
https://doi.org/10.2151/jmsj.2017-012

To obtain generalized perspective of the development processes of BFDs in the western part of the Baiu frontal zone (W-BFDs) and those in the eastern part of the zone (E-BFDs), idealized numerical simulations with zonally homogeneous basic fields are conducted.

The idealized simulations successfully reproduce a realistic W-BFD and E-BFD. The W-BFD has a slightly westward-tilted vertical structure, which is modulated by latent heating at low levels of the atmosphere. In contrast, the E-BFD has a westward-tilted structure through the troposphere, which is similar to the well-known baroclinic wave structure.

The W-BFD has a mechanism mainly driven by latent heating yielding strong convection, while the E-BFD develops through baroclinic instability in moist atmosphere.

Fig. 1. A simulated (a) W-BFD and (b) E-BFD in idealized experiments: Vertically-integrated condensed water (color shading: kg m⁻²) and SLP (contour lines: hPa)

Fig. 2. Time series of each available potential energy (APE) tendency term (W m⁻²) for the (a) W-BFD and (b) E-BFD. Solid and dashed lines show baroclinicity and diabatic heating terms, respectively.