
Otsuka, M., M. Kunii, H. Seko, K. Shimoji, M. Hayashi, K. Yamashita, 2015: Assimilation experiments of MTSAT rapid scan atmospheric motion vectors on a heavy rainfall event. *J. Meteor. Soc. Japan*, **93**, 459-475.

https://doi.org/10.2151/jmsj.2015-030

Table 2. Summary of the four test experiments.

Forecast Tim	Length	Time	Number of
Experiment	of time	interval of	RS-AMVs
	slot	thinning	assimilated
RSAMV10_10min	10 min	10 min	1640
RSAMV10_3h	10 min	3 h	838
RSAMV_1h	1 h	1 h	1624
RSAMV_3h	1 h	3 h	838

Figure 11. Precipitation forecast scores for the precipitation threshold of 10 mm in 3 hours in the assimilation experiments. (a) Threat scores; (b) bias scores. \downarrow

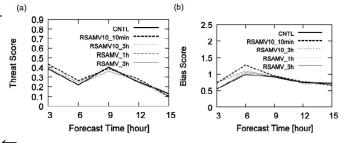


Figure 12. Differences in the analysis results between TEST and CNTL (TEST minus CNTL). Wind difference fields at (a) 250 hPa (green contours show areas of divergence using a 8.0 x 10⁻⁵ s⁻¹ interval; plus and minus signs indicate increased and decreased divergence, respectively); (b) 850 hPa; and (c) the surface. In (a), (b), and (c), the color scale shows wind speed difference (m s⁻¹), and the arrows show wind direction difference. (d) The water vapor mixing ratio difference at 500 m above the surface (kg kg⁻¹).

- The impact of atmospheric motion vectors derived from MTSAT-1R 5-min rapid scan imagery (RS-AMV) on numerical forecasting of a heavy rainfall near a stationary front was investigated by conducting assimilation experiments with the JMA's operational non-hydrostatic model with 4-dimensional variational data assimilation (JNoVA).
- Assimilation experiments covering a heavy rainfall event were conducted by using different lengths of assimilation time slot and time intervals of spatial thinning for the assimilation of the RS-AMV (Table 2).
- The assimilation of RS-AMVs caused the initial wind fields to enhance upper-level divergence and low-level convergence around the front (Fig. 12), and as a result, the forecast of the rainfall amount was increased near the front and the verification scores were slightly improved over the control experiment in the early forecast hours (Fig. 11).