Bi, J., J. Shi, Y. Xie, Y. Liu, T. Takamura, and P. Khatri, 2014: Dust aerosol characteristics and shortwave radiative impact at a Gobi Desert of northwest China during the spring of 2012. *J. Meteor. Soc. Japan*, **92A**, 33-56.

10 0.25 (a) April (b) AOD α 0.34 0.40 10 0.20 0.17 0.85 $1V/dlnR (\mu m^3/\mu m^2)$ 0.1 0.10 10 0.05 10 10-0.00 10.00 0.01 0.10 1.00 Radius (μm) 10.00 0.01 0.10 1.00 Radius (µm) 20 20 (a) 10 10 0 С -10 -10 Y=89.5-104.6X -20 -20 $R^2 = 0.80$ -30 -30 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.000 0.005 0

http://dx.doi.org/10.2151/jmsj.2014-A03

Figure 1. (a) Daily mean aerosol volume size distributions in April and (b) monthly average volume size distribution during 2012 at Dunhuang.

 \downarrow Figure 2. Daily mean of aerosol shortwave direct radiative forcing (ARF) at the top of atmosphere (TOA) and surface versus SSA₅₀₀ and Imaginary part at 500 nm.

- High aerosol loading and predominantly coarse particulates were observed in Dunhuang during the spring of 2012 ascribed to the influence of prevalent dust storm (Fig. 1).
- The single scattering albedo at 500 nm (SSA₅₀₀) varied from 0.91 to 0.97 on dusty days and increased with the increase of aerosol optical depth, indicating that the dust aerosols sourced from northwest China were not strongly absorbing.
- The daily mean aerosol shortwave direct radiative forcing (ARF) were largely negative at the surface (-79.4 to -3.2 Wm⁻²) and moderately positive in the atmosphere (2.2 to 25.1 Wm⁻²), which represents a strong cooling at the surface and moderate warming in the atmosphere. The ARF at TOA was positive value when SSA₅₀₀ is less than 0.85 or the imaginary part at 500 nm was larger than 0.015 (Fig. 2).