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Abstract

Stable isotopes in precipitation have been extensively evaluated across the Tibetan
Plateau. However, the influence of distinct water vapor transport pathways on precipitation
isotope ratios during the active and break phases of the Indian monsoon remains poorly
understood. Temporal and spatial variations in these isotopes are documented over the
Tibetan Plateau and Nepal based on the 1998 GEWEX-GAME/Tibet field campaign.
According to these observations, the isotopic composition of precipitation over the plateau
was strongly modulated by differences in water vapor transport mechanisms. The transport
routes were classified into Indian monsoon and westerlies by employing backward trajectory
analysis. The westerlies delivered precipitation with elevated 6'80 and d-excess values (d-
excess = dD - 80'80) to the central Tibetan Plateau, consistent with the previous
observations. In contrast, the Indian monsoon brought precipitation with distinct isotopic
characteristics depending on the monsoon phase. During the active phase, the reduced
rainfall south of the Himalayas limited the rainout of heavy isotopes, allowing water vapor
with higher 5'80 than the break phase to reach the Tibetan Plateau. During the break phase,
the enhanced orographic rainfall along the windward slopes of the Himalayas caused a
progressive decrease in 8'80 values toward the north. These findings indicate that the
accurate interpretation of stable isotope data in precipitation over the Tibetan Plateau

requires consideration of both the active and break phases of the Indian monsoon.
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1. Introduction

1.1 Climatic Significance of the Tibetan Plateau

The Tibetan Plateau serves as a critical heat source that influences monsoon circulation

through direct and indirect mechanisms (e.g. Yanai et al., 1992; Kuwagata et al., 2001). This

influence is exerted through surface-based heating of the middle atmosphere and latent heat

released by convective clouds, which provide an additional thermal input. However, the

middle atmosphere is usually very dry and the great Himalayan range acts as a barrier,

preventing water vapor from entering the plateau. Consequently, the transport of water

vapor to the Tibetan Plateau and adjacent semiarid regions has garnered extensive attention.

1.2 Intraseasonal Variability in the Indian Monsoon

The water cycle over the southern Tibetan Plateau is influenced by the Indian monsoon,

a component of broader Asian monsoon system. Subseasonal fluctuations in rainfall,

manifesting as alternating active and break phases, represent a key element of the variability

of the Indian monsoon system (Ramamurthy, 1969). During the summer monsoon, the

convection and precipitation patterns over central India exhibit marked intraseasonal

variability, transitioning between active periods of substantial rainfall and break periods of

minimal rainfall (Rajeevan et al., 2010; Singh et al., 2017). Notably, during these break

phases over central India, precipitation often intensifies along the windward slopes of the

Himalayas.
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1.3 Stable Isotopes in Precipitation and Relevant Previous Studies
a. Basic Principles of Stable Isotopes and Deuterium (d)-excess in Precipitation

The stable isotopic composition of precipitation (880 and dD) is influenced by
hydrological processes, such as evaporation, mixing, transport, and precipitation history
(Gat, 2010). In this context, deuterium excess (d-excess = dD - 85'80) reflects oceanic,
lacustrine, and terrestrial surface conditions within moisture source regions and typically
remains unchanged during condensation within transported air parcels (Merlivat and Jouzel,
1979). This unique property has been extensively applied in paleoclimate reconstruction
using ice cores, particularly in the Tibetan Plateau (e.g., Thompson et al., 1989; Yao and
Thompson, 1992; Thompson et al., 2000; Tian et al., 2003; Joswiak et al., 2013; Shao et al.,
2017). Variations in temperature and atmospheric circulation are essential when interpreting
ice core records, but variability in water vapor transport processes is equally critical. In
particular, regional differences in water vapor transport characteristics and precipitation
isotopic composition across the Tibetan Plateau must be considered (Yao et al., 2013, Man
etal., 2022). Sun et al. (2019) demonstrated the influence of meteorological factors on stable
isotope variations in the northwestern Tibetan Plateau, underscoring the role of transport
pathways and atmospheric processes in shaping isotopic signatures across the region.
Building on these insights, this study examines the southern and central Tibetan Plateau,

excluding northern regions, and investigates precipitation isotopes and their associated

4
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95 transport processes in these areas.

96

97  b. Regional Classification of Precipitation Isotopes Across the Tibetan Plateau

98 Early studies on stable water isotopes in precipitation date back to field investigations
99  conducted in the Himalayas between 1966 and 1968 (Zhang et al., 1973). Since the 1980s,
100  monthly precipitation isotope data have been collected at Lhasa as part of the Global
101 Network of Isotopes in Precipitation (GNIP), operated by the International Atomic Energy
102  Agency (Yao et al., 2013). Subsequently, continuous monitoring of precipitation isotopes
103  has been conducted at numerous sites across the Tibetan Plateau through the GNIP and
104 the Tibetan Network for Isotopes in Precipitation (Yao et al., 2013, Man et al., 2022). Based
105 on these observations, the spatial distribution of precipitation 3'80 across the Tibetan
106  Plateau can be categorized into three domains according to differences in moisture sources
107  and transport pathways: the monsoon domain in the southern plateau, the westerly domain
108 in the northern plateau, and the transition domain in the central plateau (Yao et al., 2013).
109 Li and Pang (2022) further supported this classification by identifying altitude-dependent
110  isotope gradients in the eastern Tibetan Plateau.

111 In the monsoon domain, precipitation 5'80 values decrease during periods of strong
112 southerly winds linked to the Indian monsoon, owing to progressive rainout along the
113  moisture transport pathway (Tian et al., 2001b; Tian et al., 2003; Yao et al., 2013; Yu et al.,

114  2015; Man et al., 2022). This interpretation was further corroborated by He and Richards

5
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(2016), who demonstrated that '80 variability in precipitation across the Tibetan Plateau is
chiefly governed by monsoon-driven moisture transport and rainout processes. In contrast,
in the westerly domain of the northern Tibetan Plateau, precipitation is shaped by westerly
winds and locally recycled water, with elevated 5'80 and d-excess values commonly
observed during summer (Kurita and Yamada, 2008; Xu et al., 2011; Cui and Li, 2015; Sun
et al., 2019). Meanwhile, within the transition domain, precipitation is influenced by both the
Indian monsoon and the westerlies, and 380 values display stronger correlations with

regional convective activity than with local meteorological conditions (Zhang et al., 2019).

1.4 Outstanding Challenges and the Significance of the 1998 Field Campaign

Previous studies have revealed that the spatial and temporal variations in 3'80 and d-
excess levels in precipitation over the southern and central Tibetan Plateau cannot be fully
explained by the simple rainout effect along the transport pathway (Tian et al., 2001; Gao et
al., 2011; Yao et al., 2013; Man et al., 2022). He and Richards (2016) demonstrated that
monsoon moisture exerted primary control on precipitation isotopes; however, the detailed
distinction between the active and break phases of the Indian monsoon remains
insufficiently understood.

The extreme elevation and limited accessibility of the Tibetan Plateau make field
observations in this region particularly challenging. Under these circumstances, the

comprehensive field campaign conducted in 1998 under the Global Energy and Water

6
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135  Exchanges Project (GEWEX) and the GEWEX Asian Monsoon Experiment (GAME) yielded
136  a uniquely valuable dataset. This campaign involved daily precipitation sampling, including
137 d-excess, across multiple sites, as well as intensive sonde launches, ground-based
138  meteorological measurements, and reanalysis dataset development. Furthermore, 1998
139 marked the beginning of observations by the Tropical Rainfall Measuring
140  Mission/Precipitation Radar (TRMM/PR), the world’s first satellite-borne radar capable of
141  capturing the vertical structure of precipitation, including that over mountainous terrain.
142  Ground-based Doppler radar measurements were also conducted in the same region.
143  Together, these comprehensive datasets make 1998 a uniquely important year for
144  advancing the understanding of precipitation processes over the southern and central
145  Tibetan Plateau.

146 In recent years, numerical models incorporating water isotopes have reasonably
147 reproduced 8'80 levels in precipitation; however, simulating d-excess, particularly under
148  deep convective conditions, remains a major challenge. Moreover, the representation of
149  isotope processes in non-hydrostatic models is still underway, and realistic simulations of d-
150  excess have yet to be fully realized. Under these circumstances, accumulating reliable field-
151  based observations is essential for interpreting stable water isotopes in paleoclimate studies,
152 including ice core analyses.

153

154 1.5 Objectives of This Study
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This study aims to clarify the relationship between the complex water vapor transport
pathways and the stable isotopic composition (6'80 and d-excess) of precipitation over the
southern and central Tibetan Plateau. The study’s findings are expected to provide valuable
observational evidence supporting improvements in isotope-enabled models and past

climate variability interpretation.

2. Materials
2.1 Observation and Sampling

The Tibetan Plateau features major east—west-extending mountain ranges exceeding
6,000 m in elevation, including the Himalayas, Nyaingentanglha Mountains, and Tanggula
Mountains. In 1998, as part of the GEWEX-GAME, stable isotope monitoring of precipitation
on the Tibetan Plateau was conducted during the Indian monsoon season. Precipitation
samples were collected from April to September 1998 at Kathmandu (Nepal), Nyalam,
Lhasa, Nagqu, AQB, and Amdo along a southwest—northeast transect across the Tibetan
Plateau (Fig. 1). During the GEWEX-GAME/Tibet field campaign, daily precipitation samples
were collected each morning following rainfall events. Subsequently, the samples were
analyzed for 8D and 580 using a MAT 252 mass spectrometer equipped with a CO2/H2/H20
equilibration device at the Center for Ecological Research, Kyoto University. Here, analytical
precision (10) was better than 0.2 %o for 880 and 2 %o for dD.

According to Yao et al. (2013), the Nyaingentanglha mountain range serves as a boundary,

8
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with the region to the south classified as the monsoon domain and the region to the north

categorized as the transition domain. The temporal and spatial variability of precipitation

isotopes was examined by distinguishing between the monsoon and transition domains.

2.2 Backward Trajectory

To identify the sources of water vapor associated with precipitation over the southern and

central Tibetan Plateau, we applied the Hybrid Single-Particle Lagrangian Integrated

Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric

Administration (NOAA), using reanalysis data from the National Centers for Environmental

Prediction (Stein et al., 2015). Doppler radar observations conducted in Nagqu in 1998

indicated that the echo-top height of 10 dBZ frequently exceeded 9.5 km above ground level

(a.g.l.) on nearly all days between June 13 and September 19 (Uyeda et al., 2001). Based

on the established characteristics of water vapor transport and the findings of Doppler radar

observations, we conducted backward trajectory analyses from altitudes of 500, 1,500,

4,000, and 6,000 m a.g.l. at each observation site.

2.3 Meteorological Datasets

To examine precipitation during the study period across the monsoon Asia region, we

used the Asian-Precipitation-Highly Resolved Observational Data Integration Toward

Evaluation of Water Resources (APHRODITE) daily gridded precipitation dataset, derived

9
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from rain gauge observations (Yatagai et al.,, 2012). The target domain spanned 60°E—

150°E and 15°N-55°N, with a spatial resolution of 0.5°. The analysis focused on the period

from June to September 1998.

2.4 Satellite Datasets

To investigate the vertical distribution of precipitation, we relied on data from the PR

onboard the TRMM (lguchi et al., 1994). This satellite was a collaborative initiative between

the National Aeronautics and Space Administration and the National Space Development

Agency. The PR was developed by the Communications Research Laboratory among its

five onboard instruments. It measured the radar backscatter from rainfall and the Earth’s

surface to characterize the three-dimensional structure of precipitation.

The PR was the world’s first spaceborne precipitation radar and provided unprecedented

vertical resolution of rainfall (Iguchi et al., 1994). In this study, we used rain rate data from

the PR2A25 version 6 product. The horizontal and vertical resolutions were 4.3 and 0.25

km, respectively. The analysis focused on the period from June to September 1998.

3. Methods

3.1 Active and Break Phases of the Indian Monsoon

Periodic rainfall fluctuations over India are well documented. During the summer monsoon

season of 1998, active and break phases of convective cloud development over India were

10
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215 observed through large-scale monitoring conducted by GAME as part of its intensive

216  observation campaign from April to September (Matsumoto et al., 1999). According to these

217  observations, the Indian monsoon period that year extended from June 10 to September 16.

218  The first active phase began on June 10 over central India. This phase was followed by the

219 first break phase, which began on July 10 and was accompanied by the development of an

220 eastward-moving convective cloud system originating near 5°N, 65°E. The second active

221  phase started on July 25, coinciding with northward-migrating convection over the Bay of

222  Bengal. Subsequently, the second break phase began on August 15. Meanwhile, convective

223  clouds over the equatorial Indian Ocean gradually moved northeastward and reached the

224  Indian subcontinent on August 24. These developments appear to mark the onset of the

225  third active phase over central India, which began on August 25. Ultimately, the Indian

226  monsoon retreated from central India on September 16. Accordingly, the active phases of

227  the Indian monsoon were recorded from June 10 to July 9 (day of year [DOY]: 161-190),

228  July 25 to August 14 (DOY: 206—-226), and August 25 to September 16 (DOY: 237-259) and

229 are designated as a1, a2, and a3, respectively. The break phases recorded from July 10 to

230  July 24 (DOY: 191-205) and August 15 to August 24 (DOY: 227-236) are referred to as b1

231 and b2, respectively.

232

233 3.2 Classification of Water Vapor Transport Pathways

234 We classified the transport routes into Indian monsoon and westerly pathways using

11
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backward trajectory analysis to examine the relationship between stable water isotopes in
precipitation and associated water vapor transport pathways. Seven-day backward
trajectories were calculated at heights of 500, 1500, 4000, and 6000 m above ground level.
The classification of the Indian monsoon and westerly pathways was based on the following
criteria. The Indian monsoon pathway was defined as the route along which water vapor
originating from the Bay of Bengal or Arabian Sea crossed the southern slopes of the
Himalayas via the Indian subcontinent. The westerly pathway was defined as the route along
which water vapor originating from the Eurasian continent approached the Tibetan Plateau

from the west or north without passing over the Indian subcontinent.

4. Results
4.1 Temporal and Spatial Variations in 6’80 and d-excess Levels in Precipitation

Figure 2 presents the spatial and temporal variations in 380 and d-excess levels. Within
the monsoon domain, &'80 values in Kathmandu were higher than those observed in
Nyalam and Lhasa, with Nyalam exhibiting intermediate values. In other words, §'80
generally decreased from south to north across the monsoon domain during the observation
period. Meanwhile, temporal variations in 8'80 were similar across all sites, except during
the a2 and b2 periods (July 31-August 21). 580 values were elevated during the early part
of the a1 period, gradually decreased toward the middle of the b1 period, increased sharply

at the onset of a2, steadily decreased toward the end of b2, and then gradually increased

12
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255 toward the end of a3. During the a2-b2 interval, 380 values in Kathmandu remained
256  elevated. In Nyalam, 8'80 values initially decreased during the early to middle portion of a2
257  and subsequently stabilized around —15 %o through the end of b2. In Lhasa, 6'80 generally
258  decreased from the early part of a2 to the end of b2. Across the monsoon domain, 5'80
259  exhibited a slight periodic cycle aligned with the active and break phases of the Indian
260 monsoon. Meanwhile, most d-excess values exhibited minimal variation throughout the
261  observation period, remaining close to 10 %o at all sites.

262 In the transition domain, 380 values at the three sites remained largely comparable
263  throughout the observation period, except during the middle of the a2 phase (July 30—August
264  5). During this interval, 580 values at AQB and Amdo were higher than those at Nagqu,
265 indicating a south-to-north increase in 6'80 within the domain. Elevated 6'80 values were
266  observed during the early and middle portions of a1, followed by a marked decline toward
267 the end of this period. A comparable decreasing trend was evident during the b1 and a2
268  period, with values progressively declining from the beginning to the latter part of each period.
269  During the b2 period, 5'80 values were lower than those in other periods and gradually
270 increased toward the end of a3. Meanwhile, temporal variations in d-excess remained
271  consistent across all three sites. Within the transition domain, d-excess values increased
272 during active phases and decreased during break phases. However, across the observation
273  period, d-excess exhibited a gradual upward trend. Elevated 6'80 and d-excess values were

274  recorded in the middle portions of a1 and a2, and in the latter part of a3.

13
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4.2 Flow Patterns Associated with the Active and Break Phases of the Indian Monsoon

We classified the air parcel transport pathways as either the Indian monsoon or westerly
pathways using seven-day backward trajectories (Fig. 3). Most air parcels arriving below the
precipitation top height in the monsoon domain were associated with the Indian monsoon.
In contrast, in the transition domain, while many parcels reaching 500 and 1500 m a.g.l.
were transported by the Indian monsoon, a considerable proportion of those near the

precipitation top height were transported by the westerlies.

4.3 Relationship Between Stable Water Isotopes and Water Vapor Transport Pathways
a. Monsoon Domain

The relationship between stable water isotopes in precipitation and air parcel transport
pathways is illustrated in Figures 4 and 5. The 3'80 values in the monsoon domain
decreased progressively from Kathmandu to Lhasa (Fig. 2). Meanwhile, the d-excess values
exhibited minimal variation throughout the observation period, suggesting that the moisture
source for precipitation remained relatively consistent across the domain (Fig. 2). Most of
the water vapor contributing to precipitation in this region was transported by the Indian
monsoon from the south of the Himalayas (Figs. 3, 4, S1, and S2). Air parcels reaching
1,500 m a.g.l. in Kathmandu, Nyalam, and Lhasa originated from the Bay of Bengal and the

Arabian Sea (Fig. S1). In Lhasa, a substantial proportion of parcels were transported
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specifically from the Bay of Bengal (Fig. S1). The trajectories of these parcels were
characterized by high specific humidity over the Indian subcontinent, which diminished along
the southern slope of the Himalayas (Figs. S1 and S2). Moreover, the parcels ascended

rapidly along the southern side of the Himalayas (Figs. S3 and S4).

b. Transition Domain

In the transition domain, 5'80 values were comparatively high during the early and middle
stages of the a1, b1, and a2 periods and during the latter part of the a3 period (Fig. 2).
During these intervals, air parcels arriving at the observation sites predominantly followed
transport pathways linked to either the westerlies or the Indian monsoon (Figs. 3 and 4).
When air parcels approached from the west or north under westerly influence, precipitation
amounts declined, while 3'80 and d-excess values increased (Figs. 4 and 5). These
westerly-derived air parcels displayed low specific humidity along their backward trajectories
(Figs. S5 and S6) and followed higher-altitude trajectories (Figs. S7 and S8). In contrast,
0'80 values were lower during the b2 period and the latter stages of a1 and b1 (Fig. 2),
when air parcels were primarily transported by the Indian monsoon (Fig. 4). During these
periods, d-excess values declined to levels comparable to those in the monsoon domain
(Fig. 5). These air parcels, which originated over the Indian subcontinent, displayed a south-
to-north decline in specific humidity along their trajectories (Figs. S5 and S6). However,

under the Indian monsoon regime during the active phase, §'80 values were elevated in the

15
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early and middle stages of a1 and a2 (Fig. 4).

5. Discussion
5.1 Controlling Factors of 6’80 Values in Precipitation Across the Monsoon Domain

In the monsoon domain, this study recorded a south-to-north decrease in 8'80 values,
attributed to the rainout effect between the Himalayas and the southern Tibetan Plateau,
which is consistent with previous findings (Tian et al., 2001b; Tian et al., 2003; Yao et al.,
2013; Yu et al., 2015; Man et al., 2022). Notably, the 380 values in Kathmandu did not
exhibit a significant correlation with local precipitation, whereas those in Nyalam and Lhasa
were weakly negatively correlated with precipitation at their respective sites (Figs. 4 and 6).
This indicates that 5'80 levels in precipitation over southern Tibetan Plateau and Kathmandu
do not reliably reflect local precipitation amounts. However, 580 levels in the monsoon
domain exhibited a strong negative correlation with the amount of precipitation recorded in
the south of the Himalayas 1-3 days earlier (Fig. 7). This region serves as the primary
transport pathway for air parcels that deliver precipitation to the monsoon domain.
Accordingly, 6'80 variations in this domain are predominantly governed by the precipitation
amount along the trajectory of these air parcels.

Water vapor is transported from the south of the Himalayas to the southern Tibetan
Plateau through multiple valleys, driven by the Indian monsoon. As moist air ascends along

these valleys, heavy isotopes are progressively removed via precipitation, leading to isotopic
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335 depletion in the remaining vapor. Consequently, this Indian monsoon transport causes
336  heavier water molecules to precipitate earlier in southern locations, such as Kathmandu,
337 whereas lighter isotopes are transported farther north, producing a systematic decline in
338  0'80 throughout the region.

339

340 5.2 Influence of the Indian Monsoon Phases on Precipitation 680 in the Transition Domain
341 In the transition domain, 30 exhibited a negative correlation with local precipitation
342  amounts (Figs. 4 and 6), consistent with previous findings (Yu et al., 2015; He and Richards,
343 2016). Precipitation linked to the westerlies was generally limited in volume and
344 accompanied by elevated 8'80 and d-excess values throughout the observation period.
345  Previous studies have reported that westerly-derived moisture includes recycled vapor from
346  continental sources, which contributes to elevated '80 and d-excess values (Tian et al.,
347  2001a; Tian et al., 2003; Kurita and Yamada, 2008). Accordingly, high 5'80 and d-excess
348  values are expected when westerly influences primarily govern precipitation in the transition
349  domain.

350 In contrast, Indian monsoon precipitation was relatively scarce and exhibited higher 580
351  values during the early and middle stages of a1 and a2, whereas it was more abundant and
352  characterized by lower 8'80 values during b1, b2, and the latter part of a1. Instances in
353  which water vapor transported by the Indian monsoon exhibits elevated &'80 values are

354  uncommon in the transition domain. In this study, such elevated 5'80 values associated with

17
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Indian monsoon precipitation were mainly observed during the active phase of the Indian
monsoon (a1 and a2). In the transition domain, 3'80 variations in Indian monsoon
precipitation throughout the observation period showed a strong negative correlation with
precipitation amounts recorded south of the Himalayas 1-3 days before the rainfall in the
domain (Fig. 8). This southern Himalayan region served as the main transport corridor for
air parcels carrying moisture to the transition domain via the Indian monsoon (Figs. S5-S8).
Thus, 8'80 variations in Indian monsoon precipitation over the transition domain were
predominantly controlled by upstream precipitation south of the Himalayas, consistent with
the patterns observed in the monsoon domain. During the active phase of the Indian
monsoon, the precipitation amounts showed a negative anomaly relative to the mean during
the observation period (Fig. 9). Consequently, elevated 580 values in Indian monsoon
precipitation during the active phase of the Indian monsoon were likely due to limited
precipitation and reduced loss of heavy isotopes over the south of the Himalayas.
Although previous studies have attributed elevated 5'80 values in the transition domain
to recycled moisture from land surfaces, Indian monsoon precipitation during the active
phases of the Indian monsoon may have contributed to the observed increases in 5180
values. We propose that stable water isotopes in precipitation over the southern and central
Tibetan Plateau are potentially influenced by temporal variations in precipitation amounts
associated with the active and break phases of the Indian monsoon in the south of the

Himalayas.
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375

376 6. Conclusion

377 Temporal and spatial variations in stable isotopes in precipitation were documented over
378  the Tibetan Plateau and Nepal during the 1998 GEWEX-GAME/Tibet field campaign. These
379 datarevealed a relationship between stable precipitation isotopes and the Indian monsoon’s
380  meteorological patterns over the Tibetan Plateau.

381 In the monsoon domain, located in the southern part of the Tibetan Plateau and Nepal,
382  0'80 values decreased from Kathmandu to Lhasa. In contrast, the d-excess values showed
383 little variation during the observation period. Most of the water vapor transported into the
384  monsoon domain originated from south of the Himalayas and was associated with the Indian
385  monsoon. Based on these findings, we suggest that the 5'80 composition of precipitation in
386 the monsoon domain is primarily governed by monsoonal rainfall on the southern Himalayan
387  slope.

388 In the transition domain of the central Tibetan Plateau, '80 values exhibited a strong
389 negative correlation with local precipitation. When precipitation was influenced by water
390 vapor transported by the westerlies, 5'80 and d-excess values were elevated. Westerly-
391 transported air masses may have contained moisture recycled from continental sources,
392  resulting in low precipitation amounts but relatively high 30 and d-excess values. When
393  the Indian monsoon acted as the moisture source, §'80 values were generally higher during

394 its active phase and lower during the break phase. Precipitation in south of the Himalayas

19
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414

was reduced during the active phase compared with the break phase. This variation limited
the rainout of heavier isotopes from water vapor, potentially increasing 5'80 values.

These findings highlight the importance of considering the active and break phases of the
Indian monsoon when interpreting precipitation isotopic variations over the southern and

central Tibetan Plateau.
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Supplement

Supplementary Figures S1-S8 present the results of backward trajectory analyses.
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547 List of Figures

548  Fig. 1. Observation sites and topography of the Tibetan Plateau. Observation sites are
549 indicated by circles. Shaded colors represent elevation based on the ETOPO1 model.
550 Fig. 2. Spatial and temporal variations in 8180 and d-excess during the 1998 Indian
551 monsoon. Orange and blue shaded areas indicate the active (a1, a2, a3) and break (b1,
552 b2) phases, respectively.

553  Fig. 3. Temporal variations in precipitation top height (light green) and moisture transport
554 pathways. Water vapor transport routes were classified as continental or Indian monsoon
555 based on seven-day backward trajectories initiated at 6000 m a.g.l. (A), 4000 m a.g.l. (B),
556 1500 m a.g.l. (C), and 500 m a.g.l. (D). Labels a1-a3 represent the active phase, and
557 labels b1-b2 represent the break phase.

558  Fig. 4. Temporal variations in 3'80 and precipitation at each observation site. 8'80 data

559 points were classified by the transport pathways of air parcels, identified using backward
560 trajectories and meteorological fields over the Tibetan Plateau and India. Indian monsoon
561 and westerly flows were distinguished using seven-day backward trajectories. Grey
562 shaded boxplots denote the daily precipitation amount. rand p values denote the Pearson
563 correlation coefficient and its statistical significance between 8'®0 and precipitation,
564 respectively.

565  Fig. 5. Temporal variations in d-excess and precipitation at each observation site. d-excess

566 data points were classified according to the transport pathways of air parcels, identified
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using backward trajectories and meteorological fields over the Tibetan Plateau and India.
Indian monsoon and westerly flows were distinguished using seven-day backward
trajectories. Grey shaded boxplots denote the daily precipitation amount. r and p values
denote the Pearson correlation coefficient and its statistical significance between d-
excess and precipitation, respectively.

Fig. 6. Correlation coefficients between §'80 in precipitation at each site and precipitation
amount. Black contoured regions indicate p < 0.05 based on Student’s t-test. Site
positions are represented by a white circle (Kathmandu), triangle (Nyalam), hexagon
(Lhasa), square (Nagqu), inverted triangle (AQB), and star (Amdo).

Fig. 7. Correlation coefficients between 8'80 values in precipitation at three sites:
Kathmandu (left), Nyalam (center), and Lhasa (right), and precipitation amounts at time
lags of one day (top), two days (middle), and three days (bottom). Black contoured regions
indicate p < 0.05 based on Student’s t-test. The positions of the sites are represented as
follows: white circle (Kathmandu), triangle (Nyalam), and hexagon (Lhasa).

Fig. 8. Correlation coefficients between &'80 values associated with Indian monsoon
precipitation at three sites: Nagqu (left), AQB (center), and Amdo (right), and precipitation
amounts at time lags of one day (top), two days (middle), and three days (bottom). Black
contoured regions indicate p < 0.05 based on Student’s t-test. Site positions are indicated
by a white square (Nagqu), inverted triangle (AQB), and star (Amdo).

Fig. 9. Mean precipitation anomalies during the active (a1, a2, and a3) and break (b1 and
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b2) phases of the Indian monsoon, based on the APHRODITE dataset. Daily precipitation

anomalies were calculated as the difference between daily precipitation and the mean

precipitation over the entire observation period. Site positions are indicated by a white

circle (Kathmandu), triangle (Nyalam), hexagon (Lhasa), square (Nagqu), inverted

triangle (AQB), and star (Amdo).
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Fig. 1. Observation sites and topography of the Tibetan Plateau. Observation sites are

indicated by circles. Shaded colors represent elevation based on the ETOPO1 model.
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598  Fig. 2. Spatial and temporal variations in 8'80 and d-excess during the 1998 Indian monsoon.
599  Orange and blue shaded areas indicate the active (a1, a2, a3) and break (b1, b2) phases,
600  respectively.
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Fig. 4. Temporal variations in 3'80 and precipitation at each observation site. 8'80 data
points were classified by the transport pathways of air parcels, identified using backward
trajectories and meteorological fields over the Tibetan Plateau and India. Indian monsoon
and westerly flows were distinguished using seven-day backward trajectories. Grey shaded
boxplots denote the daily precipitation amount. r and p values denote the Pearson
correlation coefficient and its statistical significance between 80 and precipitation,

respectively.
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Fig. 5. Temporal variations in d-excess and precipitation at each observation site. d-excess

data points were classified according to the transport pathways of air parcels, identified

using backward trajectories and meteorological fields over the Tibetan Plateau and India.

Indian monsoon and westerly flows were distinguished using seven-day backward

trajectories. Grey shaded boxplots denote the daily precipitation amount. r and p values

denote the Pearson correlation coefficient and its statistical significance between d-excess

and precipitation, respectively.
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amount. Black contoured regions indicate p < 0.05 based on Student’s t-test. Site positions
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Fig. 7. Correlation coefficients between 580 values in precipitation at three sites:
Kathmandu (left), Nyalam (center), and Lhasa (right), and precipitation amounts at time
lags of one day (top), two days (middle), and three days (bottom). Black contoured regions
indicate p < 0.05 based on Student’s t-test. The positions of the sites are represented as

follows: white circle (Kathmandu), triangle (Nyalam), and hexagon (Lhasa).
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Fig. 8. Correlation coefficients between 380 values associated with Indian monsoon
precipitation at three sites: Nagqu (left), AQB (center), and Amdo (right), and precipitation
amounts at time lags of one day (top), two days (middle), and three days (bottom). Black
contoured regions indicate p < 0.05 based on Student’s t-test. Site positions are indicated

by a white square (Nagqu), inverted triangle (AQB), and star (Amdo).
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Fig. 9. Mean precipitation anomalies during the active (a1, a2, and a3) and break (b1 and
b2) phases of the Indian monsoon, based on the APHRODITE dataset. Daily precipitation
anomalies were calculated as the difference between daily precipitation and the mean
precipitation over the entire observation period. Site positions are indicated by a white circle
(Kathmandu), triangle (Nyalam), hexagon (Lhasa), square (Nagqu), inverted triangle (AQB),

and star (Amdo).
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