Kwon, S., G. W. Lee, and G. Kim, 2015: Rainfall estimation from an operational S-band dual-polarization radar: Effect of radar calibration. *J. Meteor. Soc. Japan*, **93**, 65-79. https://doi.org/10.2151/jmsj.2015-005

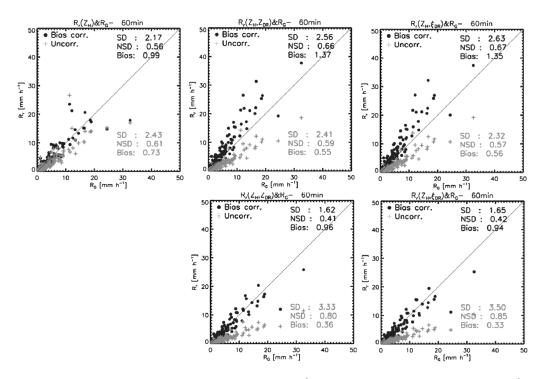



Figure 1. Scatterplot of radar rainfall rate  $R_r(2 \text{ km}^2)$  vs. gage rainfall rate  $R_G(2 \text{ km}^2)$  by applying adaptive calibration biases. The upper panel is for the rainfall estimators derived from disdrometer and bottom panels are for the adjusted relationship.

- The calibration biases of Z<sub>H</sub> are calculated by using the self-consistency constraint between Z<sub>H</sub> and specific differential phase shift (K<sub>DP</sub>). This procedure is performed every 2.5 min. The biases are varied from -3.3 dB to 0.8 dB during the period between July 2010 to October 2011
- The Z<sub>DR</sub> calibration biases are obtained by two methods: 1) vertically pointing measurements, and 2) comparison of observed data with the average Z<sub>H</sub>-Z<sub>DR</sub> relationship derived from disdrometric data. The Z<sub>DR</sub> biases are varied from 0.25 dB to 0.7 dB and both methods show similar results. This Z<sub>H</sub>-Z<sub>DR</sub> technique can be applied for a volume scan and does not require a special scan.
- The verification of rainfall estimation is performed by applying 1) average Z<sub>H</sub> and Z<sub>DR</sub> calibration biases for the entire period, and 2) adaptive calibration biases that vary each rain event. The application of adaptive calibration biases is more effective for R(Z<sub>H</sub>,Z<sub>DR</sub>) and R(Z<sub>H</sub>, ξ<sub>DR</sub>) than for R(Z<sub>H</sub>), indicating necessity of frequent calibration of Z<sub>H</sub> and Z<sub>DR</sub>. (Fig. 1).