赤外線カメラと赤外放射計による夏期の

地表面および海面温度測定*

落 合 弘 明** 土 屋 清***

要 旨

表面湿度の絶体値を自記できる放射計 Barnes PRT-4 と温度傾度を熱映像として表示できる AGA Thermovision-665 を併用し,飛行機を使って夏季の港内の汚染水域の表面水温および伊勢湾周辺の地表面温度 を測定した。その結果港内の海面汚染のはげしい所では数度の表面水温の日変化水平傾度があり,表面水温 の最高は 33°C にもなることがわかった。昨年度 (1968)の観測結果と比較した結果伊勢湾の表面水温分布 の状況はほぼ同じであったが,川口付近では河川水の流入量により相当の変動がある。そのほか放射計と熱 映像写真から建物,樹木, 街路,駐車場などの表面温度の推定を行なった。特に高温を示したのは長い間駐 車中の自動車の表面で,14時すぎに平均 60°C にもなった。

いっぽう芝生は 32℃ ぐらいであった。地面は日向と日陰では14時ごろで 2℃ ぐらいの差がある。

1. まえがき

赤外放射計の発明により、物体の表面温度の測定が可 能になってきた.赤外放射計の感度は非常にはやいの で、飛行機を利用すると広い範囲の地表面温度の測定も 可能になる.携帯用の放射計を利用しての地表面温度の 観測は、すでに Cond ら (1965) をはじめ多くの人々 によって行なわれており, Fujita ら (1968) は携帯用 放射計を使って飛行機から観測した資料から真の地表面 温度を推定することに対する新しい方法を 提出し,真 夏の京浜地区の地表面温度の推定を行なった。筆者ら (1969, a, b) も同じ型の放射計による, 伊勢湾の表 面水温や名古屋・地区の地表面温度分布の推定を行なっ てきた. 手動による走査型の放射計は, ある固定点での 観測には非常に利点があるが、走査線上についてしか資 料が得られないので広い面積の温度分布を得ることやセ ンサーを正しく目標物に向けることが困難である. AGA Thermovision は, 視野角 11°×11°の領域上の 温度差

* Aerial Measurement of Infrared Imagery of Ground and Sea Surface in Mid-summer with Infrared Radiometer and Thermovision

- ** H. Ochiai 鳥羽商船高等専門学校
- ***** K.** Tsuchiya 気象庁予報部, 気象研究所(併 任)

--1970年7月28日受理---

の分布を瞬時に一枚の写真上に表示でき,その中のある 点の温度がわかれば各点の温度の推定が可能になるとい う利点がある。そこで筆者らは,飛行機を使い AGA Thermovision-665, Barnes PRT-4, 普通のカメラによ るカラーフィルム撮影などを同時に行なって,伊勢湾, 名古屋,四日市地区などの表面温度の観測を行なった. 解析の結果わかったことや問題点などを報告する.

第1図 AGA Thermovision 665型のカメラ部

1971年4月

17

192

2. 測器の特性と観測方法

観測に使用した測器の特性は次のとおりである. 2.1 AGA Thermovision-665

概略は第1図に示すとおりで次の特性をもつ.

a) 検知器

型:インジウム・アンチモナイド (InSb) 光起電型. 感度を高めるために,液体窒素で, -196°C に冷却.

捕捉波長域: 2~5.6µ

b)光学系

レンズ: 焦点距離134mm, f/1.8.

映像サイズ:10⁰×10⁰. 焦点範囲は 0.05m から無限大 まで.

c) 走示部

画像サイズ:90mm×90mm. コマ数:16コマ/秒. --コマの走査線100本

d) 測定可能温度

被写体の温度が30℃のとき0.2℃ 弱の温度差があれ ば測定可能.測定可能範囲は,-30℃~200℃.

映像表示は被写体の温度分布の変動をあらかじめ想定 して,範囲を決める。例えば熱映像として映る領域内の 温度分布の最高,最低の差が20°C以下と思われる場合, 温度感度を20に設定すると,その中での最低温度が一番 黒く,最高の所が一番白く写し出され。同時に映像の下 部に温度に対する色階調が出る。温度分布がパターンと して表示されるから,その中に一点規準になる点があれ ば各点の絶対値もわかる。

2.2 Barnes PRT-4型放射計特性については参照論文

JULY 28 69

第2図 測定記録例. (a) AGA Thermovision, 温 度範囲は5°C. 高温ほど白色. 下の数字は 色階調. (b) PRT-4. (3) に報告してある.

2.3 観測方法

ふたつの測器を飛行機に取りつけ,客室の床にあけら れている広告物投下口から真下に向けた。AGA Thermovision は 16mm 映画撮影機と同期させ,毎秒8 コマ の撮影を行ない,特に詳しい解析を行なう地点について はポラロイド・カメラによる撮影を行なったほか,カラ ーフィルムによる写真撮影も行なった。飛行高度は原則 として 2,000m とし,特に海面汚染,地表面温度解析を 行なう場合については高度をいろいろと変えて観測を行 なった。なお 16mm フィルムは Kodak の超微粒子ネ ガ・フィルムを使用したが,実際に引伸ばすと膨大な枚 数になるので,この点問題になる。

3. Thermovision による観測資料と PRT-4 の 観測資料

第2図は Thermovision による熱映像と PRT-4 の観 測資料の比較の例である. PRT-4 のセンサーの視野角

第3図 名古屋港の表面水温.1969年7月9日 (a)9時26分~9時44分

◎天気// 18. 4.

第3図 (b) 13時42分~13時50分

は half energy で2°であるのに対し、Thermovision は 11°×11°の領域を100本の走査線で写真表示している から. 1本当り11°/100本=0.11°になり, PRT-4 より もずっと細かい分布が得られる。ただ写真表示のため温 度の絶対値については色階調から主観的に決めなければ ならないという不便さはあるが、PRT-4 から得られる ものよりはずっと細かい分布が得られる。従ってある決 った面積上の平均温度の推定には PRT-4 のほうが便利 であるのに対して,詳しい温度分布のパターンだけを得 るためには、Thermovision はそのままで温度分布を表 示しているからはるかに勝れている。第2図は名古屋港 南部の製鉄所付近の温排水の影響について比較したもの の例であるが、PRT-4による水温変化と Thermovision による熱映像の温度差とはよく一致している。PRT-4 による 測定値の高温と低温域の温度差は 4.5°C である のに対して、この熱映像の温度範囲は5°Cにしてある から, A点とB点における色階調の差は 4.5°C ぐらい であることがわかる.

PRT-4 の資料では A, B, C点の飛行経路に沿った温 度変化のプロフィルしか得られ ないが, Thermovision による熱映像は温度分布をパターンとして表示できる.

4. 解析結果

4.1 海水汚染地区の表面水温分布のメソ解析

表面水温は,海の深さ,海流,流入水,汚染度などに よってかなり影響され,とり扱いも簡単にはいかない. 特に近くに大工場がある場合には冷却水の流入もあって 複雑である.

(i) 名古屋港

第3図(a)と(b)は Thermovision の熱映像と PRT-4 の観測資料から得た名古屋港南部の1969年7月 29日の9時35分頃と13時46分頃の水面温度である.

第4図 第3図(b)の大きな四角形(A)を普通 のカメラで写したネガカラーを白黒の印画 紙に焼いたもの。白色の所が汚染域。1969 年7月20日12時07分。高度2,000m。

第5図 第3図(b)の小さな四角形(B)の熱映像. 温度範囲5°C,日時は第4図と同じ.

1971年4月

赤外線カメラと赤外放射計による夏期の地表面および海面温度測定

第6図 四日市港の表面水温分布。1969年7月28日14時14分~14時35分。

すでに9時半ごろ水面温度はかなり高く31°C にもなっている所があり,分布もかなり複雑である。外洋では水面温度の日変化や水平傾度は小さいが,港内で水面が汚れている所では第3図(a),(b)に示すように,かなりあり,大きい所では2.1°C/1km,2.5°C/4 hrsにもなった.おもな原因は,汚染した水面ほど太陽からの放射熱の吸収が大きいことと工場から排出される冷却水の影響であると考えられる.

分布が複雑になっているのは水面汚染や工場の冷却水 の流入などの集中度,さらに水深や湾内の流れ,風速な どが複雑に影響しているものと思われる.なお9時35分 すでに 31°C の高温になっていた所は午後になってもわ ずか 0.5°C ぐらいしか上昇しなかったが,これは高温 の所ほど蒸発が盛んになるため蒸発熱を奪われるからで あろうと考えられる.港の防波堤内では流れが小さいた め汚染の度合は甚だしい.第4図は,第5図(b)に示 した大さな四角形(A)の範囲を普通のカメラで撮影し たものである.写真の白っぽい所は,実際は赤黄色であ る.この写真からも汚染のひどいことが推定できよう. 第5図は同図の小さな四角形(B)の範囲を示す熱映像 であるが,汚染区域と高温域はよく一致している.この 熱映像の温度範囲は 5°C にしてあるから,汚染区域と そうでない区域との温度差は4°C あることになる.

第7図 第6図の四角形 (D)の区域の熱映像. 1969年7月28日 10時00分.高度2,000m, 温度範囲5°C.

(ii) 四日市港

第6図は四日市港の1969年7月28日14時20分頃の水面 温度である。特に高温な所は塩浜コンビナートの石原地 区付近と午起コンビナートの火力発電所付近で,最高は 33℃にもなっていた。このうち石原地区は汚染のはげ しい所で,複雑な模様を呈している。高温域はほぼ汚染 区域と一致している。いっぽう午起地区では水面の汚染 はそれほどはげしくないのに高温であるのは発電所や工 場からの冷却水の影響であろう。第7図は,第6図に示

1 KM

第8図 伊勢湾の表面水温.1969年7月29日 9時45分~11時10分.

した四角形(D)の区域の同日10時00分の熱映像である が、この図から細い高温域が南の方に伸びていることが わかる.

これは高温な冷却水や汚染水がこの方向に,流れ出していて,その影響が 600m 以上にわたっていることがよくわかる.この熱映像の温度範囲は 5 °C であるから,最高と最低の差は5 °C ぐらいになる.

4.2 伊勢湾の表面水温

第8図は今回の観測から得た7月29日の伊勢湾の表面 水温である.港の中では日変化はかなりあったが港外の 伊勢湾上での日変化はあまり認められなかった.高温域 は名古屋港,四日市港,知多半島の野間崎,低温域は伊 勢湾ロや木曽川,長良川の川口などで,筆者らの前年同 時期の観測(落合・土屋,1969)と宮川の河口付近を除 きほぼ同じであった.宮川の河口付近は,前年の観測で は低温域であった.この相違の主原因は,今回の観測時 には宮川の水量が前年に比べて著しく減っていたため, 流入水温のほうが湾の水温よりも高かったためであると 考えられる.

第9図 熱映像. 1969年7月28日. 高度400m, 温度範囲20°C.
(A)石油コンビナート. 白色円形物はタンク, 細長い物はパイプ. 14時15分
(B)道路と駐車場. 14時45分
(C)市街地の小公園. 四角形黒色部はプール. 14時50分.

三河湾の湾口には非常に大きな水平温度傾度がある. これは三河湾内は河川の流入量が少なくかつ湾内の流れ が弱いため比較的表面水温が上昇し易いのと,伊勢湾口 では流れが早く,表面水温が低いためである.このため にこの強い水平温度傾度のある区域には潮目ができ易 く,特に落潮時には巨大なものになる.

4.3 建造物,地物の表面温度

飛行機からの携帯用放射計による夏の地面や建物など の表面温度測定については、Combs ら (1965)、Fujita ら (1968)の報告もあり、筆者ら (1969)もすでに報告 した. 今回は携帯用放射計とそれよりも解像 度のよい Thermovision を併用して多くの対称物の温度測定をし た.後者は瞬間的に写真としてとれるので位置は携帯用 放射計の場合に比べて非常に正確になる。三例ほど実測 結果を次に述べる.

a) 石油コンビナート

第9図の(A)は1969年7月28日14時15分における名 古屋港南部の石油コンビナートの熱映像である.写真の

1971年4月

第10図 第9図(a)の冬期の熱映像,1968年12月
 23日11時08分.高度3,500m,温度範囲。
 20°C.

温度範囲は 20°C でほぼ範囲一杯である. 温度の推定値 は、タンク(白色円形) 50°C, パイプ 42°C, タンク周 辺の芝生 35°C, 日影 30°C, 第10図は同じ場所を1968年 12月23日11時08分, 3500m 高度から温度範囲 2°C で観 測したものであるが、冬期は正午近くでもタンクと芝生 の温度差は小さく、わずか 1°C ぐらいである. 冬期は 日射も弱いうえに強い季節風でタンクの表面から失う熱 量もかなり大きいためと考えられる.

b) 道路, 駐車場

第9図(b)が14時45分の道路と駐車場の熱映像である.熱映像は最初にセットした温度範囲以上になってしまっているので写真だけからはこの写真に映っている対称物の温度差が明確には推定できないが、PRT-4の記録を参照して推定した値は次のとおりである.駐車中の車は57~67°C,路面45~47°C,周囲の芝生(黒い部分)32°C,道路の中央分離帯37°C.

c)市街地の小公園

第9図(c)が14時50分における市街地の小公園の熱 映像である.この場合もセットした温度範囲以上になっ ている. PRT-4 の記録を参照して推定した値は,プー ルの水温26°C,グランド44°C,建物の屋根53°C.

5. むすび

以上述べたことから次のような結論が得られる.

a) 名古屋港および四日市港などの汚染水域の真夏の 晴れた日の表面温度はかなりの日変化や水平温度傾度が あり,日中の最高は 31~33°C にもなる.部分的にはさ らに数度ぐらい高い場合もあり得る.

b)汚染や温排水の影響は防波堤などによって大きく 左右される.とくに名古屋港においては高潮防波堤を境 いにして,汚染状態と表面水温分布にかなりの差があ る.

c)伊勢湾の表面水温分布は,名古屋,四日市および 野間崎付近が高温,木曽川の河口および伊勢湾口付近が 低温というパターンはそれほど変動しないが,小河川の 河口では水量による前年の低温域が高温域になる場合も ある.

d)市街地における野外の駐車場は,夏には熱源として作用する.

e)街路樹や芝生の中央分離帯は道路の表面温度をかなりやわらげる.

最後に今回の観測に際して飛行機の提供をはじめ種々 の御高配を賜った中日新聞社,観測器材の面で御協力願 ったガデリウス,日本テクニカルサプライズ,アジア航 測の各社,気象資料の面でお世話していただいた伊勢湾 周辺の気象官署,名古屋および四日市港管理組合に対 し,感謝の意を表する.とくに同乗して観測を手伝って いただいた松野虎夫,近藤誠宏の両氏には深謝します.

引用文献

- Ambrose O. Poulin and T.A. Harwood, 1966: Infrared Imagery in the Arctic under Daylight Conditions, Proceedings 4th Symposium on Remote Sensing of Environment, 231-241.
- Combs, A.C., H.K. Weickman, C. Mader and T. Tebo, 1965: Application of Infrared Radiometers to Meteorology. J. Appl. Meteor. 4, 253-262.
- Fujita, T., G. Baralt and K. Tsuchiya, 1968: Aerial Measurement of Radiation Temperature and Their Application to the Determination of Ground and Water Surface Temperatures. J. Appl. Meteor., 7, 801~816.
- 5) 落合弘明・土屋 清, 1969:飛行機による真夏 の名古屋・伊勢湾周辺の地表面放射温度観測, 天気, 539-548.
- Richard Blytho and Ellen Kurath, 1968: Infrared Images of Natural Subjects. Applied Optics, Vol. 7, No. 9. 1772-1775.