ヤマセ時の雲と降雨について

浅井辰郎*·西沢利栄*

「下北半島の開発に関する基礎的研究」Dの一環として、冷凉気候下の農業を高度化する事を目的として、ヤマセ吹走時の雲の実態特に雲の温度、厚さ、さらに雲厚と地上降水量、降水中の塩素イオン量等を調査した.その結果について報告する.

1. 用いた**資料**

ヤマセとは東北地方の冷害の主因である東寄りの,霧 や雨をともなった冷風に命名されたものである. この ときの雲霧をわれわれはヤマセ雲とし,この通念にも とづき八戸測候所における地上風向が N. NNE. NE. ENE. E. ESE. SE. を示す回数が1日の全観測回数中 $^{2}/_{3}$ をしめる日をまずヤマセ日と決定した. この日につ いて八戸の地上気象観測日表と三沢米極東空軍基地の高 層観測値を探し1951年5月,6月は仙台の東北管区気象 台で入手して P-Tchart にし,1953年7月,8月,1954 年5月~8月の値は府中の米極東空軍が保管している Skew T-log P diagram のマイクロフィ

ルムを用いて,ヤマセ日で特に日平均雲 量10の場合に対し雲や降水に関する前記 項目を調査した.また降水中の塩素イオ ン量については,1938年から1942年に至 る5年間,八戸測候所で測定された値 を,採水中の地上風向,風速,降水強 度,波浪階級とともに使用した。

2. ヤマセ雲の高さ,厚さ, 温度 および湿度

断熱図上から雲の諸性質を調べる場合,図上で湿度75%ぐらいでもすでに雲が出現しているらしいことがあったりして,気温の垂直分布を合せ考えても雲の有無の判定は非常に困難であった。そこで日射量観測の値が得られる1954年については選んだ日平均雲量10のヤマセ日の

1時間当り地上水平面日射量と図上から一応推定される 雲厚との関係を trial and error の方法で求め,まず雲 厚を決定した.さらに雲底高度,雲底雲頂の温度及び湿 度をも求めた.日射量と雲量との関係式は

 $I_1 = 1,53 \cdot 10^{-2,12 \cdot 10^{-4}}$ (cal/cm,² hr) (第1 雲層の みの場合)

 $I_2 = 1.59 \cdot 10^{-1,65 \cdot 10^{-4}} p$ (cal/cm².hr) (第2雲層の みの場合)

ただし, Dは 100m 単位の雲厚とする.

である.

ところで,この方法は第1雲層,第2雲層が共存しているとき,日射量観測のないときは不可能である.そこで上記の方法で求めた第1表の湿度以上(第1雲層,雲 底92.7%,雲頂89.7%,第2雲層,雲底74.0%,雲頂74.2%)では雲の存在を肯定し,気温の垂直分布と合せて2 雲層共存し及び日射量観測のない日の雲の諸性質を推定

第1表 雲 の 諸 性 質 (日平均雲量10の場合)

雲 底 高度	雲厚	Not de					
咼 皮	X / F	温度	(°c)	露点温	度(°c)	湿度	(%)
$(\times 100m)$	(m)	雲底	雲頂	雲底	雲頂	雲底	雲頂
10 05 09 03 10 02 02 01 01 05 05 05 05	1000 1300 2000 2000 2000 1500 700 2500 1000 2500 1000	5.0 6.5 6.0 10.5 3.0 9.5 12.5 14.0 10.5 10.0 13.0 13.0 17.5	$\begin{array}{c} -1.0\\ 5.0\\ -1.0\\ 0.0\\ 5.0\\ 8.0\\ 12.0\\ 9.0\\ 7.0\\ 13.0\\ 12.0\\ \end{array}$	0.5 6.0 4.0 10.5 2.0 7.0 12.5 11.5 10.0 10.0 13.0 18.0 15.5	$\begin{array}{c} 7.0\\ 4.5\\ -1.5\\ -1.0\\ 0.0\\ (3.0)\\ 6.5\\ 10.5\\ 9.5\\ 5.0\\ 6.0\\ 13.0\\ 6.5\\ \end{array}$	72.7 96.7 86.9 100.0 93.0 84.2 100.0 87.7 96.7 100.0 100.0 100.0 88.1	63. 7 96. 6 96. 2 100. 0 86. 8 90. 3 93. 2 90. 2 87. 0 93. 2 100. 0 68. 0
20 49 65 30 35	2000 2200 1000 2000 800	3.0 	-9.0 -20.0 -16.0 -12.0 -1.0	2.0 -17.0 -15.0 -11.5 -2.0	$ \begin{array}{c} -13.0 \\ -23.0 \\ -21.0 \\ -14.0 \\ -5.5 \\ \end{array} $	93.6 63.7 67.0 78.9 67.2	72.3 76.7 65.2 84.5 71.4
	(×100m) 10 05 09 03 10 02 01 01 05 05 05 05 05 05 05 05 05 05	Image (x) (m) 10 1000 05 1300 09 2000 03 4000 10 2000 02 2000 02 2000 01 700 01 2500 05 1000 05 2000 05 2000 05 2000 05 1000 20 2000 49 2200 65 1000 30 2000 35 800	(m) 要底 10 1000 5.0 05 1300 6.5 09 2000 6.0 03 4000 10.5 10 2000 3.0 02 2000 9.5 02 1500 12.5 01 700 14.0 05 1000 10.5 05 1000 10.5 05 1000 10.5 05 2000 13.0 05 2000 13.0 05 2000 13.0 05 2000 13.0 05 2000 13.0 05 1000 17.5 20 2000 3.0 49 2200 -11.5 65 1000 -8.5 35 800 3.5	(a) (m) 要底 要頂 10 1000 5.0 -1.0 05 1300 6.5 5.0 09 2000 6.0 -1.0 03 4000 10.5 -1.0 02 2000 9.5 5.0 02 1500 12.5 8.0 01 700 14.0 12.0 01 2500 10.5 9.0 05 1000 10.5 9.0 05 1000 10.7 9.0 05 1000 10.5 9.0 05 1000 10.0 7.0 05 2000 13.0 7.0 05 1000 17.5 12.0 20 2000 3.0 -9.0 49 2200 -11.5 -20.0 65 1000 -10.0 -16.0 30 2000 3.5 -1.0 35 800	(r* 100m) (m) 雲底 雲頂 雲底 10 1000 5.0 -1.0 0.5 05 1300 6.5 5.0 6.0 09 2000 6.0 -1.0 4.0 03 4000 10.5 -1.0 10.5 10 2000 3.0 0.0 2.0 02 2000 9.5 5.0 7.0 02 1500 12.5 8.0 12.5 01 700 14.0 12.0 11.5 01 2500 10.5 9.0 10.0 05 2000 13.0 7.0 13.0 05 2000 13.0 7.0 13.0 05 1000 17.5 -20.0 -17.0 05 1000 -10.0 -16.0 -15.0 20 2000 3.5 -1.0 -2.0 49 2200 -11.5 -2.0 -17.0 3	(a) 次 (m) 雲底 雲頂 雲底 雲頂 雲底 雲頂 10 1000 5.0 -1.0 0.5 7.0 05 1300 6.5 5.0 6.0 4.5 09 2000 6.0 -1.0 4.0 -1.5 03 4000 10.5 -1.0 10.5 -1.0 10 2000 3.0 0.0 2.0 0.0 02 2000 9.5 5.0 7.0 (3.0) 02 1500 12.5 8.0 12.5 6.5 01 700 14.0 12.0 11.5 10.5 01 2500 10.5 9.0 10.0 9.5 05 1000 10.0 7.0 13.0 6.0 05 2000 13.0 7.0 13.0 6.5 1000 17.5 12.0 15.5 6.5 20 2000 3.0 -9.0	(r = 0.0m) (m) 雲底 雲頂 雲底 霎頂 雲底 10 1000 5.0 -1.0 0.5 7.0 72.7 05 1300 6.5 5.0 6.0 4.5 96.7 09 2000 6.0 -1.0 4.0 -1.5 86.9 03 4000 10.5 -1.0 10.5 -1.0 10.0 93.0 02 2000 9.5 5.0 7.0 (3.0) 84.2 02 1500 12.5 8.0 12.5 6.5 100.0 01 2500 10.5 9.0 10.0 9.5 6.7 05 1000 10.0 7.0 13.0 6.0 100.0 05 2000 13.0 7.0 13.0 6.5 88.1 20 2000 3.0 -9.0 2.0 -11.5 6.5 88.1 20 2000 1.5 -16.0 -15.0

7月9日 1St

^{*} 資源科学研究所 1958年6月2日受理

ヤマセ時の雲と降雨について

第2表 二層共層の場合の雲の諸性質 (1954) (日平均雲量 10 の場合)

							雲	Ø		諸	4	生	質	(三	. 沢)			
/				第		1	雲	層				第		2	雲	層		
		雲	底	雲厚	温度	(°C)	露点温	度(°C)	湿度	(%)	雲 底	雲厚	湿度	(°C)	露点温	度(°C)	湿度	(%)
月	н	高 (×1	度 00 m)	(m)	雲底	雲頂	雲底	雲頂	雲底	雲頂	高 度 (×100 m)	(m)	雲底	雲頂	雲底	雲頂	雲底	雲頂
VI	11 23 30		1 2 3	400 1000 1100	12.5 7.0 20.0	12.0 4.0 16.5	12.0 6.5 19.0	9.5 1.0 15.5	96•2 96•4 94•1	85.0 81.0 94.0	30 43	1800 300	0.0 —5.5	7.5 —7.0	-1.0 -9.5	—9.5 —11.5	93.0 79.3	85.5 70.2
VI	2 9	1	5 3	500 600	8.5 14.0	8.5 13.0	8.5 12.0	8.0 11.0	100.0 88.0	96.5 87.8	35 35	700 800	0.5 3.5	-2.5 1.0	-3.5 -2.0	4.5 5.5	80.1 67.2	88.7 71.4
	10 30		7 2	1300 1000	11.0 13.0	8.0 15.5	11.0 13.0	6.0 15.0	100. 0 100. 0	78.8 96.9	35 44	300 600	2.0 -1.0	0.0 —3.0	0.0 3.5	4.0 8.0	86.7 83.0	74.3 68.3
VII	31 16		2 2	1500 700	16.5 23.0	12.5 23.0	16.5 20.5	12.5 20.0	100.0 83.7	100.0 82.8	47	1100	-3.5	4. C	6.5	—9. C	80.0	68-3
	23 29		15 7	600 1100	16.5 15.0	13.0 9.5	14.5 13.0	10.5 6.0	87.8 88.0	84•5 78•5	42 57	400 200	2.5 —10.0	1.5 —10.5		7. C 18. C	51.3 68.7	53.2 54.0

第3表 雲 の 諸 性 質 (1951, 1953)

(日平均雲量10及び日射量観測のない場合)

		Ner:			:	雲		Ø		諸	性		質	(三	沢)			
		熱		第	1		雲	層					第	2	雲	層		
月	Ħ	凶の種	雲 底	雲厚	温 (°	度 C)	露点 °)	温度 C)	湿	度 6)	雲 底	雲厚	温度	(°C)	点靏 °)	温度 C)	湿 (度 %)
		類	高 度 (×100m)	(m)	雲底	雲頂	雲底	雲頂	雲底	雲頂	局 度 (×100 m)	(m)	雲底	雲頂	雲底	雲頂	雲底	雲頂
195 V	1 9 15		03	200	9.5	9.5			90.0	93.0	23 49	800 600	0.5 13.5	5.5 15.0			96.0 70.0	80.0 70.0
	16 17 27	art	02 02	500 800	10.5 6.0	8.0 1.5			97•0 99•0	95.0 96.0	16 18 45	1900 800 2000	6,5 2.0 5.0	2.5 2.5 17.0			94.0 99.0 77.0	84•0 99•0 72•0
VI	28 5 9	P-Tch	04 03 02	400 700 1200	9.5 16.0 10.5	10.5 15.5 12.0			89.0 95.0 99.0	88.0 88.0 80.0	21	900	9.0	7.0			95.0	77.0
	11 12		02 02	1200 1500	8.5	5.5			100.0	94.0 96.0	28	400	-2.5	-4.5			79.0	80.0
	15		02	400	13.5	16.5			92.0	88.0	42	200	5.5	-7. C)		77.0	80.0
	16 23		05 05	2100 1400	10.5 13.0	4.5 4.5			97.0 93.0	88.0 98.0	26	600	0.5	0.5			95.0	95.0
195 VI	3 3 5 6	liagram	12 05	700 2000	13.5 12.0	11. C 6. C	12.0 12.0	10.0	90.5 100.0	93.8 90.2	50 30	1400 200 (?)	8.0 5.5	—14. 0 4. 0	8.5 0.5		88.7 70.2	85.1 72.4
	7 8 0	P D	02	2800	16.0	10. C 22. C	16.0 19.0	8.0 20.0	100.0	87.3 88.4	30	700	7.5	4.0	7.0	0.0	96.7	75.0
	22	ſ lo	15	2000	12.0	1.0	15.0	1.0	100.0	100.0	43	3000	-2.0	-17.0	-3.5	-19.0	89.3	84.2
VII	23 2 5 8	Skew]	12 02 02 05	400 1000 1400 1000	17.5 21.5 17.0 18.5	15.5 17.0 14.0	15. C 20. 5 16. C 17. C	12.5 15.0 11.5 13.0	85.3 94.1 93.8 90.5	82.7 88.3 85.2 93.4	43	200	2.0	-0.5	5 —2. C	5.5	75.0	69.0

1958年8月

247

11

した. (第2表, 第3表) (以上算定した結果)から1 ~3表からわかるいろいろのことの中、特に大切たこと はヤマセ吹走時の第1 雲層は「暖い雲」であること,ま たときには第2雲層もそうであることがわかった。

3. ヤマセ孁の厚さと降水量

暖かい雲からの降雨機構に関する問題点の1つは,半 第4表 雲厚と降水量の関係 (1954)

	第	1 4	雵 層	のス	ょの	場 合		
雲厚		-	降水量 (0.1mm)					
(m)	月 	н	hr 21-03	hr 03-09	hr 90-15	hr 21-03	型	
700	VI	3	6				St	
1000	VI	12	0	2	0	-	St St	
1100		30	24	42	5	169	Fn	
1500		26	(0	17	U	0	\ Sc	
2000	VI	12	115	21	3		St	
	νπ	$\frac{21}{24}$	14	3	13 7 70	8) Fn) Ns	
2500		6	3	8	32 2	18	St St	
4000	VI VI	20	0	65	234	125	Fn	

	第 2	雲	層	Ø	み	の :	場 合	
1000	VII 2	5						Ac
2000	V	3				0	11	∫ As ³) Ac
2200	VI	2				0	37	As1
	第	1,	第2	雲層	の共存	の場	合	
400	1800	VI	11			10	96	{ Ns Fn
500 600	700 400 800	VII VIII VII	2 23 9		0	17 30	59 1	Cu Cu St
700 1000	1100 300 600	VIII VI VI	16 23 30	1 8	3 19	0 6 1	0 32 66	St Fn ∫Ns
1100 1300	200 300	VIII VII	29 10	0	0 38	40 4	17 9	St St St

径20µ以下の雲粒がどうして半径 0.5~3.0 mmの雨滴 に成長するかということであり、この水滴成長の重要な 要因の1つに雲の厚さがある^{3) 4) 5)} そこで前節で求め た雲厚(12hrのもの)と降水量の関係を4表で見よう. この降水量とは03,09,15,21時の各前6時間降水量で ある、雲厚を求めた断熱図の観測時は12h だから、15時 の前6時間降水量に特に注目してみると,第1雲層のみ が出現しているときは雲厚1000m ぐらいですでに降雨が

5. 8. ♥天気∥

認められ, 1500m以上では6月26日を除いてかならず 降雨がある. 第2雲層のみが出現しているときは,その 雲厚2000m以上で降雨が認められる. 第1,第2雲層が 同時に出現している場合はどの日にも降雨が認められる .そして第1,第2雲層のどちらかの雲層が厚いときに は降水量が多く,両雲層の厚さがともに中程度のときに は少い.次にこれらの日の地上の気圧配置をみると第1 雲層だけが出現している場合は,雲厚の少いものは完全 にオホーツク海高気圧の支配下にあり,雲厚が増加する と前線および低気圧の影響を受けている.上述の例外日 である6月26日は松沢ののF型に類似するもので,移動 性高気圧の影響を受けた場合である.また雲層が二つあ る場合は,オホーツク海方面の高気圧がはり出し,八戸 南方に寒冷前線の存在することが多い.

4. 風向,風速別にみた八戸測候所降水中の

塩素イオン量

雲粒が雨滴に遷移する要因には前節で取りあげた雲厚

の他に, 雲粒分布, つまりスペクトルが半径20μ以上に 及んでいることも重要である.この半径の大きい雲粒形 成を海塩核に求めたのが Ludlam⁷) や Woodcock⁸) で ある. われわれは幸い八戸測候所の方々が戦争中に測定 された塩素イオン量の資料を同所で貸与されたので、上 記のような考えにもとづいて整理してみた. 資料 整理 上、北北西から東にわたつて海を望み、南東方には低い 丘陵を越して海を控えている八戸測候所周辺の地形を考 慮し、3つの象眼に分けた.すなわち16方位の地上風向 中, N-E方位, ESE-SE方位, SSE-NNW 方位の3つで ある。前2者はヤマセ風の方向に相当し,他の1つは内 陸方向である.また風向は採水期間中の風向変動巾の中 心を用いた、地上風向しか用いなかったことは異論あろ うがしばらく許されたい.次に降水強度(mm/hr)を算 出し,象限別にそれと塩素イオン量 (mg/L) との関係, 風速と塩素イオン量との関係、波浪階級と塩素イオン量 との関係をグラフに作成した. 第1~第3図がそれであ

第2図 降水中の塩素イオン量と風速の関係

13,

る.

降水強度と塩素イオン量との関係は、その上限が指数 曲線で表されるように散らばっている. 図中の 傾向 線 (a-b) は確実に風速 4.0~15.7m/sec, 波浪階級5の ときの値のみを基準にして引いたもので、今後、塩素イ オン量の測定精度を高め得るなら、風速或いは波浪階級 別にこのような傾向線を多く引き得るであろう. 結論的 に云って、東寄りの海上方面から風が来る場合の方が、 西寄りの内陸方面から来る場合より塩素イオン量が大き く現われている、次に塩素イオン量は風速の増大ととも に増加しているが、東寄りのときは風速 9 m/sec, 西寄 りのときは風速5m/secを限度としてこの関係がみられ なくなる. また全体的な傾向として東寄りのときには 風速が零でもある程度の塩素イオン量を示す. これは Facy⁹⁾ や Woodcock¹⁰⁾ の最近の研究からもわかるよう に、海上の bubble の作る海塩核がかなり弱い風によっ ても運び上げられるためであろうし、したがって同一塩 素イオン量に対しても風速はかなりの幅を持ち得るはず である。この傾向が東寄りに著しいのは、風が太平洋の bubble 上を吹きくるからと考えられる.

波浪階級についても東寄りの風向では塩素イオン量が 波浪階級の増大とともに増しているが,西寄りの風向に ついてはそのような関係は全くみられない.要するに前 述したようにヤマセ吹走時の雲高がかなり低いことと合 せ考えて,ヤマセ雲からの降雨には海塩核の作用が西寄 りの風の場合に比べてかなり影響しているように思われ る.

以上結果の報告と簡単な考察を試みたのであるが,こ の報告をかくに当り,資料を貸与された八戸測候所,及 び常に助言をいただいた気象研究所応用気象研究部長伊 東晤白氏に感謝してやまない。

参考文献

- 資源科学研究, 1958: 下北半島の開発に関する 綜合的研究Ⅲ, 資源研彙報 46-47号.
- 浅井辰郎,西沢利栄,羽田野孝通,1958: ヤマ セ雲の高層気象学的研究,資源研彙報46-47号. 40
- Petterson, S., 1940: Weather analysis and forecasting. Mc Garw Hill
- Bowen, E.G., 1950: The formation of rain by colescence. Austr. J. Sci. Res. A3 193
- 5) Mason, B.J. & B.P. Howorth, 1952: Some characteristics of stratiform clouds over North Ireland in relation to their precipitation. Q.J.R.M.S. 78 226.
- 6) 松沢一郎, 1955: 高気圧(主としてオホーツク 海高気圧)八戸の天候(概要), 八戸測候所・
- Ludlam, F.H., The production of showers by the coalescence of cloud droplets Q.J.R.M.S. 77 402.
- Woodcock, A.H., 1952: Atmospheric salt particles and raindrops. J. Met. 9 200.
- Facy, L., 1951: Éclatement des lames minces et noyaux de condensation. J. Sci. Meteor., 3 86.
- Woodcock, A.H., 1953: Salt nuclei in marine air as a function of altitude and wind force. J. Met. 10 362.

▶天気″ 5.8.

250