透過率の変動と重力波の役割り*

草野和 夫**

要 旨

千歳の透過率計記録11例をスペクトル解析したところ、大勢としては、低周波域には -5/3 乗則が、高周 波域には -7 乗則が成り立ち、等方性乱流理論が適用される.しかし中間周波数帯に顕著な特異点を持つも のが多い.

下層大気には、各例とも、逆転層または等温層があり、その層より下にできる内部重力波の鉛直運動が透 過率の短周期変動を支配し、 Brunt-Väisälä の振動数よりやや小さい周波数帯にパワー・スペクトラムの山 ができる、安定層から上にできる外部重力波は上記の内部重力波エネルギーを上空に逸散させて、パワー・ スペクトラムに落ち込みを作る。

1. はじめに

先に,羽田の透過率記録のスペクトル解析¹⁾を行ない,いくつかの卓越周期があることを報告した.今回. 千歳の資料を入手したので同様な解析を行なったところ,興味ある事実を発見した.

スペクトルの計算方法と手段は前の報告と全く同じで ある.ただし,千歳には透過率計が一台しか設置されて いないので,クロス・スペクトラムの計算はできなかっ

No.	日付	時 刻	資料数	項 数
	1968	JST	Ν	m
51	5. 5	1400-0745	213	25
52	5.18	2100-0510	98	12
53	5.20	0000-0740	92	12
54	5. 22	2000-0440	104	12
55	5.26	0100-0740	80	12
56	6. 2	1800-0540	140	18
57	6.4	1250-0850	240	30
58	6.8	2200-0620	100	12
59	6.22	2000-0315	87	12
60	6.25	2230-1010	260	30
61	6.27	1730-0750	172	22

第1表

* On the Responsibility of Gravity Waves for the Variations of Transmissivity

** K. Kusano 福岡航空測候所

—1972年10月30日受理—

1972年12月

た.用いた資料は第1表に示す11個である.読取りの間 隔は5分であるが,当時,透過率計の打点の乱れが大き いため,数分間の平均値を10分ごとに読取り,中間の値 を内挿で求めたものである.

2. スペクトル関数型

パワー・スペクトラムを第1図に示す. 横軸は周波数 (10⁻³ cycle sec⁻¹),縦軸は基準化スペクトラム密度(無 次元)である.実線は減衰の大勢を示し,数字はその減 衰係数である.

羽田の場合と比べて著しい特徴は、全般になめらかに 減衰していること、周波数 7×10⁻³ sec⁻¹(周期15分) 以上の高周波域での減衰が非常に大きいことである。羽 田の場合はなまの読取りを2分間隔で行なったのに対 し、千歳の場合はかなり平滑化した5分間隔の値である ことが、最も大きな理由と考えられる。

減衰係数の周波数による変化をみると,前半(低周波 域)で-5/3 または-2であったものが,後半で-3な いし-9 になるものが大部分である.スペクトル関数の 減衰係数の値は乱流理論によると重要な意味を持ってい る.すなわち,パワー・スペクトラムは-5/3 乗則が成 り立つエネルギー伝搬域と,-7 乗則が成り立つエネル ギー逸散域に分けられ,逸散域で-3 乗則が実測に近い という説もある.したがって,透過率のスペクトル関数 は乱流理論から説明することができることになる.

3. 特異点と Brunt-Väisälä の振動数

今までは減衰の大勢を記述してきたが、細かく見る と、中間周波数帯に大きな落ち込みや顕著なピークがい くつか見られる.このような特異点は程度の差はある

43

第1図 c 透過率のパワー・スペクトラム. 横軸は 周波数×10⁻³ sec⁻¹,縦軸は基準化した スペクトラム密度(無次元), 細線は平 均的な減衰曲線,数字は減衰係数.資料 番号は第1表による。

が,各例とも存在している. パワー・スペクトラムの落 ち込みはエネルギーの流出を,ピークは新たなエネルギ ーのゆう出を意味する. それがどうして起こるかを考え る上で, E. E. Gossard²⁾の論文が参考になる.

C. O. Hines は電離層内の不規則性についての実測値 の多くは,その高度では低周波数の起潮力以外に波を発 生させる明白な機構はないから,対流圏の大きなエネル ギー過程に起因した波であることを示唆した. E. E. Gossard はカリオルニアの Point Loma で観測された, 霧の堤の上面が乱れ地表の気圧と風が顕著に振動した例 を含めて,いくつかの場合について,対流圏下層から鉛 直に流れ出るエネルギー流束を計算している.このよう な場合,下層1,000~5,000 ft に明りような逆転があり, その上もその下もやや不安定になっている.このとき発 生した内部重力波のエネルギーが,逆転層の上にある不 安定に近い層の振動を通じて,上空に流出すると彼は述 べている.

小倉³⁾によると、上昇する空気塊は浮力と重力の作用 を受けて、振動数

$$\nu_b = \sqrt{\frac{g \cdot dl_n \theta}{dz}} \tag{1}$$

を持つ振動をする. ν_b を Brunt-Väisälä の振動数といい, 安定度だけに関係する. ここで g は重力の加速度, θ は温位である. 空気が飽和しているときは, 凝結の潜熱が放出されるのでようすは変わってくるが, 凝結が弱いと考えれば, (1) 式の θ のかわりに相当温位を用いればよい.

千歳に最も近い高層観測地点札幌の観測から第1表の時間内またはそれに最も近い時刻における安定度をみると、下層 100~1000m に逆転層または等温層があり、その上も下も安定度が悪くなっている。それぞれの安定度から Brunt-Väisälä の振動数を求め、地面に近い方から ν_{bI} , ν_{bI} , ν_{bI} とする。第1図の各例に ν_{bI} を上向きの白い矢印で、 ν_{bI} を下向きの黒い矢印で示した。 ν_{bI} はすべて 10⁻² sec⁻¹ 以上であるため図上に記入されていない。

上向き矢印に着目すると、それよりやや低周波のところにパワー・スペクトラムのピークが対応し、下向き矢印のところには落ち込みが対応している。ピークの周波数(ν_{p})と ν_{bI} ,落ち込みの周波数(ν_{s})と ν_{bI} とは第2図に示すようにかなり高い相関があり、

$$\nu_p = \nu_b I - 0.8$$
 (×10⁻³ sec⁻¹) (2)

 $\nu_s = \nu_b \mathbf{I} \tag{3}$

*****天気/ 19. 12.

44

第2図 ビークの周波数 vp と接地層の Brunt-Väisälä の振動数 vbI との比較(白丸), および落ち込みの周波数 vs と上空の vbm との比較(黒丸).単位はいずれも 10⁻³ sec⁻¹

の実験式が得られる.

小倉³) によると, ν_b より低周波の 重力波は低周波内 部重力波であり, ν_b と同じ周波数の 重力波は外部重力 波に属する.したがって, (3) 式は逆転層の上に発生 している外部重力波によって,透過率変動のエネルギー が上空に逸散することを物語っている.

低周波内部重力波は安定で、その運動は大気中の小規 模対流に似たセル状の循環を示す.循環に伴う上昇流・ 下降流は積雲対流ほど強くはないが、霧粒の量と大きさ を変える程度の強さがあると考えれば、透過率の低下・ 好転が繰り返されることになる.したがって、(2)式 で表わされるような周波数帯で、新たにエネルギーがゆ う出し、スペクトラムにピークを作ったが、逸散域にあ るためたちまち減衰するのであると説明することができ る. *w*_I に対応するピークおよび *w*_M に対応する落ち込みをパワー・スペクトラムに見つけることは容易である。しかしすべてのピークまたは落ち込みに *w*_I または *w*_M が対応するわけではないことは第1図からも明らかである。高層観測が千歳から約40km 離れた札幌の12時間間隔でしか得られないことから、両者の完全な対応を期待することは無理なことである。

4.まとめ

千歳の透過率計記録11例のスペクトル解析を行ない, 次のような結果を得た.

- i)パワー・スペクトラムは低周波域で-5/3または -2,高周波域は-7または-3の減衰係数が適用され、等方性乱流理論による伝搬域および逸散域に相当 する。しかし中間周波数帯に顕著なピークや落ち込み を持っている。
- ii) 霧が発生しているとき下層大気に逆転層または等温 層が存在し、その上も下も比較的不安定である。安定 層から上で発生する外部重力波のため透過率変動のエ ネルギーは急速に逸散するので、パワー・スペクトラ ムの落ち込みができる。
- iii)安定層から地表までの間で発生する内部重力波に伴う上昇流・下降流が透過率変動の新たなエネルギー源となり、パワー・スペクトラムにピークを作る。

このような考え方で,先に行なった羽田の場合を見な おすことは別に報告する.

最後に,データの提供を受けた新東京航空地方気象台 準備室綾 主任技術専門官,プログラミングと計算機の 使用に御指導と御援助を受けた気象庁電子計算室の方々 に深く感謝する.

文 献

- Gossard, E. E. (1962):対流圏に起こった内部 重力波エネルギーが電離層下層に流れこむこと (桜庭信一訳),地球物理学文献抄, 10, 85-94.
- 3)小倉義光(1966):最近の気象力学,気象研究/ -ト,**17**, 1-61.