Uchiyama, A., A.Yamazaki, R. Kudo, E. Kobayashi, H. Togawa, and D. Uesawa, 2014: Continuous ground-based observation of aerosol optical properties at Tsukuba, Japan: Trend and climatology. *J. Meteor. Soc. Japan*, **92A**, 93-108. http://dx.doi.org/10.2151/imsi.2014-006

Figure 1

Monthly average absorption coefficient (\bigcirc, \bigcirc) at 530nm and Monthly average scattering coefficient (\square, \blacksquare) at 550nm in the period from 2002 to 2013. Data is monthly average and vertical bar is standard deviation. Open circle(\bigcirc) is absorption coefficient measured by a wavelength PSAP and closed circle (\bigcirc) is that measured by three wavelength PSAP3 λ . Scattering coefficient was retrieved one. Open square (\square) is retrieved using data of a wavelength PSAP and TSI 3563 nephelometer. Close square (\blacksquare) is retrieved using data of three wavelength PSAP3 λ and TSI 3563 nephelometer.

Figure 2 Same as Fig.1 except Single scattering albedo at 550nm.

- To investigate aerosol optical properties, the Meteorological Research Institute has been continuously measuring scattering and absorption coefficients since January 2002 in dry air conditions at Tsukuba, Japan.
- We used these optical data to investigate trends of aerosol properties and climatology.
- The results showed that most aerosol characteristics had seasonal variation and decreasing or increasing trends significant at the 95 % confidence level.
- From 2002 to 2013, the extinction coefficient at 550 nm and absorption coefficient at 530 nm had statistically significant decreases of -1.5×10^{-6} and -5.4×10^{-7} m⁻¹ year⁻¹, respectively. The single scattering albedo (SSA) at 550 nm had a significant increasing trend of 7.4×10^{-3} year⁻¹.
- The increasing trend of 2.1 × 10⁻² year⁻¹ in the absorption Ångström exponent from 2006 to 2013 was significant. This tendency suggests a compositional change of light-absorbing aerosol.
- The analysis using the extinction Ångström exponent showed that aerosol characteristics were dependent on the extinction Ångström exponent.
- The aerosol characteristics estimated from optical data were consistent with those derived from radiometer data.