar (dotted lines) plotted against the search range 𝑟 for a window length of 3. Orange 1029 

line indicates the failure rate of hybrid 4DVar with EnKF replacement. Green, blue, and 1030 

cyan lines indicate one, two, and three outer loops, respectively. The numbers of bits are 1031 

𝑍1 = 4 and 𝑍2 = 2. SA-4DVar is the same as second-order SA-4DVar in Fig. 9 except 1032 

for the numbers of bits.  1033 
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Fig. 12.  Scatter diagrams of 𝐽∗ and analysis RMSE in assimilation cycles for QA-4DVar 1037 

with three outer loops for  window lengths of (a) 1 and (b) 3 for optimal 𝑟 values of 4.5 1038 

and 1.5, respectively. Blue line indicates mean analysis RMSE of EnKF; the dotted line 1039 

indicates 𝐽𝑐. Mean analysis RMSEs and failure rates of QA-4DVar are shown in each 1040 

panel. The numbers of bits are 𝑍1 = 4 and 𝑍2 = 2. 1041 
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