梅雨期の寒冷前線の南下による島根県の大雨について

来 海 徹

島根県の大雨予想資料の一環として,梅雨前線上の低 気圧が日本海を東進するにつれて,寒冷前線となって南 下するときに降るものを取扱った.

1953~1957 年の 5 ヶ年間の 15 例について調べてみる と, stripes 状の雨域の走向によって4 つの型に分けら れ, これらは湿舌, low level jet および気層の安定度 によってそれぞれ特徴ずけられる.

はしがき

島根県における梅雨期の大雨は地上気圧配置から4つ の型¹⁾に分けられる。その内の一つとして、梅雨前線が 北上し、前線上の低気圧が日本海を東進するにつれて、 寒冷前線となって南下する場合がある。

しかしこの場合に常に大雨があるのではなく,たとえ は1957年の梅雨期ではこのような場合が3回発生し,そ のうち1回は島根県大田市付近に3時間に150mmの局 地的大雨があった.他の2回は島根県には大雨はなく, 1回は鳥取県東部に80mm,また他の1回は山口県東部 に180mmの大雨があった.このように同じような地上 気圧配置でも大雨の状態は異っているので局地予報のた めの手掛りをさらに上層に求める必要がある.

梅雨期の大雨の機構として集風線とこれによって形成 される湿舌が重要であることが大谷博士²⁰によって示さ れている.湿舌については,われわれの場合とほぼ同じ 場合について解析された秋田市付近の大雨³⁰,および長 野県の大雨⁴⁰についても湿舌の存在が明瞭に示されてい る.また下層の強風域についてはその後豊富な観測資料 を用いた研究^{50,60,70}によって,大雨時には対流圏の中, 下層に強風域を伴っていることが明らかにされ,low level iet として注目されている.

次に問題となるのは最大雨域の発生場所であるが,寒 冷前線に伴うしゅう雨の詳しい雨量分布図を作ってみる と雨域は stripes 状をなしており⁸⁾,また雨域がこのよ うに stripes 状を呈する原因としては low level jet の 重要性が指摘されている^{9),10)}.

そこで1953~1957年の5ケ年間の15例について調べて

* 松江地方気象台-1958年7月14日受理-

みるといずれも雨域は stripes 状をしており,この走向 によって4つの型に分けられる.そしてこれらの4つの 型は湿舌, low level jet および気層の安定度の状態に よってそれぞれ特徴ずけられることが判った.ここでは 湿舌の状態は 700mb の露点分布から, low level jet は 米子の上層風あるいは 130 °E にそった断面図からみる こととし,4つの型についてそれぞれ例をあげて述べる.

1. 大雨域のないもの

___*

この例のとき寒冷前線(第1図)は6月20日から21日 にかけて西日本を通過したがその後閉塞し,秋田付近で は20日から21日にかけて日量90mmの雨量があった.湿 舌(第2図)は秋田方面にあり,米子の上層風(第3図) は寒冷前線の通過後は強まるが,その前面では弱い.こ のとき島根県には大雨はない.

2. 大雨域の走向が WNW-ESE のもの

この例のとき全国的にみると7月8日から9日にかけ て北海道南東部、中部地方の西部および北九州に大雨域 がある、中国地方では stripes 状の雨域は3つあるが, 地上前線の状態(第4図)からみると寒冷前線の南下に よるものは鳥取県東部および島根県中部のものと考えら れる、湿舌は中部地方にある(第5図). 米子の上層風 (第6図) では寒冷前線の前面の 1.5km と3~4.5km に風の強いところがある.雨域の走向(第7図)は3km 以上の風向とほぼ平行である。断面図をみると7月8日 0時には米子上空 650mb に65ノット(温位: 318°K) の low level jet があるが、12時間後の第8図では米子 上空 650mb (温位: 318°K) と潮岬上空 550mb (温位: 323°K) に弱い low level jet がある. しかしこの例の ように寒冷前線の前面の風に南分が入らぬとき、および 下層から上層までの風向が不揃のときは low level jet があっても大雨はない.山口県にある80mmの雨域は地 上前線の状態からみて前線が南下停滞後に降ったものと 考えられる.

3. 大雨域の走向が SW-NE のもの

この走向のときは2.のときよりは雨量が多い. 降雨 群の移動方向は stripes 状の雨域に平行なものと,ほぼ 直角に動くものとがある.

1958年10月

J : ジェット流

▶天気∥ 5.10.

第9図 地上天気図 1955. 6. 28. 9時

第10図 700mb 高層天気図 1955. 6. 29. 0時

-8 811 W- - 6 NIL-J -4 W と jil-144 Ille 11- 2 Ŵ. JL. 29 28

この例のとき第9図で示すごと く寒冷前線は日本海を南下後6月 28日15時ごろには山陰沿岸に達 し,その後停滞した.(第10図) は九州北部から本州にそって北東 にのびている.米子の上層風(第 11図)は下層から上層まで西南西 である.

3-1 降雨群の移動方向が雨域

の方向と一致するもの

第11図 米子の上 層風(ノット) 1955. 6. 28-29. このときの stripes 状の雨域 (第12図) はほぼ中国山脈にそっ て南西から北東に走っており,海 から陸地に上陸するところすなわ

ち山口県に最大雨域がある。降雨群の移動状況をみると 寒冷前線の前面で島根県の東部を西から東に動くもの (第13 a 図)があるがその量は少い。次いで南西から北 東に動くもの(第13 b 図)があり、この降雨群でほとん

1958年10月

どの雨が降っており,この降雨群は前線 が南下停滞後に発生している.

断面図では寒冷前線の前面の6月28日 12時には米子上空 560mb には65ノット (温位: 323°K)のlow level jet があ り,12時間後の6月29日0時(第14図) には南下して板付上空 560mb(温位: 323°K)と760mb(温位: 310°K)に55 ノットのものがある。

ー方米子の上層風,湿舌等の状態が良 く似ているのに最大雨域がより南に位置 している場合があるので例をあげる.

この例(1957年7月2日-3日)のとき地上天気図(第 15図)からみると前例(第9図)からの最も著しい相異 点は前線が瀬戸内まで南下していることである.湿舌 (第16図)および米子の上層風(第17図)は前例と良く 類似している。stripes 状の雨域(第18図)は2つあっ てその走向は米子の上層風にほぼ平行であり,また最大 雨域は stripes 状の雨域の南側のものが海から上陸する ところにある。このときの降雨域の移動を毎時雨量分布 図(第19図)からみると,山口県東部から広島付近をへ て北東に動くものと、これとは別に中国山脈上をほぼ同 時に北東に動くものとがある。

これらの降雨域が寒冷前線の南下に伴って発生した か,あるいは前線が南下後停滞してから発生したかにつ いては7月3日3時および6時の前線の位置(第20図)

▶天気″ 5.10.

aC

1957. 7. 2-3.

第19-d 図 毎時降水量の分布(10mmおき) 第20図 1957. 7. 30. 3-4 時

第22図 700mb 高層天気図 (1956. 6. 23. 0 時)

からみると,降雨は前線の通過前から始まり,通過後ま で続いているようである.

以上の2例はともに前線の近接で降る雨であって,し たがって最大雨域がどこに発生するかは寒冷前線がどこ まで南下するかにかかっている.

3-2 降雨群の移動方向が大雨域の方向に直角なもの この例のとき地上天気図(第21図)でみる如く寒冷前 線は中国地方を南下し、今までの例とは異ってさらに太 平洋にまで移動している。また湿舌(第22図)は中国地 方の西部にある、米子の上層風の変化(第23図)はリッ **ヂ**についでトラフが通過したことを示しており,寒冷前 線の前面では下層から上層まで西南西の風が強い、最大 雨域の位置(第24図)は、3-1の場合では stripes 状 の雨域が海から上陸するところに発生したが、この場合 には中国山脈の風上側にあり雨域は山脈に平行に走って

1958年10月

いる.そして毎時の雨量分布図(第25図)と寒冷前線の 移動を示す図(第26図)とから、雨域は寒冷前線に伴っ て移動しているが最大雨域は島根県中部にあってほとん ど動かないことがわかる.low level jet (第27図)は6 月24日0時には鹿児島の上空 600mb(温位:319°K)に ある.low level jet の緯度が低いことと、地上の前線 が太平洋にまで南下していることとは low level jet が 地上前線に伴うものであることを示唆していると考えら れる.

第1表	各高度	(50mb	おき)	の湿球	温位と	,飽和
に必要	長な上昇]	高度(米	子, 19	956年6	月23日	12時)

気 圧	湿球温位	飽和に必要な上昇高度
(mb)	(°K)	(mb)
1000 950 900 850 750 700 650 600 550 500 400	293 295 296 294 293 293 292 292 292 291 292 294 294	38 42 31 37 36 57 50 46 38 22 20 30

このときの寒冷前線の前面の米子の成層は第1表のご とく対流不安定の状態であり、900mb 以上の高度では 50mb 程度の強制上昇があれば気層の転倒が起り得る状 態にあった。一方 850~500mb のシックネス(第28図) では沿海州から朝北部にかけて寒気の南下が明瞭で、山 陰地方は寒気の移流の場になっている。したがってこの 不安定な状態は,後面に強い寒気の移流を伴った寒冷前 線の南下によって中国山脈の風上側で解消したものと考 えられよう.

4. 大雨域の走向がほぼ W-E のもの

この場合は最大雨域が島根県の沿岸部に起るもので, 島根県に於て予報上重要なものである.この例のときは 地上の寒冷前線は山陰沿岸にまで接近するが,中国地方 を南下はしない(第29図).湿舌は山陰から日本海岸沿い に北東にのびている(第30図.最大雨域の発生した島根 県大田市付近では1952年6月29日の22時から翌30日3時 にかけて雷を伴った150粍の局地的大雨があり,寒冷前 線の前面で暖気の流入が顕著であること,および強風層 (50ノット)の下降が報告¹¹⁾されている.米子の上層風

(第31図) は寒冷前線の前面で東西〜西南西の風が強い が,特徴のあるのは大雨が降っていた29日24時に3〜4 km にその上・下両層とは異った西北西の風があること である.雨量分布図(第32図)によると stripes 状の雨 域は1つで,中国山脈を横切って西北西から東南東に走 っており,この走向は米子の29日24時の3〜4 km の風 向にほぼ平行している.しかしこの3〜4 km の風につ いては上層風の観測資料不足のため,断面図が作れず詳 しいことは判らない.

そこで資料の豊富な場合の1例について断面図を作った。この場合寒冷前線は中国地方を南下し、7月30日09時には四国南部に達している(第33図)。雨量分布(第34図)は前例(第32図)ほど簡単ではなく、stripes状の雨域は3つあって、山口県から島根県にかけて中国山

1958年10月

脈の風上側を南西から北東にのびるものと,中国山脈の 南側を南西から北東にのびるものとがあるが,主なもの は山陰沿岸から東北東にのびており,最大雨域は山陰沿 岸にある.断面図(第35図)をみると米子,板付間で 600 ~700mb に45ノット(温位: 318°K)の強風域がある. 12時間前の7月29日0時にもほぼ同じ位置に50ノットの 強風域(温位: 317°K) があり,これは low level jet

第33図 地上天気図 1954.7.29.9時

と云えよう. この low level jet の北側の米子上空 700 ~750mb には局部的に西風がある. しかしこの局部的 な西風は前例(第31図)ほどその上,下層との風向,風 速の差異は著しくはない. このことが山陰の雨域が西南 西一東北東であること,および雨量分布が前例ほど簡単 でないことと何らかの関連を持っているかも知れない.

ここまでのべたいずれの型についても low level jet

が認められるが、山陰沿岸に最大雨域が発生する場合米 子の上層に局部的な西~西北西の風が存在することか ら、low level jet と大雨の局地性との関連について少 し考察したい.

肥沼博士12)はわれわれの場合と類似した気圧配置のと

きの降雨群の解析の結果,大雨の原因は地上ではなく上 層にあるとしている. また毛利氏¹³⁾によると polar front tropopause の南端に伴う寒乾気と暖湿気の収れ んが梅雨期の大雨原因の一つであるとしている. われわ れの場合の断面図からも,米子は polar front tropo-

N天気/ 5.10.

pause の南端に位置しているが、雨量が山陰沿岸に局地的に多いことは説明し難いようである.

いま 4. でとりあげたような場合の5例について気層 の各点が飽和するに必要な上昇高度を図示(第36図)し てみると、下層ほど大きく、1000mbの高度では100~ 150mbの上昇が必要であり、いずれの場合も地上付近 ではフェーン状態となっている.このことは気層の転倒 が大雨の原因とすれば、気層の転倒は下層からの強制上 昇によって起るものではなく、より高いところに上昇流 を生ずる機構が必要であることを示している.

1953年 6 月下旬の 九州の 豪雨の際の low level jet (高度: 4 km, 風速: 60m/s) については 中心の北側の 高度 3 km 付近に強い上昇気流が計算されている¹⁴⁾. ま た北海道における stripes 状を呈したしゅう雨の解析か ら小元氏⁹⁾は low level jet (高度: 500mb, 風速 100 ノット)を上層の擾乱を生ずる要素として重要であるこ とを指適している. また高橋博士その他⁵⁰によると jet stream の上陸によって生ずる擾乱が豪雨における trigger action の役割をすることが述べられている. われ われの場合も米子上空 700mb 付近に low level jet と 関連して西~西北西の風として現われる擾乱を局地的大 雨の原因の一つとして考えたい.

むすび

梅雨期における島根県の大雨のうち,寒冷前線の南下 による場合についてのべた.

大雨がある時には寒冷前線の前面の対流圏の中,下層 でほぼ同一の風向の気流が卓越しており,山陰地方は湿 舌の域内にある. stripes 状の雨域の走向によって4つ の型に分けたが,その特徴を要約すると

1. 寒冷前線の前面の上層風に南分が入らず,またその風向が不揃のときは大雨はない.

2. 寒冷前線南下後に風向が変化しない(北分を生じない)ときは,最大雨域の位置は寒冷前線がどこまで南下するかに関連し,雨域の走向は上層風にほぼ平行である。

3. 寒冷前線の前面で対流不安定の破れやすい成層で あり,後面の寒気の移流が強いときは,中国山脈の風上 側に最大雨域が発生する.

4. 寒冷前線の前面でフェーン現象が起り,700mb付 近に西~西北西の風が局部的に現われるときは,沿岸部 に最大雨域がおこる.

終りにのぞんで資料を提供していただいた米子,浜田 両測候所,また終始御指導をいただいた三沢 前松江地 方気象台長に厚くお礼申しあげます.

参考文献

- 1) 三沢甚一, 1954: 梅雨期における山陰の 大雨に ついて,研究時報, 6, 465~469.
- 2) 大谷東平, 1946: 大雨に随伴する湿舌の 機構に ついて,研究速報,第8号,1~6.
- 3) 瀬下慶長, 1953: 豪雨の一機構について,研究時 報, 5, 712~719.
- 百瀬悦也,1956:長野県における局地的大雨の 解析,研究時報,8,715~722.
- 5) 高橋浩一郎,朝倉正,広瀬元孝,飯田陸次郎,中 村則行,1954: 梅雨末期の豪雨の解析,気象集誌, Ser. I, **32**, 281~289.
- 6) L. Means, 1954: A Study of the Mean Southerly Wind Maximum in Low Levels assciated with a period of Summer Precipitation in the Middle West, Bull. Amer. Met. Soc, 35, 166~170.
- 7) 山本常男, 1957: 前線の研究 (Frontogenesis に ついて), 天気, 4, 280~286.
- T. Fujita, 1950: Micro-Analytical Study of Thunder-Nose, Geoph. Mag, 12. 71~88.
- 9) 小元敬男, 1956: 驟雨の研究, 気象集誌, Ser I, **34**, 95~103.
- 10) 安田清美, 1957: 寒冷前線に伴うしゆう雨について, 研究時報, 9, 416~421.
- 11) 植田利政, 1952: 6月29~30日の大田の大雨,昭 和27年度大阪管区中国地区研究会誌.
- 12) 肥沼寛一, 1935: 昭和10年6月27, 8, 9日の西 日本の豪雨について,海と空, 15, 339~369.
- 13) 毛利圭太郎, 1956: 1953年初夏西および中部日本における豪雨の高層解析, 気象集誌, Ser II, 34, 244~253.
- 14) 永山盛善, 1956: 九州地方における1953年6月 下旬の豪雨に関する二,三の考察,研究時報,8, 84~93.