地上附近の大気中の放射能

大枝良介*

はしがき

気象官署で大気放射能観測を始めたのは昭和30年4月 であるが,沪紙式集塵器による地上付近の大気中の放射 能の観測を始めたのは昭和30年11月である。

ここでは大気放射能観測のうちの集塵器による観測に ついて,福岡の昭和31年と昭和32年の2ヵ年間の資料の 一部をまとめた結果を紹介したい.

1. 観 測

集塵器の構造や観測方法については,気象庁の大気放 射能観測指針第2次案追補2に述べられているが,集塵

h		n	
	d = 0	d=1.2	
1.3	0.139	0.112	1602
2.3	0.061	0.054	796
3.8	0.025	0.023	339
5.3	0.013	0.012	194
7.3	0.007	0.007	102
	1	1	1

第1表

h: 試料とマイカ窓との距離 (cm)

G: 幾何効率の理論値

d: 試料の直径 (cm)

n: β-線比較試料の計数率

方法は東洋沪紙 No. 5 A を使用した沪紙法である. この沪紙の塵埃補足率については種々な研究があるが, 一般に普通塵に対して40%, 微細塵に対しては10%といわれている.

放射能の測定装置は科研製のガイガー、ミュラー計数 装置モデル32である.使用した装置の計数効率は、科研 製 90 Sr β -線比較試料 D-18 を使用したときに約16.4% である.計数装置の付属測定台の棚別の幾何効率を第1 表に示す.この結果は比較試料に使用したような、最大 エネルギーの大きい試料に対しては、測定した距離の範 囲内で空気層による吸収が無視できることを示してい る.

* 福岡管区気象台 -1958年3月10日受理-

沖紙の活性度と放射能の減衰の測定に使用した計数の 自記記録装置のブロック・ダイヤグラムを第1図に示 す。

2. 天然放射能の平均状態

前述の集塵器で浮遊塵埃の放射能を測定した場合の, 沪紙の活性化曲線と放射能の減衰曲線の1例を第2図と 第3図に示す.沪紙にかかった塵埃の放射能の減衰曲線 は日によって多少変化する.これはラドン・トロン等の 不活性気体が大気中へ拡散するための気象条件が日によ って異るためと考えられるが,始めの1~2時間は見掛 けの半減期が約30分のラドン型を示し,後トロン型とな る.

沖紙の初期放射能として,吸引終了直後平均約6分の 測定値に対し,半減期が30分で,放射能の減衰には指数 法則が適用されるものとして求めた値を第2表に示す.

^N天気″ 5.5.

地上附近の大気中の放射能

第2表 沪紙の初期放射能

採取日	初期放射	採取日	初期放射	 採取日	初期放射	採取日	初期放射	採取日	初期放射	採取日	初期放射
月日	cpm/m ³	月日	尼 cpm/m ³	月日	尼 cpm/m ³	月日	cpm/m ³	月日	cpm/m ³	月 日	cpm/m ³
昭禾	口31年	59	8.9	97	6.8	19	9.1	4 17	5.1	99	10.2
19	5.9	11	4.7	12	10.0	21	10.1	24	6.3	13	7.0
16	7.7	14	5.5	14	10.9	24	12.9	26	9.3	18	16.7
20	7.0	16	3.6	19	8.4	26	11.5	58	6.8	20	21.4
23	4.5	21	10.2	24	6.3	昭利	口32年	10	14.1	27	10.4
27	9.8	25	2.9	28	4.7	1 7	4.4	15	8.2	10 2	10.1
30	7.4	28	7.9	10 1	13.6	9	13.6	17	6.9	4	11.0
2 1	4.1	30	4.0	3	9.0	16	5.3	20	2.6	9	14.2
3	13.1	64	2.3	5	7.9	18	14.0	22	5.3	11	9.9
6	13.4	6	6.4	10	12.7	21	3.7	24	7.5	14	15.2
8	11.6	8	6.1	12	9.9	23	8.4	27	16.2	16	15.8
13	5.5	11	8.4	17	15.1	28	14.8	29	14.8	18	11.3
17	7.8	13	9.5	19	9.2	2 1	7.7	31	9.2	21	12.1
20	6.5	15	10.1	22	8.4	11	7.8	63	3.8	23	8.0
22	3.3	20	2.9	24	8.4	13	4.3	10	9.8	25	15.8
29	6.4	22	2.3	26	9.7	15	6. ľ	12	8.2	28	5.6
32	3.9	25	3.2	29	8.1	18	10.6	14	10.4	11 1	11.3
5	6.4	27	5.3	3-1	10.3	20	5.7	19	4.0	4	12.1
7	13.4	79	5.6	11 2	7.6	22	6.3	21	10.5	6	7.1
9	3.6	11	6.9	5	7.6	25	11.5	24	8.6	8	9.5
12	10.1	20	0.8	7	5.3	3 1	8.2	7 1	14.2	13	7.5
14	4.1	23	1.1	9	7.5	4	14.6	15	1.8	15	10.3
23	5.7	25	2.6	12	9.5	6	6.8	17	2.8	18	5.7
26	4.9	27	9.9	14	7.6	11	10.5	19	9.2	20	8.4
28	15.3	30	6.7	16	6.1	. 18	6.8	24	8.7	27	3.2
42	3.0	8 1	4.5	19	8.2	20	8.4	29	2.8	29	14.3
4	2.6	3	6.4	21	8.6	22	12.9	82	3.6	12 2	10.2
6	7.8	6	2.8	26	5.1	25	8.3	5	7.5	4	12.5
9	7.8	8	1.0	28	3.8	27	4.9	9	4.9	6	10.5
11	6.9	13	10.1	12 3	4.1	29	10.3	14	10.9	9	10.0
13	7.1	15	13.8	5	9.2	4 1	4.9	23	7.1	11	14.6
16	6.4	20	10.8	7	13.5	5	5.3	26	13.8	13	12.2
18	9.4	22	4.7	10	6.7	8	14.5	28	2.2	16	13.9
20	4.8	31	3.9	12	8.5	10	9.9	30	9.0	25	15.0
30	6.9	93	7.2	14	9.1	12	7.1	92	4.9		
52	4.1	5	4.8	17	7.5	15	9.8	4	7.5		

この沪紙の初期放射能は第2図と第3図のような関係か ら,その大部分はラドン崩壊生成物の放射能であるが, いくらかのトロン崩壊生成物と,もし人工的なものもあ れば,これも含まれている.第3図の例では,初期放射 能のうちラドン崩壊生成物の強度は84.0cpm,トロン崩 壊生成物は 8.0cpm で沪紙の初期放射能の8%であり, さらに初期強度 7.4cpm の半減期の長い放射能が認め られる.

集座観測では一つの試料の測定回数は吸引終了直後と 20時間前後および70時間前後の3回である.この3回の 測定値からトロン崩壊生成物の放射能を知ることは困難 である.それは測定回数が少ないのと,沪紙の活性時間 が約5時間であるため、ラドン崩壊生成物に対しては第

1958年5月

19

2 図に示すように,飽和沪紙を活性化するに十分である が,沪紙上でのトロン崩壊生成物の放射能水準はラドン のそれに較べて極めて低いからである。昭和31年の資料 から吸引終了後第2回目と第3回目の放射能測定値の頻 度を調べて見ると第4図のようになる。また吸引線終了 直後,第2回目,第3回目の放射能の年平均値,沪紙の 初期放射能と最大頻度のカウントとの比は第3表のよう になる。初期放射能に対して約5%前後の放射能は,ラ ドンとトロンの半減期および大気中での両者の存在比な どから大部分はトロン崩壊生成物の放射能のように思わ れる。※

第3表

	年平均值 (cpm/m ³)	初期放射能 に対する割 合 (%)	最大頻度の 放射能 (cpm/m ³)	初期放射能 に対する割 合 (%)
初期放射 能	7.09	_	-	-
第 2 回 目 の放射能	0. 52	7.3	0.35	5.2
第3回目 の放射能	0. 41	5.8	0.30	4.4

※以上のことを考慮して求められる大気中のラドンの量 はだいたい 10^{-11} Curie/m³ の程度であろうと推定せら れる.

人工放射能

第5 図は沪紙の第3回目の放射能測定値と定量採取の 雨水の放射能の6時間更正値を示す.定量採取法による 降り始め1mmの雨の放射能が500cpm/l以上のもの については,その核分裂生成物が新しいものか否かの目 安として放射能の6時間更正値と70時間更正値の比を示 した.

核分裂生成物の減衰は K. Way, E. F. Wigner の*

第5図 上段: ○は全実施官署の降り始め1mmの雨の放射能の各日の最高値.
●は福岡の降り始め1mmの雨の放射能.
中段:6時間更正値と72時間更正値の比.
下段:福岡での深遊塵埃の放射能.

* 実験式で表わされることはよく知られているが,雨水 や浮遊塵埃に含まれる核分裂生成物のうち,時間を経た ものについては,単一の放射性物質壊変の指数法則で表 わされる場合もあり,前者の式が適用される場合に,そ の核分裂生成物の創生日を減衰だけから推定しなければ ならないこともあるので,便宜上前述のような値を示し た.

第5図は雨水の放射能を目安とした大気の人工放射能

による汚染の期間と、地上付近の大気の人工放射能によ る汚染について次のようなことを示しているようであ る.すなわち、雨水に含まれる人工放射能から見て、大 気が、創生せられてから余り時間を経ていない核分裂生 成物で汚染せられている期間には、地上付近の放射能水 準も上昇している場合が多い.2,3の例については対 応しない場合もあり、また年間を通じて秋期は特に地上 付近の放射能水準の上昇が認められるが、これらのこと

160

20

◎天気/ 5.5.

の放射能から見て,

大気が新しい核分裂生成物で汚染せられていたと考えら れる期間と、この期間中の地上付近の汚染日を調べて見 ると第4表のようになる.この表では測定の誤差を考慮 して、浮遊塵埃の放射能が 0.8cpm/m³以下の日は除 外した.第4表と第5図に示した浮遊塵埃の放射能測定 値の誤差は第6図に示す.これは、観測法による測定で

第4表

雨水の放射能か しい核分裂生成 せられたと考え	ら見て大気が新 物によつて汚染 られる期間	浮遊塵埃の放射能		
期間	6時間更正値と7 時間更正値の比	集塵日	強度 (cpm/m ³)	
3月下旬	0. 52~0. 77	Ш 23	1.5	
4月上旬	0.88~0.91	IV 9 IV 11	2.8 1.2	
6月下旬	0.67~0.86	VI 20 VI 22	1.1 0.9	
7 月下旬から 10月中旬まで	0.52~0.96	VIII 1 VIII 3 IX 28 X 1 X 3 X 5 X 10 X 12	2.3 1.1 1.6 1.3 1.0 1.3 1.5	
12月20日前後	0.59~0.64	なし		

は、あらかじめ定められた試料の総計数は 500カウント であるから、自然計数を20分間測定し、その平均を 30 cpm としたときの、放射能 (cpm/m³) に対する確率 0.95の偏差を示す。

4. 天然放射能の年変化

大気中の天然放射能については,すでに多くの研究が あり,その増減や日変化などは主に気象条件によるもの であることが認められている。第7図は沪紙の初期放射 能の月平均値を示したものである。2カ年間を通じて大 気中の放射能強度が最も高いのは10月で,7月は1年中 で一番低くなっている。これは日変化の場合と同よう

に,主に気象の年変化によるものであろう.また調査期 間中では,大気中の放射能水準は次第に増加しているよ うな傾向が認められる.

むすび

以上は集塵観測から見た地上付近の大気中の放射能に ついての非常に簡単な調査であるが,人工放射能による 大気の汚染と気象との関係や天然放射能の大気中での行 動と気象との関係などについては,いろいろ調査すべき 問題があるのではなかろうか。

文 献

マダム・ピエール・キュリー,(皆川理, 杉本朝雄, 三宅静雄共訳),1943: 放射能,167-197, 510,-513.

田島英三,道家忠義, 1956: 大気中の放射能,科学 26, No. 3.

川野実, 1957: 大気中の自然放射能, 科学, 27, No. 6.